diff --git a/models.py b/models.py index b262ffd..ccb1ce9 100644 --- a/models.py +++ b/models.py @@ -4,6 +4,7 @@ import torch.nn.functional as F import numpy as np from functools import partial from einops.layers.torch import Rearrange, Reduce +from einops import rearrange, repeat from utils import * from layers import * from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD @@ -868,6 +869,203 @@ def window_reverse(windows, window_size, H, W): x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, -1, H, W) return x +def cast_tuple(val, length = 1): + return val if isinstance(val, tuple) else ((val,) * length) + +# helper classes + +class ChanLayerNorm(nn.Module): + def __init__(self, dim, eps = 1e-5): + super().__init__() + self.eps = eps + self.g = nn.Parameter(torch.ones(1, dim, 1, 1)) + self.b = nn.Parameter(torch.zeros(1, dim, 1, 1)) + + def forward(self, x): + var = torch.var(x, dim = 1, unbiased = False, keepdim = True) + mean = torch.mean(x, dim = 1, keepdim = True) + return (x - mean) / (var + self.eps).sqrt() * self.g + self.b + +class OverlappingPatchEmbed(nn.Module): + def __init__(self, dim_in, dim_out, stride = 2): + super().__init__() + kernel_size = stride * 2 - 1 + padding = kernel_size // 2 + self.conv = nn.Conv2d(dim_in, dim_out, kernel_size, stride = stride, padding = padding) + + def forward(self, x): + return self.conv(x) + +class PEG(nn.Module): + def __init__(self, dim, kernel_size = 3): + super().__init__() + self.proj = nn.Conv2d(dim, dim, kernel_size = kernel_size, padding = kernel_size // 2, groups = dim, stride = 1) + + def forward(self, x): + return self.proj(x) + x + +# feedforward + +class FeedForward(nn.Module): + def __init__(self, dim, mult = 4, dropout = 0.): + super().__init__() + inner_dim = int(dim * mult) + self.net = nn.Sequential( + ChanLayerNorm(dim), + nn.Conv2d(dim, inner_dim, 1), + nn.GELU(), + nn.Dropout(dropout), + nn.Conv2d(inner_dim, dim, 1), + nn.Dropout(dropout) + ) + def forward(self, x): + return self.net(x) + +# attention + +class DSSA(nn.Module): + def __init__( + self, + dim, + heads = 8, + dim_head = 32, + dropout = 0., + window_size = 7 + ): + super().__init__() + self.heads = heads + self.scale = dim_head ** -0.5 + self.window_size = window_size + inner_dim = dim_head * heads + + self.norm = ChanLayerNorm(dim) + + self.attend = nn.Sequential( + nn.Softmax(dim = -1), + nn.Dropout(dropout) + ) + + self.to_qkv = nn.Conv1d(dim, inner_dim * 3, 1, bias = False) + + # window tokens + + self.window_tokens = nn.Parameter(torch.randn(dim)) + + # prenorm and non-linearity for window tokens + # then projection to queries and keys for window tokens + + self.window_tokens_to_qk = nn.Sequential( + nn.LayerNorm(dim_head), + nn.GELU(), + Rearrange('b h n c -> b (h c) n'), + nn.Conv1d(inner_dim, inner_dim * 2, 1), + Rearrange('b (h c) n -> b h n c', h = heads), + ) + + # window attention + + self.window_attend = nn.Sequential( + nn.Softmax(dim = -1), + nn.Dropout(dropout) + ) + + self.to_out = nn.Sequential( + nn.Conv2d(inner_dim, dim, 1), + nn.Dropout(dropout) + ) + + def forward(self, x): + """ + einstein notation + + b - batch + c - channels + w1 - window size (height) + w2 - also window size (width) + i - sequence dimension (source) + j - sequence dimension (target dimension to be reduced) + h - heads + x - height of feature map divided by window size + y - width of feature map divided by window size + """ + + batch, height, width, heads, wsz = x.shape[0], *x.shape[-2:], self.heads, self.window_size + assert (height % wsz) == 0 and (width % wsz) == 0, f'height {height} and width {width} must be divisible by window size {wsz}' + num_windows = (height // wsz) * (width // wsz) + + x = self.norm(x) + + # fold in windows for "depthwise" attention - not sure why it is named depthwise when it is just "windowed" attention + + x = rearrange(x, 'b c (h w1) (w w2) -> (b h w) c (w1 w2)', w1 = wsz, w2 = wsz) + + # add windowing tokens + + w = repeat(self.window_tokens, 'c -> b c 1', b = x.shape[0]) + x = torch.cat((w, x), dim = -1) + + # project for queries, keys, value + + q, k, v = self.to_qkv(x).chunk(3, dim = 1) + + # split out heads + + q, k, v = map(lambda t: rearrange(t, 'b (h d) ... -> b h (...) d', h = heads), (q, k, v)) + + # scale + + q = q * self.scale + + # similarity + + dots = einsum('b h i d, b h j d -> b h i j', q, k) + + # attention + + attn = self.attend(dots) + + # aggregate values + + out = torch.matmul(attn, v) + + # split out windowed tokens + + window_tokens, windowed_fmaps = out[:, :, 0], out[:, :, 1:] + + # early return if there is only 1 window + + if num_windows == 1: + fmap = rearrange(windowed_fmaps, '(b x y) h (w1 w2) d -> b (h d) (x w1) (y w2)', x = height // wsz, y = width // wsz, w1 = wsz, w2 = wsz) + return self.to_out(fmap) + + # carry out the pointwise attention, the main novelty in the paper + + window_tokens = rearrange(window_tokens, '(b x y) h d -> b h (x y) d', x = height // wsz, y = width // wsz) + windowed_fmaps = rearrange(windowed_fmaps, '(b x y) h n d -> b h (x y) n d', x = height // wsz, y = width // wsz) + + # windowed queries and keys (preceded by prenorm activation) + + w_q, w_k = self.window_tokens_to_qk(window_tokens).chunk(2, dim = -1) + + # scale + + w_q = w_q * self.scale + + # similarities + + w_dots = einsum('b h i d, b h j d -> b h i j', w_q, w_k) + + w_attn = self.window_attend(w_dots) + + # aggregate the feature maps from the "depthwise" attention step (the most interesting part of the paper, one i haven't seen before) + + aggregated_windowed_fmap = einsum('b h i j, b h j w d -> b h i w d', w_attn, windowed_fmaps) + + # fold back the windows and then combine heads for aggregation + + fmap = rearrange(aggregated_windowed_fmap, 'b h (x y) (w1 w2) d -> b (h d) (x w1) (y w2)', x = height // wsz, y = width // wsz, w1 = wsz, w2 = wsz) + return self.to_out(fmap) + class PoolFormerBlock(nn.Module): """ Implementation of one PoolFormer block. @@ -893,8 +1091,10 @@ class PoolFormerBlock(nn.Module): #self.token_mixer = Pooling(pool_size=pool_size) # self.token_mixer = FNetBlock() self.window_size = 4 + self.attn_heads = 4 self.attn_mask = None - self.token_mixer = WindowAttention(dim=dim, window_size=to_2tuple(self.window_size), num_heads=4) + # self.token_mixer = WindowAttention(dim=dim, window_size=to_2tuple(self.window_size), num_heads=4) + self.token_mixer = DSSA(dim, heads=self.attn_heads, window_size=self.window_size, dropout=0.5) self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, @@ -912,11 +1112,12 @@ class PoolFormerBlock(nn.Module): def forward(self, x): B, C, H, W = x.shape - x_windows = window_partition(x, self.window_size) - x_windows = x_windows.view(-1, self.window_size * self.window_size, C) - attn_windows = self.token_mixer(x_windows, mask=self.attn_mask) - attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) - x_attn = window_reverse(attn_windows, self.window_size, H, W) + # x_windows = window_partition(x, self.window_size) + # x_windows = x_windows.view(-1, self.window_size * self.window_size, C) + # attn_windows = self.token_mixer(x_windows, mask=self.attn_mask) + # attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) + # x_attn = window_reverse(attn_windows, self.window_size, H, W) + x_attn = self.token_mixer(x) if self.use_layer_scale: x = x + self.drop_path( self.layer_scale_1.unsqueeze(-1).unsqueeze(-1)