temporal supported
This commit is contained in:
		
							
								
								
									
										15
									
								
								data/icews14/about.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										15
									
								
								data/icews14/about.txt
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,15 @@
 | 
			
		||||
# triples: 89320 
 | 
			
		||||
# entities: 7128 
 | 
			
		||||
# relations: 12409 
 | 
			
		||||
# timesteps: 208 
 | 
			
		||||
# test triples: 8255 
 | 
			
		||||
# valid triples: 8239 
 | 
			
		||||
# train triples: 72826 
 | 
			
		||||
Measure method:  N/A  
 | 
			
		||||
Target Size :  0  
 | 
			
		||||
Grow Factor:  0  
 | 
			
		||||
Shrink Factor:  0  
 | 
			
		||||
Epsilon Factor: 0  
 | 
			
		||||
Search method: N/A  
 | 
			
		||||
filter_dupes: inter
 | 
			
		||||
nonames: False
 | 
			
		||||
							
								
								
									
										7128
									
								
								data/icews14/entities.dict
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										7128
									
								
								data/icews14/entities.dict
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										12409
									
								
								data/icews14/relations.dict
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										12409
									
								
								data/icews14/relations.dict
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										8255
									
								
								data/icews14/test.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										8255
									
								
								data/icews14/test.txt
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										209
									
								
								data/icews14/time_map.dict
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										209
									
								
								data/icews14/time_map.dict
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,209 @@
 | 
			
		||||
0	0	2
 | 
			
		||||
1	3	5
 | 
			
		||||
2	6	7
 | 
			
		||||
3	8	9
 | 
			
		||||
4	10	12
 | 
			
		||||
5	13	14
 | 
			
		||||
6	15	16
 | 
			
		||||
7	17	19
 | 
			
		||||
8	20	21
 | 
			
		||||
9	22	23
 | 
			
		||||
10	24	26
 | 
			
		||||
11	27	28
 | 
			
		||||
12	29	30
 | 
			
		||||
13	31	33
 | 
			
		||||
14	34	35
 | 
			
		||||
15	36	37
 | 
			
		||||
16	38	40
 | 
			
		||||
17	41	42
 | 
			
		||||
18	43	44
 | 
			
		||||
19	45	46
 | 
			
		||||
20	47	48
 | 
			
		||||
21	49	49
 | 
			
		||||
22	50	50
 | 
			
		||||
23	51	51
 | 
			
		||||
24	52	53
 | 
			
		||||
25	54	54
 | 
			
		||||
26	55	55
 | 
			
		||||
27	56	57
 | 
			
		||||
28	58	59
 | 
			
		||||
29	60	61
 | 
			
		||||
30	62	62
 | 
			
		||||
31	63	63
 | 
			
		||||
32	64	65
 | 
			
		||||
33	66	68
 | 
			
		||||
34	69	70
 | 
			
		||||
35	71	71
 | 
			
		||||
36	72	72
 | 
			
		||||
37	73	74
 | 
			
		||||
38	75	76
 | 
			
		||||
39	77	78
 | 
			
		||||
40	79	80
 | 
			
		||||
41	81	82
 | 
			
		||||
42	83	84
 | 
			
		||||
43	85	85
 | 
			
		||||
44	86	87
 | 
			
		||||
45	88	89
 | 
			
		||||
46	90	91
 | 
			
		||||
47	92	93
 | 
			
		||||
48	94	96
 | 
			
		||||
49	97	97
 | 
			
		||||
50	98	99
 | 
			
		||||
51	100	101
 | 
			
		||||
52	102	103
 | 
			
		||||
53	104	105
 | 
			
		||||
54	106	107
 | 
			
		||||
55	108	110
 | 
			
		||||
56	111	112
 | 
			
		||||
57	113	114
 | 
			
		||||
58	115	116
 | 
			
		||||
59	117	118
 | 
			
		||||
60	119	119
 | 
			
		||||
61	120	121
 | 
			
		||||
62	122	124
 | 
			
		||||
63	125	125
 | 
			
		||||
64	126	127
 | 
			
		||||
65	128	129
 | 
			
		||||
66	130	131
 | 
			
		||||
67	132	133
 | 
			
		||||
68	134	135
 | 
			
		||||
69	136	138
 | 
			
		||||
70	139	139
 | 
			
		||||
71	140	140
 | 
			
		||||
72	141	141
 | 
			
		||||
73	142	143
 | 
			
		||||
74	144	145
 | 
			
		||||
75	146	147
 | 
			
		||||
76	148	148
 | 
			
		||||
77	149	150
 | 
			
		||||
78	151	152
 | 
			
		||||
79	153	154
 | 
			
		||||
80	155	155
 | 
			
		||||
81	156	157
 | 
			
		||||
82	158	159
 | 
			
		||||
83	160	161
 | 
			
		||||
84	162	163
 | 
			
		||||
85	164	166
 | 
			
		||||
86	167	167
 | 
			
		||||
87	168	168
 | 
			
		||||
88	169	169
 | 
			
		||||
89	170	170
 | 
			
		||||
90	171	173
 | 
			
		||||
91	174	175
 | 
			
		||||
92	176	177
 | 
			
		||||
93	178	180
 | 
			
		||||
94	181	182
 | 
			
		||||
95	183	183
 | 
			
		||||
96	184	185
 | 
			
		||||
97	186	187
 | 
			
		||||
98	188	188
 | 
			
		||||
99	189	190
 | 
			
		||||
100	191	192
 | 
			
		||||
101	193	194
 | 
			
		||||
102	195	195
 | 
			
		||||
103	196	197
 | 
			
		||||
104	198	199
 | 
			
		||||
105	200	201
 | 
			
		||||
106	202	203
 | 
			
		||||
107	204	205
 | 
			
		||||
108	206	208
 | 
			
		||||
109	209	210
 | 
			
		||||
110	211	212
 | 
			
		||||
111	213	215
 | 
			
		||||
112	216	217
 | 
			
		||||
113	218	219
 | 
			
		||||
114	220	221
 | 
			
		||||
115	222	222
 | 
			
		||||
116	223	224
 | 
			
		||||
117	225	226
 | 
			
		||||
118	227	229
 | 
			
		||||
119	230	231
 | 
			
		||||
120	232	233
 | 
			
		||||
121	234	236
 | 
			
		||||
122	237	238
 | 
			
		||||
123	239	239
 | 
			
		||||
124	240	241
 | 
			
		||||
125	242	243
 | 
			
		||||
126	244	245
 | 
			
		||||
127	246	246
 | 
			
		||||
128	247	248
 | 
			
		||||
129	249	250
 | 
			
		||||
130	251	251
 | 
			
		||||
131	252	252
 | 
			
		||||
132	253	253
 | 
			
		||||
133	254	254
 | 
			
		||||
134	255	256
 | 
			
		||||
135	257	257
 | 
			
		||||
136	258	259
 | 
			
		||||
137	260	261
 | 
			
		||||
138	262	263
 | 
			
		||||
139	264	264
 | 
			
		||||
140	265	265
 | 
			
		||||
141	266	266
 | 
			
		||||
142	267	267
 | 
			
		||||
143	268	269
 | 
			
		||||
144	270	271
 | 
			
		||||
145	272	272
 | 
			
		||||
146	273	273
 | 
			
		||||
147	274	274
 | 
			
		||||
148	275	276
 | 
			
		||||
149	277	278
 | 
			
		||||
150	279	279
 | 
			
		||||
151	280	281
 | 
			
		||||
152	282	283
 | 
			
		||||
153	284	285
 | 
			
		||||
154	286	286
 | 
			
		||||
155	287	287
 | 
			
		||||
156	288	288
 | 
			
		||||
157	289	289
 | 
			
		||||
158	290	291
 | 
			
		||||
159	292	292
 | 
			
		||||
160	293	293
 | 
			
		||||
161	294	294
 | 
			
		||||
162	295	295
 | 
			
		||||
163	296	297
 | 
			
		||||
164	298	299
 | 
			
		||||
165	300	300
 | 
			
		||||
166	301	301
 | 
			
		||||
167	302	303
 | 
			
		||||
168	304	305
 | 
			
		||||
169	306	307
 | 
			
		||||
170	308	309
 | 
			
		||||
171	310	310
 | 
			
		||||
172	311	312
 | 
			
		||||
173	313	313
 | 
			
		||||
174	314	314
 | 
			
		||||
175	315	315
 | 
			
		||||
176	316	316
 | 
			
		||||
177	317	317
 | 
			
		||||
178	318	319
 | 
			
		||||
179	320	320
 | 
			
		||||
180	321	321
 | 
			
		||||
181	322	322
 | 
			
		||||
182	323	323
 | 
			
		||||
183	324	324
 | 
			
		||||
184	325	326
 | 
			
		||||
185	327	327
 | 
			
		||||
186	328	328
 | 
			
		||||
187	329	329
 | 
			
		||||
188	330	330
 | 
			
		||||
189	331	332
 | 
			
		||||
190	333	334
 | 
			
		||||
191	335	335
 | 
			
		||||
192	336	336
 | 
			
		||||
193	337	338
 | 
			
		||||
194	339	340
 | 
			
		||||
195	341	342
 | 
			
		||||
196	343	343
 | 
			
		||||
197	344	344
 | 
			
		||||
198	345	346
 | 
			
		||||
199	347	348
 | 
			
		||||
200	349	349
 | 
			
		||||
201	350	350
 | 
			
		||||
202	351	352
 | 
			
		||||
203	353	355
 | 
			
		||||
204	356	357
 | 
			
		||||
205	358	359
 | 
			
		||||
206	360	362
 | 
			
		||||
207	363	365
 | 
			
		||||
208	366	366
 | 
			
		||||
							
								
								
									
										72826
									
								
								data/icews14/train.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										72826
									
								
								data/icews14/train.txt
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										8239
									
								
								data/icews14/valid.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										8239
									
								
								data/icews14/valid.txt
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										15
									
								
								data/wikidata12k/about.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										15
									
								
								data/wikidata12k/about.txt
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,15 @@
 | 
			
		||||
# triples: 291818 
 | 
			
		||||
# entities: 12554 
 | 
			
		||||
# relations: 423 
 | 
			
		||||
# timesteps: 70 
 | 
			
		||||
# test triples: 19271 
 | 
			
		||||
# valid triples: 20208 
 | 
			
		||||
# train triples: 252339 
 | 
			
		||||
Measure method:  N/A  
 | 
			
		||||
Target Size :  423  
 | 
			
		||||
Grow Factor:  0  
 | 
			
		||||
Shrink Factor:  4.0  
 | 
			
		||||
Epsilon Factor: 0  
 | 
			
		||||
Search method: N/A  
 | 
			
		||||
filter_dupes: inter
 | 
			
		||||
nonames: False
 | 
			
		||||
							
								
								
									
										12554
									
								
								data/wikidata12k/entities.dict
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										12554
									
								
								data/wikidata12k/entities.dict
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										423
									
								
								data/wikidata12k/relations.dict
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										423
									
								
								data/wikidata12k/relations.dict
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,423 @@
 | 
			
		||||
0	P131[0-0]
 | 
			
		||||
1	P131[1-1]
 | 
			
		||||
2	P131[2-2]
 | 
			
		||||
3	P131[3-3]
 | 
			
		||||
4	P131[4-4]
 | 
			
		||||
5	P131[5-5]
 | 
			
		||||
6	P131[6-6]
 | 
			
		||||
7	P131[7-7]
 | 
			
		||||
8	P131[8-8]
 | 
			
		||||
9	P131[9-9]
 | 
			
		||||
10	P131[10-10]
 | 
			
		||||
11	P131[11-11]
 | 
			
		||||
12	P131[12-12]
 | 
			
		||||
13	P131[13-13]
 | 
			
		||||
14	P131[14-14]
 | 
			
		||||
15	P131[15-15]
 | 
			
		||||
16	P131[16-16]
 | 
			
		||||
17	P131[17-17]
 | 
			
		||||
18	P131[18-18]
 | 
			
		||||
19	P131[19-19]
 | 
			
		||||
20	P131[20-20]
 | 
			
		||||
21	P131[21-21]
 | 
			
		||||
22	P131[22-22]
 | 
			
		||||
23	P131[23-23]
 | 
			
		||||
24	P131[24-24]
 | 
			
		||||
25	P131[25-25]
 | 
			
		||||
26	P131[26-26]
 | 
			
		||||
27	P131[27-27]
 | 
			
		||||
28	P131[28-28]
 | 
			
		||||
29	P131[29-29]
 | 
			
		||||
30	P131[30-30]
 | 
			
		||||
31	P131[31-31]
 | 
			
		||||
32	P131[32-32]
 | 
			
		||||
33	P131[33-33]
 | 
			
		||||
34	P131[34-34]
 | 
			
		||||
35	P131[35-35]
 | 
			
		||||
36	P131[36-36]
 | 
			
		||||
37	P131[37-37]
 | 
			
		||||
38	P131[38-38]
 | 
			
		||||
39	P131[39-39]
 | 
			
		||||
40	P131[40-40]
 | 
			
		||||
41	P131[41-41]
 | 
			
		||||
42	P131[42-42]
 | 
			
		||||
43	P131[43-43]
 | 
			
		||||
44	P131[44-44]
 | 
			
		||||
45	P131[45-45]
 | 
			
		||||
46	P131[46-46]
 | 
			
		||||
47	P131[47-47]
 | 
			
		||||
48	P131[48-48]
 | 
			
		||||
49	P131[49-49]
 | 
			
		||||
50	P131[50-50]
 | 
			
		||||
51	P131[51-51]
 | 
			
		||||
52	P131[52-52]
 | 
			
		||||
53	P131[53-53]
 | 
			
		||||
54	P131[54-54]
 | 
			
		||||
55	P131[55-55]
 | 
			
		||||
56	P131[56-56]
 | 
			
		||||
57	P131[57-57]
 | 
			
		||||
58	P131[58-58]
 | 
			
		||||
59	P131[59-59]
 | 
			
		||||
60	P131[60-60]
 | 
			
		||||
61	P131[61-61]
 | 
			
		||||
62	P131[62-62]
 | 
			
		||||
63	P131[63-63]
 | 
			
		||||
64	P131[64-64]
 | 
			
		||||
65	P131[65-65]
 | 
			
		||||
66	P131[66-66]
 | 
			
		||||
67	P131[67-67]
 | 
			
		||||
68	P131[68-68]
 | 
			
		||||
69	P131[69-69]
 | 
			
		||||
70	P1435[65-65]
 | 
			
		||||
71	P39[49-49]
 | 
			
		||||
72	P39[50-50]
 | 
			
		||||
73	P39[51-51]
 | 
			
		||||
74	P39[52-52]
 | 
			
		||||
75	P39[53-53]
 | 
			
		||||
76	P39[54-54]
 | 
			
		||||
77	P39[55-55]
 | 
			
		||||
78	P39[56-56]
 | 
			
		||||
79	P39[57-57]
 | 
			
		||||
80	P39[58-58]
 | 
			
		||||
81	P39[59-59]
 | 
			
		||||
82	P39[60-60]
 | 
			
		||||
83	P39[61-61]
 | 
			
		||||
84	P39[62-62]
 | 
			
		||||
85	P39[63-63]
 | 
			
		||||
86	P39[64-64]
 | 
			
		||||
87	P39[65-65]
 | 
			
		||||
88	P39[66-66]
 | 
			
		||||
89	P39[67-67]
 | 
			
		||||
90	P39[68-68]
 | 
			
		||||
91	P39[69-69]
 | 
			
		||||
92	P54[40-40]
 | 
			
		||||
93	P54[41-41]
 | 
			
		||||
94	P54[42-42]
 | 
			
		||||
95	P54[43-43]
 | 
			
		||||
96	P54[44-44]
 | 
			
		||||
97	P54[45-45]
 | 
			
		||||
98	P54[46-46]
 | 
			
		||||
99	P54[47-47]
 | 
			
		||||
100	P54[48-48]
 | 
			
		||||
101	P54[49-49]
 | 
			
		||||
102	P54[50-50]
 | 
			
		||||
103	P54[51-51]
 | 
			
		||||
104	P54[52-52]
 | 
			
		||||
105	P54[53-53]
 | 
			
		||||
106	P54[54-54]
 | 
			
		||||
107	P54[55-55]
 | 
			
		||||
108	P54[56-56]
 | 
			
		||||
109	P54[57-57]
 | 
			
		||||
110	P54[58-58]
 | 
			
		||||
111	P54[59-59]
 | 
			
		||||
112	P54[60-60]
 | 
			
		||||
113	P54[61-61]
 | 
			
		||||
114	P54[62-62]
 | 
			
		||||
115	P54[63-63]
 | 
			
		||||
116	P54[64-64]
 | 
			
		||||
117	P54[65-65]
 | 
			
		||||
118	P54[66-66]
 | 
			
		||||
119	P54[67-67]
 | 
			
		||||
120	P54[68-68]
 | 
			
		||||
121	P54[69-69]
 | 
			
		||||
122	P31[0-0]
 | 
			
		||||
123	P31[1-1]
 | 
			
		||||
124	P31[2-2]
 | 
			
		||||
125	P31[3-3]
 | 
			
		||||
126	P31[4-4]
 | 
			
		||||
127	P31[5-5]
 | 
			
		||||
128	P31[6-6]
 | 
			
		||||
129	P31[7-7]
 | 
			
		||||
130	P31[8-8]
 | 
			
		||||
131	P31[9-9]
 | 
			
		||||
132	P31[10-10]
 | 
			
		||||
133	P31[11-11]
 | 
			
		||||
134	P31[12-12]
 | 
			
		||||
135	P31[13-13]
 | 
			
		||||
136	P31[14-14]
 | 
			
		||||
137	P31[15-15]
 | 
			
		||||
138	P31[16-16]
 | 
			
		||||
139	P31[17-17]
 | 
			
		||||
140	P31[18-18]
 | 
			
		||||
141	P31[19-19]
 | 
			
		||||
142	P31[20-20]
 | 
			
		||||
143	P31[21-21]
 | 
			
		||||
144	P31[22-22]
 | 
			
		||||
145	P31[23-23]
 | 
			
		||||
146	P31[24-24]
 | 
			
		||||
147	P31[25-25]
 | 
			
		||||
148	P31[26-26]
 | 
			
		||||
149	P31[27-27]
 | 
			
		||||
150	P31[28-28]
 | 
			
		||||
151	P31[29-29]
 | 
			
		||||
152	P31[30-30]
 | 
			
		||||
153	P31[31-31]
 | 
			
		||||
154	P31[32-32]
 | 
			
		||||
155	P31[33-33]
 | 
			
		||||
156	P31[34-34]
 | 
			
		||||
157	P31[35-35]
 | 
			
		||||
158	P31[36-36]
 | 
			
		||||
159	P31[37-37]
 | 
			
		||||
160	P31[38-38]
 | 
			
		||||
161	P31[39-39]
 | 
			
		||||
162	P31[40-40]
 | 
			
		||||
163	P31[41-41]
 | 
			
		||||
164	P31[42-42]
 | 
			
		||||
165	P31[43-43]
 | 
			
		||||
166	P31[44-44]
 | 
			
		||||
167	P31[45-45]
 | 
			
		||||
168	P31[46-46]
 | 
			
		||||
169	P31[47-47]
 | 
			
		||||
170	P31[48-48]
 | 
			
		||||
171	P31[49-49]
 | 
			
		||||
172	P31[50-50]
 | 
			
		||||
173	P31[51-51]
 | 
			
		||||
174	P31[52-52]
 | 
			
		||||
175	P31[53-53]
 | 
			
		||||
176	P31[54-54]
 | 
			
		||||
177	P31[55-55]
 | 
			
		||||
178	P31[56-56]
 | 
			
		||||
179	P31[57-57]
 | 
			
		||||
180	P31[58-58]
 | 
			
		||||
181	P31[59-59]
 | 
			
		||||
182	P31[60-60]
 | 
			
		||||
183	P31[61-61]
 | 
			
		||||
184	P31[62-62]
 | 
			
		||||
185	P31[63-63]
 | 
			
		||||
186	P31[64-64]
 | 
			
		||||
187	P31[65-65]
 | 
			
		||||
188	P31[66-66]
 | 
			
		||||
189	P31[67-67]
 | 
			
		||||
190	P31[68-68]
 | 
			
		||||
191	P31[69-69]
 | 
			
		||||
192	P463[26-26]
 | 
			
		||||
193	P463[27-27]
 | 
			
		||||
194	P463[28-28]
 | 
			
		||||
195	P463[29-29]
 | 
			
		||||
196	P463[30-30]
 | 
			
		||||
197	P463[31-31]
 | 
			
		||||
198	P463[32-32]
 | 
			
		||||
199	P463[33-33]
 | 
			
		||||
200	P463[34-34]
 | 
			
		||||
201	P463[35-35]
 | 
			
		||||
202	P463[36-36]
 | 
			
		||||
203	P463[37-37]
 | 
			
		||||
204	P463[38-38]
 | 
			
		||||
205	P463[39-39]
 | 
			
		||||
206	P463[40-40]
 | 
			
		||||
207	P463[41-41]
 | 
			
		||||
208	P463[42-42]
 | 
			
		||||
209	P463[43-43]
 | 
			
		||||
210	P463[44-44]
 | 
			
		||||
211	P463[45-45]
 | 
			
		||||
212	P463[46-46]
 | 
			
		||||
213	P463[47-47]
 | 
			
		||||
214	P463[48-48]
 | 
			
		||||
215	P463[49-49]
 | 
			
		||||
216	P463[50-50]
 | 
			
		||||
217	P463[51-51]
 | 
			
		||||
218	P463[52-52]
 | 
			
		||||
219	P463[53-53]
 | 
			
		||||
220	P463[54-54]
 | 
			
		||||
221	P463[55-55]
 | 
			
		||||
222	P463[56-56]
 | 
			
		||||
223	P463[57-57]
 | 
			
		||||
224	P463[58-58]
 | 
			
		||||
225	P463[59-59]
 | 
			
		||||
226	P463[60-60]
 | 
			
		||||
227	P463[61-61]
 | 
			
		||||
228	P463[62-62]
 | 
			
		||||
229	P463[63-63]
 | 
			
		||||
230	P463[64-64]
 | 
			
		||||
231	P463[65-65]
 | 
			
		||||
232	P463[66-66]
 | 
			
		||||
233	P463[67-67]
 | 
			
		||||
234	P463[68-68]
 | 
			
		||||
235	P463[69-69]
 | 
			
		||||
236	P512[4-69]
 | 
			
		||||
237	P190[0-29]
 | 
			
		||||
238	P150[0-3]
 | 
			
		||||
239	P1376[39-47]
 | 
			
		||||
240	P463[0-7]
 | 
			
		||||
241	P166[0-7]
 | 
			
		||||
242	P2962[18-30]
 | 
			
		||||
243	P108[29-36]
 | 
			
		||||
244	P39[0-3]
 | 
			
		||||
245	P17[47-48]
 | 
			
		||||
246	P166[21-23]
 | 
			
		||||
247	P793[46-69]
 | 
			
		||||
248	P69[32-41]
 | 
			
		||||
249	P17[57-58]
 | 
			
		||||
250	P190[42-45]
 | 
			
		||||
251	P2962[39-42]
 | 
			
		||||
252	P54[0-18]
 | 
			
		||||
253	P26[56-61]
 | 
			
		||||
254	P150[14-17]
 | 
			
		||||
255	P463[16-17]
 | 
			
		||||
256	P26[39-46]
 | 
			
		||||
257	P579[36-43]
 | 
			
		||||
258	P579[16-23]
 | 
			
		||||
259	P2962[59-60]
 | 
			
		||||
260	P1411[59-61]
 | 
			
		||||
261	P26[20-27]
 | 
			
		||||
262	P6[4-69]
 | 
			
		||||
263	P1435[33-34]
 | 
			
		||||
264	P166[52-53]
 | 
			
		||||
265	P108[49-57]
 | 
			
		||||
266	P150[10-13]
 | 
			
		||||
267	P1346[47-68]
 | 
			
		||||
268	P150[18-21]
 | 
			
		||||
269	P1346[13-46]
 | 
			
		||||
270	P69[20-23]
 | 
			
		||||
271	P39[31-32]
 | 
			
		||||
272	P1411[32-37]
 | 
			
		||||
273	P166[62-63]
 | 
			
		||||
274	P150[44-47]
 | 
			
		||||
275	P2962[61-62]
 | 
			
		||||
276	P150[48-51]
 | 
			
		||||
277	P150[52-55]
 | 
			
		||||
278	P1411[62-67]
 | 
			
		||||
279	P1435[35-36]
 | 
			
		||||
280	P1411[48-51]
 | 
			
		||||
281	P150[22-25]
 | 
			
		||||
282	P2962[63-64]
 | 
			
		||||
283	P2962[65-66]
 | 
			
		||||
284	P166[58-59]
 | 
			
		||||
285	P190[46-49]
 | 
			
		||||
286	P54[34-35]
 | 
			
		||||
287	P1435[4-16]
 | 
			
		||||
288	P463[18-19]
 | 
			
		||||
289	P150[31-34]
 | 
			
		||||
290	P150[35-38]
 | 
			
		||||
291	P39[35-36]
 | 
			
		||||
292	P26[62-69]
 | 
			
		||||
293	P1411[56-58]
 | 
			
		||||
294	P1435[37-38]
 | 
			
		||||
295	P166[60-61]
 | 
			
		||||
296	P39[33-34]
 | 
			
		||||
297	P102[24-31]
 | 
			
		||||
298	P2962[43-46]
 | 
			
		||||
299	P108[37-48]
 | 
			
		||||
300	P190[50-53]
 | 
			
		||||
301	P39[4-6]
 | 
			
		||||
302	P1435[39-40]
 | 
			
		||||
303	P793[0-45]
 | 
			
		||||
304	P150[64-69]
 | 
			
		||||
305	P39[19-22]
 | 
			
		||||
306	P27[30-38]
 | 
			
		||||
307	P2962[31-38]
 | 
			
		||||
308	P1411[24-31]
 | 
			
		||||
309	P102[40-45]
 | 
			
		||||
310	P39[37-38]
 | 
			
		||||
311	P463[8-11]
 | 
			
		||||
312	P1435[41-42]
 | 
			
		||||
313	P27[52-59]
 | 
			
		||||
314	P69[16-19]
 | 
			
		||||
315	P17[16-18]
 | 
			
		||||
316	P190[54-57]
 | 
			
		||||
317	P1435[43-44]
 | 
			
		||||
318	P166[8-15]
 | 
			
		||||
319	P166[45-47]
 | 
			
		||||
320	P2962[47-50]
 | 
			
		||||
321	P39[39-40]
 | 
			
		||||
322	P1411[52-55]
 | 
			
		||||
323	P108[58-69]
 | 
			
		||||
324	P463[20-21]
 | 
			
		||||
325	P39[41-42]
 | 
			
		||||
326	P150[26-30]
 | 
			
		||||
327	P150[39-43]
 | 
			
		||||
328	P1435[45-46]
 | 
			
		||||
329	P26[28-38]
 | 
			
		||||
330	P54[27-30]
 | 
			
		||||
331	P190[58-61]
 | 
			
		||||
332	P17[59-61]
 | 
			
		||||
333	P54[36-37]
 | 
			
		||||
334	P166[16-20]
 | 
			
		||||
335	P166[37-40]
 | 
			
		||||
336	P1435[47-48]
 | 
			
		||||
337	P17[0-3]
 | 
			
		||||
338	P26[47-55]
 | 
			
		||||
339	P1435[49-50]
 | 
			
		||||
340	P1435[25-28]
 | 
			
		||||
341	P150[4-9]
 | 
			
		||||
342	P102[63-69]
 | 
			
		||||
343	P26[0-19]
 | 
			
		||||
344	P1435[17-24]
 | 
			
		||||
345	P39[23-26]
 | 
			
		||||
346	P1435[51-52]
 | 
			
		||||
347	P39[7-11]
 | 
			
		||||
348	P69[12-15]
 | 
			
		||||
349	P69[24-31]
 | 
			
		||||
350	P102[0-23]
 | 
			
		||||
351	P39[43-44]
 | 
			
		||||
352	P579[24-35]
 | 
			
		||||
353	P190[62-65]
 | 
			
		||||
354	P1435[53-54]
 | 
			
		||||
355	P1376[0-18]
 | 
			
		||||
356	P27[0-14]
 | 
			
		||||
357	P463[12-15]
 | 
			
		||||
358	P166[33-36]
 | 
			
		||||
359	P102[32-39]
 | 
			
		||||
360	P17[4-7]
 | 
			
		||||
361	P190[30-41]
 | 
			
		||||
362	P166[24-28]
 | 
			
		||||
363	P190[66-69]
 | 
			
		||||
364	P69[42-69]
 | 
			
		||||
365	P1435[55-56]
 | 
			
		||||
366	P54[31-33]
 | 
			
		||||
367	P39[45-46]
 | 
			
		||||
368	P17[12-15]
 | 
			
		||||
369	P1435[57-58]
 | 
			
		||||
370	P54[19-26]
 | 
			
		||||
371	P2962[51-54]
 | 
			
		||||
372	P2962[67-69]
 | 
			
		||||
373	P1435[59-60]
 | 
			
		||||
374	P579[44-56]
 | 
			
		||||
375	P1435[61-62]
 | 
			
		||||
376	P166[41-44]
 | 
			
		||||
377	P17[19-22]
 | 
			
		||||
378	P1376[19-38]
 | 
			
		||||
379	P17[23-26]
 | 
			
		||||
380	P1376[48-69]
 | 
			
		||||
381	P463[22-23]
 | 
			
		||||
382	P17[27-30]
 | 
			
		||||
383	P1435[63-64]
 | 
			
		||||
384	P69[0-3]
 | 
			
		||||
385	P1435[66-67]
 | 
			
		||||
386	P17[35-38]
 | 
			
		||||
387	P69[8-11]
 | 
			
		||||
388	P1435[68-69]
 | 
			
		||||
389	P17[31-34]
 | 
			
		||||
390	P102[46-53]
 | 
			
		||||
391	P27[60-69]
 | 
			
		||||
392	P579[57-69]
 | 
			
		||||
393	P69[4-7]
 | 
			
		||||
394	P1411[7-14]
 | 
			
		||||
395	P551[0-35]
 | 
			
		||||
396	P108[0-28]
 | 
			
		||||
397	P17[8-11]
 | 
			
		||||
398	P1411[38-47]
 | 
			
		||||
399	P17[43-46]
 | 
			
		||||
400	P17[49-52]
 | 
			
		||||
401	P166[64-69]
 | 
			
		||||
402	P1435[29-32]
 | 
			
		||||
403	P54[38-39]
 | 
			
		||||
404	P39[27-30]
 | 
			
		||||
405	P2962[55-58]
 | 
			
		||||
406	P463[24-25]
 | 
			
		||||
407	P17[39-42]
 | 
			
		||||
408	P17[53-56]
 | 
			
		||||
409	P17[66-69]
 | 
			
		||||
410	P17[62-65]
 | 
			
		||||
411	P1411[15-23]
 | 
			
		||||
412	P166[48-51]
 | 
			
		||||
413	P27[15-29]
 | 
			
		||||
414	P150[56-63]
 | 
			
		||||
415	P27[39-51]
 | 
			
		||||
416	P39[47-48]
 | 
			
		||||
417	P166[29-32]
 | 
			
		||||
418	P39[12-18]
 | 
			
		||||
419	P166[54-57]
 | 
			
		||||
420	P551[36-69]
 | 
			
		||||
421	P579[0-15]
 | 
			
		||||
422	P102[54-62]
 | 
			
		||||
							
								
								
									
										19271
									
								
								data/wikidata12k/test.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										19271
									
								
								data/wikidata12k/test.txt
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										71
									
								
								data/wikidata12k/time_map.dict
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										71
									
								
								data/wikidata12k/time_map.dict
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,71 @@
 | 
			
		||||
0	19	19
 | 
			
		||||
1	20	1643
 | 
			
		||||
2	1644	1790
 | 
			
		||||
3	1791	1816
 | 
			
		||||
4	1817	1855
 | 
			
		||||
5	1856	1871
 | 
			
		||||
6	1872	1893
 | 
			
		||||
7	1894	1905
 | 
			
		||||
8	1906	1913
 | 
			
		||||
9	1914	1918
 | 
			
		||||
10	1919	1920
 | 
			
		||||
11	1921	1924
 | 
			
		||||
12	1925	1929
 | 
			
		||||
13	1930	1933
 | 
			
		||||
14	1934	1937
 | 
			
		||||
15	1938	1941
 | 
			
		||||
16	1942	1945
 | 
			
		||||
17	1946	1948
 | 
			
		||||
18	1949	1950
 | 
			
		||||
19	1951	1953
 | 
			
		||||
20	1954	1956
 | 
			
		||||
21	1957	1959
 | 
			
		||||
22	1960	1961
 | 
			
		||||
23	1962	1963
 | 
			
		||||
24	1964	1965
 | 
			
		||||
25	1966	1967
 | 
			
		||||
26	1968	1968
 | 
			
		||||
27	1969	1970
 | 
			
		||||
28	1971	1972
 | 
			
		||||
29	1973	1974
 | 
			
		||||
30	1975	1976
 | 
			
		||||
31	1977	1978
 | 
			
		||||
32	1979	1980
 | 
			
		||||
33	1981	1982
 | 
			
		||||
34	1983	1983
 | 
			
		||||
35	1984	1984
 | 
			
		||||
36	1985	1985
 | 
			
		||||
37	1986	1986
 | 
			
		||||
38	1987	1987
 | 
			
		||||
39	1988	1988
 | 
			
		||||
40	1989	1989
 | 
			
		||||
41	1990	1990
 | 
			
		||||
42	1991	1991
 | 
			
		||||
43	1992	1992
 | 
			
		||||
44	1993	1993
 | 
			
		||||
45	1994	1994
 | 
			
		||||
46	1995	1995
 | 
			
		||||
47	1996	1996
 | 
			
		||||
48	1997	1997
 | 
			
		||||
49	1998	1998
 | 
			
		||||
50	1999	1999
 | 
			
		||||
51	2000	2000
 | 
			
		||||
52	2001	2001
 | 
			
		||||
53	2002	2002
 | 
			
		||||
54	2003	2003
 | 
			
		||||
55	2004	2004
 | 
			
		||||
56	2005	2005
 | 
			
		||||
57	2006	2006
 | 
			
		||||
58	2007	2007
 | 
			
		||||
59	2008	2008
 | 
			
		||||
60	2009	2009
 | 
			
		||||
61	2010	2010
 | 
			
		||||
62	2011	2011
 | 
			
		||||
63	2012	2012
 | 
			
		||||
64	2013	2013
 | 
			
		||||
65	2014	2014
 | 
			
		||||
66	2015	2015
 | 
			
		||||
67	2016	2016
 | 
			
		||||
68	2017	2017
 | 
			
		||||
69	2018	2020
 | 
			
		||||
70	2021	2021
 | 
			
		||||
							
								
								
									
										252339
									
								
								data/wikidata12k/train.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										252339
									
								
								data/wikidata12k/train.txt
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										20208
									
								
								data/wikidata12k/valid.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										20208
									
								
								data/wikidata12k/valid.txt
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										15
									
								
								data/yago11k/about.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										15
									
								
								data/yago11k/about.txt
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,15 @@
 | 
			
		||||
# triples: 78032 
 | 
			
		||||
# entities: 10526 
 | 
			
		||||
# relations: 177 
 | 
			
		||||
# timesteps: 46 
 | 
			
		||||
# test triples: 6909 
 | 
			
		||||
# valid triples: 7198 
 | 
			
		||||
# train triples: 63925 
 | 
			
		||||
Measure method:  N/A  
 | 
			
		||||
Target Size :  0  
 | 
			
		||||
Grow Factor:  0  
 | 
			
		||||
Shrink Factor:  0  
 | 
			
		||||
Epsilon Factor: 5.0  
 | 
			
		||||
Search method: N/A  
 | 
			
		||||
filter_dupes: inter
 | 
			
		||||
nonames: False
 | 
			
		||||
							
								
								
									
										10526
									
								
								data/yago11k/entities.dict
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										10526
									
								
								data/yago11k/entities.dict
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										177
									
								
								data/yago11k/relations.dict
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										177
									
								
								data/yago11k/relations.dict
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,177 @@
 | 
			
		||||
0	<wasBornIn>[0-2]
 | 
			
		||||
1	<wasBornIn>[2-5]
 | 
			
		||||
2	<wasBornIn>[5-7]
 | 
			
		||||
3	<wasBornIn>[7-10]
 | 
			
		||||
4	<wasBornIn>[10-12]
 | 
			
		||||
5	<wasBornIn>[12-15]
 | 
			
		||||
6	<wasBornIn>[15-17]
 | 
			
		||||
7	<wasBornIn>[17-20]
 | 
			
		||||
8	<wasBornIn>[20-22]
 | 
			
		||||
9	<wasBornIn>[22-25]
 | 
			
		||||
10	<wasBornIn>[25-27]
 | 
			
		||||
11	<wasBornIn>[27-30]
 | 
			
		||||
12	<wasBornIn>[30-32]
 | 
			
		||||
13	<wasBornIn>[32-35]
 | 
			
		||||
14	<wasBornIn>[35-45]
 | 
			
		||||
15	<wasBornIn>[52-52]
 | 
			
		||||
16	<diedIn>[0-3]
 | 
			
		||||
17	<diedIn>[3-5]
 | 
			
		||||
18	<diedIn>[5-7]
 | 
			
		||||
19	<diedIn>[7-10]
 | 
			
		||||
20	<diedIn>[10-12]
 | 
			
		||||
21	<diedIn>[12-14]
 | 
			
		||||
22	<diedIn>[14-17]
 | 
			
		||||
23	<diedIn>[17-19]
 | 
			
		||||
24	<diedIn>[19-21]
 | 
			
		||||
25	<diedIn>[21-23]
 | 
			
		||||
26	<diedIn>[23-25]
 | 
			
		||||
27	<diedIn>[25-27]
 | 
			
		||||
28	<diedIn>[27-29]
 | 
			
		||||
29	<diedIn>[29-32]
 | 
			
		||||
30	<diedIn>[32-34]
 | 
			
		||||
31	<diedIn>[34-36]
 | 
			
		||||
32	<diedIn>[36-38]
 | 
			
		||||
33	<diedIn>[38-40]
 | 
			
		||||
34	<diedIn>[40-42]
 | 
			
		||||
35	<diedIn>[42-44]
 | 
			
		||||
36	<diedIn>[44-47]
 | 
			
		||||
37	<diedIn>[47-49]
 | 
			
		||||
38	<diedIn>[49-51]
 | 
			
		||||
39	<diedIn>[51-53]
 | 
			
		||||
40	<diedIn>[53-55]
 | 
			
		||||
41	<diedIn>[55-57]
 | 
			
		||||
42	<diedIn>[59-59]
 | 
			
		||||
43	<worksAt>[0-3]
 | 
			
		||||
44	<worksAt>[3-5]
 | 
			
		||||
45	<worksAt>[5-7]
 | 
			
		||||
46	<worksAt>[7-10]
 | 
			
		||||
47	<worksAt>[10-12]
 | 
			
		||||
48	<worksAt>[12-14]
 | 
			
		||||
49	<worksAt>[14-17]
 | 
			
		||||
50	<worksAt>[17-19]
 | 
			
		||||
51	<worksAt>[19-21]
 | 
			
		||||
52	<worksAt>[21-23]
 | 
			
		||||
53	<worksAt>[23-25]
 | 
			
		||||
54	<worksAt>[25-27]
 | 
			
		||||
55	<worksAt>[27-29]
 | 
			
		||||
56	<worksAt>[29-32]
 | 
			
		||||
57	<worksAt>[32-34]
 | 
			
		||||
58	<worksAt>[34-36]
 | 
			
		||||
59	<worksAt>[36-40]
 | 
			
		||||
60	<worksAt>[40-42]
 | 
			
		||||
61	<worksAt>[42-47]
 | 
			
		||||
62	<worksAt>[47-53]
 | 
			
		||||
63	<worksAt>[59-59]
 | 
			
		||||
64	<playsFor>[0-3]
 | 
			
		||||
65	<playsFor>[3-5]
 | 
			
		||||
66	<playsFor>[5-23]
 | 
			
		||||
67	<playsFor>[23-25]
 | 
			
		||||
68	<playsFor>[25-27]
 | 
			
		||||
69	<playsFor>[27-29]
 | 
			
		||||
70	<playsFor>[29-32]
 | 
			
		||||
71	<playsFor>[32-34]
 | 
			
		||||
72	<playsFor>[34-36]
 | 
			
		||||
73	<playsFor>[36-38]
 | 
			
		||||
74	<playsFor>[38-40]
 | 
			
		||||
75	<playsFor>[40-42]
 | 
			
		||||
76	<playsFor>[42-44]
 | 
			
		||||
77	<playsFor>[44-47]
 | 
			
		||||
78	<playsFor>[47-51]
 | 
			
		||||
79	<playsFor>[59-59]
 | 
			
		||||
80	<hasWonPrize>[1-4]
 | 
			
		||||
81	<hasWonPrize>[4-6]
 | 
			
		||||
82	<hasWonPrize>[6-8]
 | 
			
		||||
83	<hasWonPrize>[8-11]
 | 
			
		||||
84	<hasWonPrize>[11-15]
 | 
			
		||||
85	<hasWonPrize>[15-18]
 | 
			
		||||
86	<hasWonPrize>[18-22]
 | 
			
		||||
87	<hasWonPrize>[22-26]
 | 
			
		||||
88	<hasWonPrize>[26-30]
 | 
			
		||||
89	<hasWonPrize>[30-33]
 | 
			
		||||
90	<hasWonPrize>[33-37]
 | 
			
		||||
91	<hasWonPrize>[37-47]
 | 
			
		||||
92	<hasWonPrize>[47-53]
 | 
			
		||||
93	<hasWonPrize>[59-59]
 | 
			
		||||
94	<isMarriedTo>[0-3]
 | 
			
		||||
95	<isMarriedTo>[3-5]
 | 
			
		||||
96	<isMarriedTo>[5-7]
 | 
			
		||||
97	<isMarriedTo>[7-10]
 | 
			
		||||
98	<isMarriedTo>[10-12]
 | 
			
		||||
99	<isMarriedTo>[12-14]
 | 
			
		||||
100	<isMarriedTo>[14-17]
 | 
			
		||||
101	<isMarriedTo>[17-19]
 | 
			
		||||
102	<isMarriedTo>[19-21]
 | 
			
		||||
103	<isMarriedTo>[21-23]
 | 
			
		||||
104	<isMarriedTo>[23-25]
 | 
			
		||||
105	<isMarriedTo>[25-27]
 | 
			
		||||
106	<isMarriedTo>[27-29]
 | 
			
		||||
107	<isMarriedTo>[29-32]
 | 
			
		||||
108	<isMarriedTo>[32-34]
 | 
			
		||||
109	<isMarriedTo>[34-38]
 | 
			
		||||
110	<isMarriedTo>[38-42]
 | 
			
		||||
111	<isMarriedTo>[42-47]
 | 
			
		||||
112	<isMarriedTo>[47-51]
 | 
			
		||||
113	<isMarriedTo>[51-55]
 | 
			
		||||
114	<isMarriedTo>[59-59]
 | 
			
		||||
115	<owns>[0-10]
 | 
			
		||||
116	<owns>[10-17]
 | 
			
		||||
117	<owns>[17-19]
 | 
			
		||||
118	<owns>[19-23]
 | 
			
		||||
119	<owns>[23-36]
 | 
			
		||||
120	<owns>[36-38]
 | 
			
		||||
121	<owns>[59-59]
 | 
			
		||||
122	<graduatedFrom>[0-3]
 | 
			
		||||
123	<graduatedFrom>[3-5]
 | 
			
		||||
124	<graduatedFrom>[5-7]
 | 
			
		||||
125	<graduatedFrom>[7-10]
 | 
			
		||||
126	<graduatedFrom>[10-14]
 | 
			
		||||
127	<graduatedFrom>[14-17]
 | 
			
		||||
128	<graduatedFrom>[17-19]
 | 
			
		||||
129	<graduatedFrom>[19-21]
 | 
			
		||||
130	<graduatedFrom>[21-23]
 | 
			
		||||
131	<graduatedFrom>[23-27]
 | 
			
		||||
132	<graduatedFrom>[27-32]
 | 
			
		||||
133	<graduatedFrom>[32-34]
 | 
			
		||||
134	<graduatedFrom>[34-38]
 | 
			
		||||
135	<graduatedFrom>[38-42]
 | 
			
		||||
136	<graduatedFrom>[59-59]
 | 
			
		||||
137	<isAffiliatedTo>[1-4]
 | 
			
		||||
138	<isAffiliatedTo>[4-6]
 | 
			
		||||
139	<isAffiliatedTo>[6-8]
 | 
			
		||||
140	<isAffiliatedTo>[8-11]
 | 
			
		||||
141	<isAffiliatedTo>[11-13]
 | 
			
		||||
142	<isAffiliatedTo>[13-15]
 | 
			
		||||
143	<isAffiliatedTo>[15-18]
 | 
			
		||||
144	<isAffiliatedTo>[18-20]
 | 
			
		||||
145	<isAffiliatedTo>[20-22]
 | 
			
		||||
146	<isAffiliatedTo>[22-24]
 | 
			
		||||
147	<isAffiliatedTo>[24-26]
 | 
			
		||||
148	<isAffiliatedTo>[26-28]
 | 
			
		||||
149	<isAffiliatedTo>[28-30]
 | 
			
		||||
150	<isAffiliatedTo>[30-33]
 | 
			
		||||
151	<isAffiliatedTo>[33-35]
 | 
			
		||||
152	<isAffiliatedTo>[35-37]
 | 
			
		||||
153	<isAffiliatedTo>[37-40]
 | 
			
		||||
154	<isAffiliatedTo>[40-42]
 | 
			
		||||
155	<isAffiliatedTo>[42-44]
 | 
			
		||||
156	<isAffiliatedTo>[44-47]
 | 
			
		||||
157	<isAffiliatedTo>[47-49]
 | 
			
		||||
158	<isAffiliatedTo>[49-51]
 | 
			
		||||
159	<isAffiliatedTo>[51-53]
 | 
			
		||||
160	<isAffiliatedTo>[53-55]
 | 
			
		||||
161	<isAffiliatedTo>[55-57]
 | 
			
		||||
162	<isAffiliatedTo>[59-59]
 | 
			
		||||
163	<created>[0-3]
 | 
			
		||||
164	<created>[3-5]
 | 
			
		||||
165	<created>[5-10]
 | 
			
		||||
166	<created>[10-12]
 | 
			
		||||
167	<created>[12-17]
 | 
			
		||||
168	<created>[17-19]
 | 
			
		||||
169	<created>[19-25]
 | 
			
		||||
170	<created>[25-29]
 | 
			
		||||
171	<created>[29-32]
 | 
			
		||||
172	<created>[32-36]
 | 
			
		||||
173	<created>[36-42]
 | 
			
		||||
174	<created>[42-47]
 | 
			
		||||
175	<created>[47-53]
 | 
			
		||||
176	<created>[59-59]
 | 
			
		||||
							
								
								
									
										6909
									
								
								data/yago11k/test.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										6909
									
								
								data/yago11k/test.txt
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										60
									
								
								data/yago11k/time_map.dict
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										60
									
								
								data/yago11k/time_map.dict
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,60 @@
 | 
			
		||||
0	-431	1782
 | 
			
		||||
1	1783	1848
 | 
			
		||||
2	1849	1870
 | 
			
		||||
3	1871	1888
 | 
			
		||||
4	1889	1899
 | 
			
		||||
5	1900	1906
 | 
			
		||||
6	1907	1912
 | 
			
		||||
7	1913	1917
 | 
			
		||||
8	1918	1922
 | 
			
		||||
9	1923	1926
 | 
			
		||||
10	1927	1930
 | 
			
		||||
11	1931	1934
 | 
			
		||||
12	1935	1938
 | 
			
		||||
13	1939	1941
 | 
			
		||||
14	1942	1944
 | 
			
		||||
15	1945	1947
 | 
			
		||||
16	1948	1950
 | 
			
		||||
17	1951	1953
 | 
			
		||||
18	1954	1956
 | 
			
		||||
19	1957	1959
 | 
			
		||||
20	1960	1962
 | 
			
		||||
21	1963	1965
 | 
			
		||||
22	1966	1967
 | 
			
		||||
23	1968	1969
 | 
			
		||||
24	1970	1971
 | 
			
		||||
25	1972	1973
 | 
			
		||||
26	1974	1975
 | 
			
		||||
27	1976	1977
 | 
			
		||||
28	1978	1979
 | 
			
		||||
29	1980	1981
 | 
			
		||||
30	1982	1983
 | 
			
		||||
31	1984	1985
 | 
			
		||||
32	1986	1987
 | 
			
		||||
33	1988	1989
 | 
			
		||||
34	1990	1991
 | 
			
		||||
35	1992	1993
 | 
			
		||||
36	1994	1994
 | 
			
		||||
37	1995	1996
 | 
			
		||||
38	1997	1997
 | 
			
		||||
39	1998	1998
 | 
			
		||||
40	1999	1999
 | 
			
		||||
41	2000	2000
 | 
			
		||||
42	2001	2001
 | 
			
		||||
43	2002	2002
 | 
			
		||||
44	2003	2003
 | 
			
		||||
45	2004	2004
 | 
			
		||||
46	2005	2005
 | 
			
		||||
47	2006	2006
 | 
			
		||||
48	2007	2007
 | 
			
		||||
49	2008	2008
 | 
			
		||||
50	2009	2009
 | 
			
		||||
51	2010	2010
 | 
			
		||||
52	2011	2011
 | 
			
		||||
53	2012	2012
 | 
			
		||||
54	2013	2013
 | 
			
		||||
55	2014	2014
 | 
			
		||||
56	2015	2015
 | 
			
		||||
57	2016	2016
 | 
			
		||||
58	2017	2017
 | 
			
		||||
59	2018	2018
 | 
			
		||||
							
								
								
									
										63925
									
								
								data/yago11k/train.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										63925
									
								
								data/yago11k/train.txt
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										7198
									
								
								data/yago11k/valid.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										7198
									
								
								data/yago11k/valid.txt
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										18
									
								
								main.py
									
									
									
									
									
								
							
							
						
						
									
										18
									
								
								main.py
									
									
									
									
									
								
							@@ -81,8 +81,17 @@ class Main(object):
 | 
			
		||||
                rel_set.add(rel)
 | 
			
		||||
                ent_set.add(obj)
 | 
			
		||||
        
 | 
			
		||||
        self.ent2id = {ent: idx for idx, ent in enumerate(ent_set)}
 | 
			
		||||
        self.rel2id = {rel: idx for idx, rel in enumerate(rel_set)}
 | 
			
		||||
        self.ent2id = {}
 | 
			
		||||
        for line in open('./data/{}/{}'.format(self.p.dataset, "entities.dict")):
 | 
			
		||||
            id, ent = map(str.lower, line.strip().split('\t'))
 | 
			
		||||
            self.ent2id[ent] = int(id)
 | 
			
		||||
        self.rel2id = {}
 | 
			
		||||
        for line in open('./data/{}/{}'.format(self.p.dataset, "relations.dict")):
 | 
			
		||||
            id, rel = map(str.lower, line.strip().split('\t'))
 | 
			
		||||
            self.rel2id[rel] = int(id)
 | 
			
		||||
 | 
			
		||||
        # self.ent2id = {ent: idx for idx, ent in enumerate(ent_set)}
 | 
			
		||||
        # self.rel2id = {rel: idx for idx, rel in enumerate(rel_set)}
 | 
			
		||||
        self.rel2id.update({rel+'_reverse': idx+len(self.rel2id)
 | 
			
		||||
                           for idx, rel in enumerate(rel_set)})
 | 
			
		||||
 | 
			
		||||
@@ -569,9 +578,9 @@ if __name__ == "__main__":
 | 
			
		||||
                        help='Dropout for Feature. Default: 0.5. Test: 0.2, 0.3, 0.4, 0.5')
 | 
			
		||||
    parser.add_argument('--inp_drop',  	dest="inp_drop", default=0.2, type=float,
 | 
			
		||||
                        help='Dropout for Input layer. Default: 0.5. Test: 0.2, 0.3, 0.4, 0.5')
 | 
			
		||||
    parser.add_argument('--drop_path',  	dest="drop_path", default=0.1, type=float,
 | 
			
		||||
    parser.add_argument('--drop_path',  	dest="drop_path", default=0.0, type=float,
 | 
			
		||||
                        help='Path dropout. Default: 0.5. Test: 0.2, 0.3, 0.4, 0.5')
 | 
			
		||||
    parser.add_argument('--drop',  	dest="drop", default=0.2, type=float,
 | 
			
		||||
    parser.add_argument('--drop',  	dest="drop", default=0.0, type=float,
 | 
			
		||||
                        help='Inner drop. Default: 0.5. Test: 0.2, 0.3, 0.4, 0.5')
 | 
			
		||||
 | 
			
		||||
    # Configuration for in/output channels for ConvE, HypER, HypE
 | 
			
		||||
@@ -616,6 +625,7 @@ if __name__ == "__main__":
 | 
			
		||||
                        default='./config/', help='Config directory')
 | 
			
		||||
    
 | 
			
		||||
    parser.add_argument('--test_only', action='store_true', default=False)
 | 
			
		||||
    parser.add_argument('--filtered', action='store_true', default=False)
 | 
			
		||||
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										401
									
								
								pvt.py
									
									
									
									
									
								
							
							
						
						
									
										401
									
								
								pvt.py
									
									
									
									
									
								
							@@ -1,401 +0,0 @@
 | 
			
		||||
import torch
 | 
			
		||||
import torch.nn as nn
 | 
			
		||||
import torch.nn.functional as F
 | 
			
		||||
from functools import partial
 | 
			
		||||
 | 
			
		||||
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
 | 
			
		||||
from timm.models.registry import register_model
 | 
			
		||||
from timm.models.vision_transformer import _cfg
 | 
			
		||||
import math
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class Mlp(nn.Module):
 | 
			
		||||
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0., linear=False):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        out_features = out_features or in_features
 | 
			
		||||
        hidden_features = hidden_features or in_features
 | 
			
		||||
        self.fc1 = nn.Linear(in_features, hidden_features)
 | 
			
		||||
        self.dwconv = DWConv(hidden_features)
 | 
			
		||||
        self.act = act_layer()
 | 
			
		||||
        self.fc2 = nn.Linear(hidden_features, out_features)
 | 
			
		||||
        self.drop = nn.Dropout(drop)
 | 
			
		||||
        self.linear = linear
 | 
			
		||||
        if self.linear:
 | 
			
		||||
            self.relu = nn.ReLU(inplace=True)
 | 
			
		||||
        self.apply(self._init_weights)
 | 
			
		||||
 | 
			
		||||
    def _init_weights(self, m):
 | 
			
		||||
        if isinstance(m, nn.Linear):
 | 
			
		||||
            trunc_normal_(m.weight, std=.02)
 | 
			
		||||
            if isinstance(m, nn.Linear) and m.bias is not None:
 | 
			
		||||
                nn.init.constant_(m.bias, 0)
 | 
			
		||||
        elif isinstance(m, nn.LayerNorm):
 | 
			
		||||
            nn.init.constant_(m.bias, 0)
 | 
			
		||||
            nn.init.constant_(m.weight, 1.0)
 | 
			
		||||
        elif isinstance(m, nn.Conv2d):
 | 
			
		||||
            fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
 | 
			
		||||
            fan_out //= m.groups
 | 
			
		||||
            m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
 | 
			
		||||
            if m.bias is not None:
 | 
			
		||||
                m.bias.data.zero_()
 | 
			
		||||
 | 
			
		||||
    def forward(self, x, H, W):
 | 
			
		||||
        x = self.fc1(x)
 | 
			
		||||
        if self.linear:
 | 
			
		||||
            x = self.relu(x)
 | 
			
		||||
        x = self.dwconv(x, H, W)
 | 
			
		||||
        x = self.act(x)
 | 
			
		||||
        x = self.drop(x)
 | 
			
		||||
        x = self.fc2(x)
 | 
			
		||||
        x = self.drop(x)
 | 
			
		||||
        return x
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class Attention(nn.Module):
 | 
			
		||||
    def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1, linear=False):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
 | 
			
		||||
 | 
			
		||||
        self.dim = dim
 | 
			
		||||
        self.num_heads = num_heads
 | 
			
		||||
        head_dim = dim // num_heads
 | 
			
		||||
        self.scale = qk_scale or head_dim ** -0.5
 | 
			
		||||
 | 
			
		||||
        self.q = nn.Linear(dim, dim, bias=qkv_bias)
 | 
			
		||||
        self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
 | 
			
		||||
        self.attn_drop = nn.Dropout(attn_drop)
 | 
			
		||||
        self.proj = nn.Linear(dim, dim)
 | 
			
		||||
        self.proj_drop = nn.Dropout(proj_drop)
 | 
			
		||||
 | 
			
		||||
        self.linear = linear
 | 
			
		||||
        self.sr_ratio = sr_ratio
 | 
			
		||||
        if not linear:
 | 
			
		||||
            if sr_ratio > 1:
 | 
			
		||||
                self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
 | 
			
		||||
                self.norm = nn.LayerNorm(dim)
 | 
			
		||||
        else:
 | 
			
		||||
            self.pool = nn.AdaptiveAvgPool2d(7)
 | 
			
		||||
            self.sr = nn.Conv2d(dim, dim, kernel_size=1, stride=1)
 | 
			
		||||
            self.norm = nn.LayerNorm(dim)
 | 
			
		||||
            self.act = nn.GELU()
 | 
			
		||||
        self.apply(self._init_weights)
 | 
			
		||||
 | 
			
		||||
    def _init_weights(self, m):
 | 
			
		||||
        if isinstance(m, nn.Linear):
 | 
			
		||||
            trunc_normal_(m.weight, std=.02)
 | 
			
		||||
            if isinstance(m, nn.Linear) and m.bias is not None:
 | 
			
		||||
                nn.init.constant_(m.bias, 0)
 | 
			
		||||
        elif isinstance(m, nn.LayerNorm):
 | 
			
		||||
            nn.init.constant_(m.bias, 0)
 | 
			
		||||
            nn.init.constant_(m.weight, 1.0)
 | 
			
		||||
        elif isinstance(m, nn.Conv2d):
 | 
			
		||||
            fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
 | 
			
		||||
            fan_out //= m.groups
 | 
			
		||||
            m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
 | 
			
		||||
            if m.bias is not None:
 | 
			
		||||
                m.bias.data.zero_()
 | 
			
		||||
 | 
			
		||||
    def forward(self, x, H, W):
 | 
			
		||||
        B, N, C = x.shape
 | 
			
		||||
        q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
 | 
			
		||||
 | 
			
		||||
        if not self.linear:
 | 
			
		||||
            if self.sr_ratio > 1:
 | 
			
		||||
                x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
 | 
			
		||||
                x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)
 | 
			
		||||
                x_ = self.norm(x_)
 | 
			
		||||
                kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
 | 
			
		||||
            else:
 | 
			
		||||
                kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
 | 
			
		||||
        else:
 | 
			
		||||
            x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
 | 
			
		||||
            x_ = self.sr(self.pool(x_)).reshape(B, C, -1).permute(0, 2, 1)
 | 
			
		||||
            x_ = self.norm(x_)
 | 
			
		||||
            x_ = self.act(x_)
 | 
			
		||||
            kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
 | 
			
		||||
        k, v = kv[0], kv[1]
 | 
			
		||||
 | 
			
		||||
        attn = (q @ k.transpose(-2, -1)) * self.scale
 | 
			
		||||
        attn = attn.softmax(dim=-1)
 | 
			
		||||
        attn = self.attn_drop(attn)
 | 
			
		||||
 | 
			
		||||
        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
 | 
			
		||||
        x = self.proj(x)
 | 
			
		||||
        x = self.proj_drop(x)
 | 
			
		||||
 | 
			
		||||
        return x
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class Block(nn.Module):
 | 
			
		||||
 | 
			
		||||
    def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
 | 
			
		||||
                 drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1, linear=False):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        self.norm1 = norm_layer(dim)
 | 
			
		||||
        self.attn = Attention(
 | 
			
		||||
            dim,
 | 
			
		||||
            num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
 | 
			
		||||
            attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio, linear=linear)
 | 
			
		||||
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
 | 
			
		||||
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
 | 
			
		||||
        self.norm2 = norm_layer(dim)
 | 
			
		||||
        mlp_hidden_dim = int(dim * mlp_ratio)
 | 
			
		||||
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop, linear=linear)
 | 
			
		||||
 | 
			
		||||
        self.apply(self._init_weights)
 | 
			
		||||
 | 
			
		||||
    def _init_weights(self, m):
 | 
			
		||||
        if isinstance(m, nn.Linear):
 | 
			
		||||
            trunc_normal_(m.weight, std=.02)
 | 
			
		||||
            if isinstance(m, nn.Linear) and m.bias is not None:
 | 
			
		||||
                nn.init.constant_(m.bias, 0)
 | 
			
		||||
        elif isinstance(m, nn.LayerNorm):
 | 
			
		||||
            nn.init.constant_(m.bias, 0)
 | 
			
		||||
            nn.init.constant_(m.weight, 1.0)
 | 
			
		||||
        elif isinstance(m, nn.Conv2d):
 | 
			
		||||
            fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
 | 
			
		||||
            fan_out //= m.groups
 | 
			
		||||
            m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
 | 
			
		||||
            if m.bias is not None:
 | 
			
		||||
                m.bias.data.zero_()
 | 
			
		||||
 | 
			
		||||
    def forward(self, x, H, W):
 | 
			
		||||
        x = x + self.drop_path(self.attn(self.norm1(x), H, W))
 | 
			
		||||
        x = x + self.drop_path(self.mlp(self.norm2(x), H, W))
 | 
			
		||||
 | 
			
		||||
        return x
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class OverlapPatchEmbed(nn.Module):
 | 
			
		||||
    """ Image to Patch Embedding
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    def __init__(self, img_size=224, patch_size=7, stride=4, in_chans=3, embed_dim=768):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        
 | 
			
		||||
        img_size = to_2tuple(img_size)
 | 
			
		||||
        patch_size = to_2tuple(patch_size)
 | 
			
		||||
        
 | 
			
		||||
        assert max(patch_size) > stride, "Set larger patch_size than stride"
 | 
			
		||||
        
 | 
			
		||||
        self.img_size = img_size
 | 
			
		||||
        self.patch_size = patch_size
 | 
			
		||||
        self.H, self.W = img_size[0] // stride, img_size[1] // stride
 | 
			
		||||
        self.num_patches = self.H * self.W
 | 
			
		||||
        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=stride,
 | 
			
		||||
                              padding=(patch_size[0] // 2, patch_size[1] // 2))
 | 
			
		||||
        self.norm = nn.LayerNorm(embed_dim)
 | 
			
		||||
 | 
			
		||||
        self.apply(self._init_weights)
 | 
			
		||||
 | 
			
		||||
    def _init_weights(self, m):
 | 
			
		||||
        if isinstance(m, nn.Linear):
 | 
			
		||||
            trunc_normal_(m.weight, std=.02)
 | 
			
		||||
            if isinstance(m, nn.Linear) and m.bias is not None:
 | 
			
		||||
                nn.init.constant_(m.bias, 0)
 | 
			
		||||
        elif isinstance(m, nn.LayerNorm):
 | 
			
		||||
            nn.init.constant_(m.bias, 0)
 | 
			
		||||
            nn.init.constant_(m.weight, 1.0)
 | 
			
		||||
        elif isinstance(m, nn.Conv2d):
 | 
			
		||||
            fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
 | 
			
		||||
            fan_out //= m.groups
 | 
			
		||||
            m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
 | 
			
		||||
            if m.bias is not None:
 | 
			
		||||
                m.bias.data.zero_()
 | 
			
		||||
 | 
			
		||||
    def forward(self, x):
 | 
			
		||||
        x = self.proj(x)
 | 
			
		||||
        _, _, H, W = x.shape
 | 
			
		||||
        x = x.flatten(2).transpose(1, 2)
 | 
			
		||||
        x = self.norm(x)
 | 
			
		||||
 | 
			
		||||
        return x, H, W
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class PyramidVisionTransformerV2(nn.Module):
 | 
			
		||||
    def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dims=[64, 128, 256, 512],
 | 
			
		||||
                 num_heads=[1, 2, 4, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0.,
 | 
			
		||||
                 attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm,
 | 
			
		||||
                 depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], num_stages=4, linear=False):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        self.num_classes = num_classes
 | 
			
		||||
        self.depths = depths
 | 
			
		||||
        self.num_stages = num_stages
 | 
			
		||||
 | 
			
		||||
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule
 | 
			
		||||
        cur = 0
 | 
			
		||||
 | 
			
		||||
        for i in range(num_stages):
 | 
			
		||||
            patch_embed = OverlapPatchEmbed(img_size=img_size if i == 0 else img_size // (2 ** (i + 1)),
 | 
			
		||||
                                            patch_size=7 if i == 0 else 3,
 | 
			
		||||
                                            stride=4 if i == 0 else 2,
 | 
			
		||||
                                            in_chans=in_chans if i == 0 else embed_dims[i - 1],
 | 
			
		||||
                                            embed_dim=embed_dims[i])
 | 
			
		||||
 | 
			
		||||
            block = nn.ModuleList([Block(
 | 
			
		||||
                dim=embed_dims[i], num_heads=num_heads[i], mlp_ratio=mlp_ratios[i], qkv_bias=qkv_bias, qk_scale=qk_scale,
 | 
			
		||||
                drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + j], norm_layer=norm_layer,
 | 
			
		||||
                sr_ratio=sr_ratios[i], linear=linear)
 | 
			
		||||
                for j in range(depths[i])])
 | 
			
		||||
            norm = norm_layer(embed_dims[i])
 | 
			
		||||
            cur += depths[i]
 | 
			
		||||
 | 
			
		||||
            setattr(self, f"patch_embed{i + 1}", patch_embed)
 | 
			
		||||
            setattr(self, f"block{i + 1}", block)
 | 
			
		||||
            setattr(self, f"norm{i + 1}", norm)
 | 
			
		||||
 | 
			
		||||
        # classification head
 | 
			
		||||
        self.head = nn.Linear(embed_dims[3], num_classes) if num_classes > 0 else nn.Identity()
 | 
			
		||||
 | 
			
		||||
        self.apply(self._init_weights)
 | 
			
		||||
 | 
			
		||||
    def _init_weights(self, m):
 | 
			
		||||
        if isinstance(m, nn.Linear):
 | 
			
		||||
            trunc_normal_(m.weight, std=.02)
 | 
			
		||||
            if isinstance(m, nn.Linear) and m.bias is not None:
 | 
			
		||||
                nn.init.constant_(m.bias, 0)
 | 
			
		||||
        elif isinstance(m, nn.LayerNorm):
 | 
			
		||||
            nn.init.constant_(m.bias, 0)
 | 
			
		||||
            nn.init.constant_(m.weight, 1.0)
 | 
			
		||||
        elif isinstance(m, nn.Conv2d):
 | 
			
		||||
            fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
 | 
			
		||||
            fan_out //= m.groups
 | 
			
		||||
            m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
 | 
			
		||||
            if m.bias is not None:
 | 
			
		||||
                m.bias.data.zero_()
 | 
			
		||||
 | 
			
		||||
    def freeze_patch_emb(self):
 | 
			
		||||
        self.patch_embed1.requires_grad = False
 | 
			
		||||
 | 
			
		||||
    @torch.jit.ignore
 | 
			
		||||
    def no_weight_decay(self):
 | 
			
		||||
        return {'pos_embed1', 'pos_embed2', 'pos_embed3', 'pos_embed4', 'cls_token'}  # has pos_embed may be better
 | 
			
		||||
 | 
			
		||||
    def get_classifier(self):
 | 
			
		||||
        return self.head
 | 
			
		||||
 | 
			
		||||
    def reset_classifier(self, num_classes, global_pool=''):
 | 
			
		||||
        self.num_classes = num_classes
 | 
			
		||||
        self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
 | 
			
		||||
 | 
			
		||||
    def forward_features(self, x):
 | 
			
		||||
        B = x.shape[0]
 | 
			
		||||
 | 
			
		||||
        for i in range(self.num_stages):
 | 
			
		||||
            patch_embed = getattr(self, f"patch_embed{i + 1}")
 | 
			
		||||
            block = getattr(self, f"block{i + 1}")
 | 
			
		||||
            norm = getattr(self, f"norm{i + 1}")
 | 
			
		||||
            x, H, W = patch_embed(x)
 | 
			
		||||
            for blk in block:
 | 
			
		||||
                x = blk(x, H, W)
 | 
			
		||||
            x = norm(x)
 | 
			
		||||
            if i != self.num_stages - 1:
 | 
			
		||||
                x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
 | 
			
		||||
 | 
			
		||||
        return x.mean(dim=1)
 | 
			
		||||
 | 
			
		||||
    def forward(self, x):
 | 
			
		||||
        x = self.forward_features(x)
 | 
			
		||||
        x = self.head(x)
 | 
			
		||||
 | 
			
		||||
        return x
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class DWConv(nn.Module):
 | 
			
		||||
    def __init__(self, dim=768):
 | 
			
		||||
        super(DWConv, self).__init__()
 | 
			
		||||
        self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim)
 | 
			
		||||
 | 
			
		||||
    def forward(self, x, H, W):
 | 
			
		||||
        B, N, C = x.shape
 | 
			
		||||
        x = x.transpose(1, 2).view(B, C, H, W)
 | 
			
		||||
        x = self.dwconv(x)
 | 
			
		||||
        x = x.flatten(2).transpose(1, 2)
 | 
			
		||||
 | 
			
		||||
        return x
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _conv_filter(state_dict, patch_size=16):
 | 
			
		||||
    """ convert patch embedding weight from manual patchify + linear proj to conv"""
 | 
			
		||||
    out_dict = {}
 | 
			
		||||
    for k, v in state_dict.items():
 | 
			
		||||
        if 'patch_embed.proj.weight' in k:
 | 
			
		||||
            v = v.reshape((v.shape[0], 3, patch_size, patch_size))
 | 
			
		||||
        out_dict[k] = v
 | 
			
		||||
 | 
			
		||||
    return out_dict
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@register_model
 | 
			
		||||
def pvt_v2_b0(pretrained=False, **kwargs):
 | 
			
		||||
    model = PyramidVisionTransformerV2(
 | 
			
		||||
        patch_size=4, embed_dims=[32, 64, 160, 256], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True,
 | 
			
		||||
        norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
 | 
			
		||||
        **kwargs)
 | 
			
		||||
    model.default_cfg = _cfg()
 | 
			
		||||
 | 
			
		||||
    return model
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@register_model
 | 
			
		||||
def pvt_v2_b1(pretrained=False, **kwargs):
 | 
			
		||||
    model = PyramidVisionTransformerV2(
 | 
			
		||||
        patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True,
 | 
			
		||||
        norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
 | 
			
		||||
        **kwargs)
 | 
			
		||||
    model.default_cfg = _cfg()
 | 
			
		||||
 | 
			
		||||
    return model
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@register_model
 | 
			
		||||
def pvt_v2_b2(pretrained=False, **kwargs):
 | 
			
		||||
    model = PyramidVisionTransformerV2(
 | 
			
		||||
        patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True,
 | 
			
		||||
        norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], **kwargs)
 | 
			
		||||
    model.default_cfg = _cfg()
 | 
			
		||||
 | 
			
		||||
    return model
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@register_model
 | 
			
		||||
def pvt_v2_b3(pretrained=False, **kwargs):
 | 
			
		||||
    model = PyramidVisionTransformerV2(
 | 
			
		||||
        patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True,
 | 
			
		||||
        norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1],
 | 
			
		||||
        **kwargs)
 | 
			
		||||
    model.default_cfg = _cfg()
 | 
			
		||||
 | 
			
		||||
    return model
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@register_model
 | 
			
		||||
def pvt_v2_b4(pretrained=False, **kwargs):
 | 
			
		||||
    model = PyramidVisionTransformerV2(
 | 
			
		||||
        patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True,
 | 
			
		||||
        norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 8, 27, 3], sr_ratios=[8, 4, 2, 1],
 | 
			
		||||
        **kwargs)
 | 
			
		||||
    model.default_cfg = _cfg()
 | 
			
		||||
 | 
			
		||||
    return model
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@register_model
 | 
			
		||||
def pvt_v2_b5(pretrained=False, **kwargs):
 | 
			
		||||
    model = PyramidVisionTransformerV2(
 | 
			
		||||
        patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=True,
 | 
			
		||||
        norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 6, 40, 3], sr_ratios=[8, 4, 2, 1],
 | 
			
		||||
        **kwargs)
 | 
			
		||||
    model.default_cfg = _cfg()
 | 
			
		||||
 | 
			
		||||
    return model
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@register_model
 | 
			
		||||
def pvt_v2_b2_li(pretrained=False, **kwargs):
 | 
			
		||||
    model = PyramidVisionTransformerV2(
 | 
			
		||||
        patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True,
 | 
			
		||||
        norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], linear=True, **kwargs)
 | 
			
		||||
    model.default_cfg = _cfg()
 | 
			
		||||
 | 
			
		||||
    return model
 | 
			
		||||
		Reference in New Issue
	
	Block a user