only add fro norm once
This commit is contained in:
@ -135,7 +135,7 @@ class TransformerLitModel(BaseLitModel):
|
||||
_, mask_idx = (input_ids == self.tokenizer.mask_token_id).nonzero(as_tuple=True)
|
||||
bs = input_ids.shape[0]
|
||||
mask_logits = logits[torch.arange(bs), mask_idx][:, self.entity_id_st:self.entity_id_ed]
|
||||
loss += self.loss_fn(mask_logits, label) + self.frobenius_norm_loss()
|
||||
loss += self.loss_fn(mask_logits, label)
|
||||
|
||||
labels = batch.pop("labels")
|
||||
label = batch.pop("label")
|
||||
@ -173,7 +173,10 @@ class TransformerLitModel(BaseLitModel):
|
||||
if self.args.bce:
|
||||
loss += self.loss_fn(mask_logits, labels)
|
||||
else:
|
||||
loss += self.loss_fn(mask_logits, label) + self.frobenius_norm_loss()
|
||||
loss += self.loss_fn(mask_logits, label)
|
||||
|
||||
if self.smoothing is not None and self.smoothing != 0.0:
|
||||
loss += self.frobenius_norm_loss()
|
||||
|
||||
if batch_idx == 0:
|
||||
print('\n'.join(self.decode(batch['input_ids'][:4])))
|
||||
|
Reference in New Issue
Block a user