try modify swin
This commit is contained in:
		
							
								
								
									
										44
									
								
								models.py
									
									
									
									
									
								
							
							
						
						
									
										44
									
								
								models.py
									
									
									
									
									
								
							@@ -547,6 +547,7 @@ class FouriER(torch.nn.Module):
 | 
			
		||||
        down_patch_size=3
 | 
			
		||||
        down_stride=2
 | 
			
		||||
        down_pad=1
 | 
			
		||||
        window_size = 4
 | 
			
		||||
        num_classes=self.p.embed_dim
 | 
			
		||||
        for i in range(len(layers)):
 | 
			
		||||
            stage = basic_blocks(embed_dims[i], i, layers, 
 | 
			
		||||
@@ -556,7 +557,8 @@ class FouriER(torch.nn.Module):
 | 
			
		||||
                                 drop_path_rate=drop_path_rate,
 | 
			
		||||
                                 use_layer_scale=use_layer_scale, 
 | 
			
		||||
                                 layer_scale_init_value=layer_scale_init_value,
 | 
			
		||||
                                 num_heads=num_heads[i])
 | 
			
		||||
                                 num_heads=num_heads[i], input_resolution=(image_h // (2**i), image_w // (2**i)),
 | 
			
		||||
                                 window_size=window_size, shift_size=0 if (i % 2 == 0) else window_size // 2)
 | 
			
		||||
            network.append(stage)
 | 
			
		||||
            if i >= len(layers) - 1:
 | 
			
		||||
                break
 | 
			
		||||
@@ -734,7 +736,7 @@ def basic_blocks(dim, index, layers,
 | 
			
		||||
                 pool_size=3, mlp_ratio=4., 
 | 
			
		||||
                 act_layer=nn.GELU, norm_layer=GroupNorm, 
 | 
			
		||||
                 drop_rate=.0, drop_path_rate=0., 
 | 
			
		||||
                 use_layer_scale=True, layer_scale_init_value=1e-5, num_heads = 4):
 | 
			
		||||
                 use_layer_scale=True, layer_scale_init_value=1e-5, num_heads = 4, input_resolution = None, window_size = 4, shift_size = 2):
 | 
			
		||||
    """
 | 
			
		||||
    generate PoolFormer blocks for a stage
 | 
			
		||||
    return: PoolFormer blocks 
 | 
			
		||||
@@ -749,7 +751,8 @@ def basic_blocks(dim, index, layers,
 | 
			
		||||
            drop=drop_rate, drop_path=block_dpr, 
 | 
			
		||||
            use_layer_scale=use_layer_scale, 
 | 
			
		||||
            layer_scale_init_value=layer_scale_init_value, 
 | 
			
		||||
            num_heads=num_heads
 | 
			
		||||
            num_heads=num_heads, input_resolution = input_resolution,
 | 
			
		||||
            window_size=window_size, shift_size=shift_size
 | 
			
		||||
            ))
 | 
			
		||||
    blocks = nn.Sequential(*blocks)
 | 
			
		||||
 | 
			
		||||
@@ -933,14 +936,16 @@ class PoolFormerBlock(nn.Module):
 | 
			
		||||
    def __init__(self, dim, pool_size=3, mlp_ratio=4., 
 | 
			
		||||
                 act_layer=nn.GELU, norm_layer=GroupNorm, 
 | 
			
		||||
                 drop=0., drop_path=0., num_heads=4,
 | 
			
		||||
                 use_layer_scale=True, layer_scale_init_value=1e-5):
 | 
			
		||||
                 use_layer_scale=True, layer_scale_init_value=1e-5, input_resolution = None, window_size = 4, shift_size = 2):
 | 
			
		||||
 | 
			
		||||
        super().__init__()
 | 
			
		||||
 | 
			
		||||
        self.norm1 = norm_layer(dim)
 | 
			
		||||
        #self.token_mixer = Pooling(pool_size=pool_size)
 | 
			
		||||
        # self.token_mixer = FNetBlock()
 | 
			
		||||
        self.window_size = 4
 | 
			
		||||
        self.window_size = window_size
 | 
			
		||||
        self.shift_size = shift_size
 | 
			
		||||
        self.input_resolution = input_resolution
 | 
			
		||||
        self.attn_mask = None
 | 
			
		||||
        self.token_mixer = WindowAttention(dim=dim, window_size=to_2tuple(self.window_size), num_heads=num_heads, attn_drop=0.1, proj_drop=0.2)
 | 
			
		||||
        self.norm2 = norm_layer(dim)
 | 
			
		||||
@@ -958,6 +963,31 @@ class PoolFormerBlock(nn.Module):
 | 
			
		||||
            self.layer_scale_2 = nn.Parameter(
 | 
			
		||||
                layer_scale_init_value * torch.ones((dim)), requires_grad=True)
 | 
			
		||||
            
 | 
			
		||||
        if self.shift_size > 0:
 | 
			
		||||
            # calculate attention mask for SW-MSA
 | 
			
		||||
            H, W = self.input_resolution
 | 
			
		||||
            img_mask = torch.zeros((1, H, W, 1))  # 1 H W 1
 | 
			
		||||
            h_slices = (slice(0, -self.window_size),
 | 
			
		||||
                        slice(-self.window_size, -self.shift_size),
 | 
			
		||||
                        slice(-self.shift_size, None))
 | 
			
		||||
            w_slices = (slice(0, -self.window_size),
 | 
			
		||||
                        slice(-self.window_size, -self.shift_size),
 | 
			
		||||
                        slice(-self.shift_size, None))
 | 
			
		||||
            cnt = 0
 | 
			
		||||
            for h in h_slices:
 | 
			
		||||
                for w in w_slices:
 | 
			
		||||
                    img_mask[:, h, w, :] = cnt
 | 
			
		||||
                    cnt += 1
 | 
			
		||||
 | 
			
		||||
            mask_windows = window_partition(img_mask, self.window_size)  # nW, window_size, window_size, 1
 | 
			
		||||
            mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
 | 
			
		||||
            attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
 | 
			
		||||
            attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
 | 
			
		||||
        else:
 | 
			
		||||
            attn_mask = None
 | 
			
		||||
 | 
			
		||||
        self.register_buffer("attn_mask", attn_mask)
 | 
			
		||||
 | 
			
		||||
    def forward(self, x):
 | 
			
		||||
        B, C, H, W = x.shape
 | 
			
		||||
        x_windows = window_partition(x, self.window_size)
 | 
			
		||||
@@ -965,6 +995,10 @@ class PoolFormerBlock(nn.Module):
 | 
			
		||||
        attn_windows = self.token_mixer(x_windows, mask=self.attn_mask)
 | 
			
		||||
        attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
 | 
			
		||||
        x_attn = window_reverse(attn_windows, self.window_size, H, W)
 | 
			
		||||
        if self.shift_size > 0:
 | 
			
		||||
            x = torch.roll(x_attn, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
 | 
			
		||||
        else:
 | 
			
		||||
            x = x_attn
 | 
			
		||||
        if self.use_layer_scale:
 | 
			
		||||
            x = x + self.drop_path(
 | 
			
		||||
                self.layer_scale_1.unsqueeze(-1).unsqueeze(-1)
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user