remove redundant
This commit is contained in:
		
							
								
								
									
										401
									
								
								pvt.py
									
									
									
									
									
								
							
							
						
						
									
										401
									
								
								pvt.py
									
									
									
									
									
								
							@@ -1,401 +0,0 @@
 | 
			
		||||
import torch
 | 
			
		||||
import torch.nn as nn
 | 
			
		||||
import torch.nn.functional as F
 | 
			
		||||
from functools import partial
 | 
			
		||||
 | 
			
		||||
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
 | 
			
		||||
from timm.models.registry import register_model
 | 
			
		||||
from timm.models.vision_transformer import _cfg
 | 
			
		||||
import math
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class Mlp(nn.Module):
 | 
			
		||||
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0., linear=False):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        out_features = out_features or in_features
 | 
			
		||||
        hidden_features = hidden_features or in_features
 | 
			
		||||
        self.fc1 = nn.Linear(in_features, hidden_features)
 | 
			
		||||
        self.dwconv = DWConv(hidden_features)
 | 
			
		||||
        self.act = act_layer()
 | 
			
		||||
        self.fc2 = nn.Linear(hidden_features, out_features)
 | 
			
		||||
        self.drop = nn.Dropout(drop)
 | 
			
		||||
        self.linear = linear
 | 
			
		||||
        if self.linear:
 | 
			
		||||
            self.relu = nn.ReLU(inplace=True)
 | 
			
		||||
        self.apply(self._init_weights)
 | 
			
		||||
 | 
			
		||||
    def _init_weights(self, m):
 | 
			
		||||
        if isinstance(m, nn.Linear):
 | 
			
		||||
            trunc_normal_(m.weight, std=.02)
 | 
			
		||||
            if isinstance(m, nn.Linear) and m.bias is not None:
 | 
			
		||||
                nn.init.constant_(m.bias, 0)
 | 
			
		||||
        elif isinstance(m, nn.LayerNorm):
 | 
			
		||||
            nn.init.constant_(m.bias, 0)
 | 
			
		||||
            nn.init.constant_(m.weight, 1.0)
 | 
			
		||||
        elif isinstance(m, nn.Conv2d):
 | 
			
		||||
            fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
 | 
			
		||||
            fan_out //= m.groups
 | 
			
		||||
            m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
 | 
			
		||||
            if m.bias is not None:
 | 
			
		||||
                m.bias.data.zero_()
 | 
			
		||||
 | 
			
		||||
    def forward(self, x, H, W):
 | 
			
		||||
        x = self.fc1(x)
 | 
			
		||||
        if self.linear:
 | 
			
		||||
            x = self.relu(x)
 | 
			
		||||
        x = self.dwconv(x, H, W)
 | 
			
		||||
        x = self.act(x)
 | 
			
		||||
        x = self.drop(x)
 | 
			
		||||
        x = self.fc2(x)
 | 
			
		||||
        x = self.drop(x)
 | 
			
		||||
        return x
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class Attention(nn.Module):
 | 
			
		||||
    def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1, linear=False):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
 | 
			
		||||
 | 
			
		||||
        self.dim = dim
 | 
			
		||||
        self.num_heads = num_heads
 | 
			
		||||
        head_dim = dim // num_heads
 | 
			
		||||
        self.scale = qk_scale or head_dim ** -0.5
 | 
			
		||||
 | 
			
		||||
        self.q = nn.Linear(dim, dim, bias=qkv_bias)
 | 
			
		||||
        self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
 | 
			
		||||
        self.attn_drop = nn.Dropout(attn_drop)
 | 
			
		||||
        self.proj = nn.Linear(dim, dim)
 | 
			
		||||
        self.proj_drop = nn.Dropout(proj_drop)
 | 
			
		||||
 | 
			
		||||
        self.linear = linear
 | 
			
		||||
        self.sr_ratio = sr_ratio
 | 
			
		||||
        if not linear:
 | 
			
		||||
            if sr_ratio > 1:
 | 
			
		||||
                self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
 | 
			
		||||
                self.norm = nn.LayerNorm(dim)
 | 
			
		||||
        else:
 | 
			
		||||
            self.pool = nn.AdaptiveAvgPool2d(7)
 | 
			
		||||
            self.sr = nn.Conv2d(dim, dim, kernel_size=1, stride=1)
 | 
			
		||||
            self.norm = nn.LayerNorm(dim)
 | 
			
		||||
            self.act = nn.GELU()
 | 
			
		||||
        self.apply(self._init_weights)
 | 
			
		||||
 | 
			
		||||
    def _init_weights(self, m):
 | 
			
		||||
        if isinstance(m, nn.Linear):
 | 
			
		||||
            trunc_normal_(m.weight, std=.02)
 | 
			
		||||
            if isinstance(m, nn.Linear) and m.bias is not None:
 | 
			
		||||
                nn.init.constant_(m.bias, 0)
 | 
			
		||||
        elif isinstance(m, nn.LayerNorm):
 | 
			
		||||
            nn.init.constant_(m.bias, 0)
 | 
			
		||||
            nn.init.constant_(m.weight, 1.0)
 | 
			
		||||
        elif isinstance(m, nn.Conv2d):
 | 
			
		||||
            fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
 | 
			
		||||
            fan_out //= m.groups
 | 
			
		||||
            m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
 | 
			
		||||
            if m.bias is not None:
 | 
			
		||||
                m.bias.data.zero_()
 | 
			
		||||
 | 
			
		||||
    def forward(self, x, H, W):
 | 
			
		||||
        B, N, C = x.shape
 | 
			
		||||
        q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
 | 
			
		||||
 | 
			
		||||
        if not self.linear:
 | 
			
		||||
            if self.sr_ratio > 1:
 | 
			
		||||
                x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
 | 
			
		||||
                x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)
 | 
			
		||||
                x_ = self.norm(x_)
 | 
			
		||||
                kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
 | 
			
		||||
            else:
 | 
			
		||||
                kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
 | 
			
		||||
        else:
 | 
			
		||||
            x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
 | 
			
		||||
            x_ = self.sr(self.pool(x_)).reshape(B, C, -1).permute(0, 2, 1)
 | 
			
		||||
            x_ = self.norm(x_)
 | 
			
		||||
            x_ = self.act(x_)
 | 
			
		||||
            kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
 | 
			
		||||
        k, v = kv[0], kv[1]
 | 
			
		||||
 | 
			
		||||
        attn = (q @ k.transpose(-2, -1)) * self.scale
 | 
			
		||||
        attn = attn.softmax(dim=-1)
 | 
			
		||||
        attn = self.attn_drop(attn)
 | 
			
		||||
 | 
			
		||||
        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
 | 
			
		||||
        x = self.proj(x)
 | 
			
		||||
        x = self.proj_drop(x)
 | 
			
		||||
 | 
			
		||||
        return x
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class Block(nn.Module):
 | 
			
		||||
 | 
			
		||||
    def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
 | 
			
		||||
                 drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1, linear=False):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        self.norm1 = norm_layer(dim)
 | 
			
		||||
        self.attn = Attention(
 | 
			
		||||
            dim,
 | 
			
		||||
            num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
 | 
			
		||||
            attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio, linear=linear)
 | 
			
		||||
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
 | 
			
		||||
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
 | 
			
		||||
        self.norm2 = norm_layer(dim)
 | 
			
		||||
        mlp_hidden_dim = int(dim * mlp_ratio)
 | 
			
		||||
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop, linear=linear)
 | 
			
		||||
 | 
			
		||||
        self.apply(self._init_weights)
 | 
			
		||||
 | 
			
		||||
    def _init_weights(self, m):
 | 
			
		||||
        if isinstance(m, nn.Linear):
 | 
			
		||||
            trunc_normal_(m.weight, std=.02)
 | 
			
		||||
            if isinstance(m, nn.Linear) and m.bias is not None:
 | 
			
		||||
                nn.init.constant_(m.bias, 0)
 | 
			
		||||
        elif isinstance(m, nn.LayerNorm):
 | 
			
		||||
            nn.init.constant_(m.bias, 0)
 | 
			
		||||
            nn.init.constant_(m.weight, 1.0)
 | 
			
		||||
        elif isinstance(m, nn.Conv2d):
 | 
			
		||||
            fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
 | 
			
		||||
            fan_out //= m.groups
 | 
			
		||||
            m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
 | 
			
		||||
            if m.bias is not None:
 | 
			
		||||
                m.bias.data.zero_()
 | 
			
		||||
 | 
			
		||||
    def forward(self, x, H, W):
 | 
			
		||||
        x = x + self.drop_path(self.attn(self.norm1(x), H, W))
 | 
			
		||||
        x = x + self.drop_path(self.mlp(self.norm2(x), H, W))
 | 
			
		||||
 | 
			
		||||
        return x
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class OverlapPatchEmbed(nn.Module):
 | 
			
		||||
    """ Image to Patch Embedding
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    def __init__(self, img_size=224, patch_size=7, stride=4, in_chans=3, embed_dim=768):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        
 | 
			
		||||
        img_size = to_2tuple(img_size)
 | 
			
		||||
        patch_size = to_2tuple(patch_size)
 | 
			
		||||
        
 | 
			
		||||
        assert max(patch_size) > stride, "Set larger patch_size than stride"
 | 
			
		||||
        
 | 
			
		||||
        self.img_size = img_size
 | 
			
		||||
        self.patch_size = patch_size
 | 
			
		||||
        self.H, self.W = img_size[0] // stride, img_size[1] // stride
 | 
			
		||||
        self.num_patches = self.H * self.W
 | 
			
		||||
        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=stride,
 | 
			
		||||
                              padding=(patch_size[0] // 2, patch_size[1] // 2))
 | 
			
		||||
        self.norm = nn.LayerNorm(embed_dim)
 | 
			
		||||
 | 
			
		||||
        self.apply(self._init_weights)
 | 
			
		||||
 | 
			
		||||
    def _init_weights(self, m):
 | 
			
		||||
        if isinstance(m, nn.Linear):
 | 
			
		||||
            trunc_normal_(m.weight, std=.02)
 | 
			
		||||
            if isinstance(m, nn.Linear) and m.bias is not None:
 | 
			
		||||
                nn.init.constant_(m.bias, 0)
 | 
			
		||||
        elif isinstance(m, nn.LayerNorm):
 | 
			
		||||
            nn.init.constant_(m.bias, 0)
 | 
			
		||||
            nn.init.constant_(m.weight, 1.0)
 | 
			
		||||
        elif isinstance(m, nn.Conv2d):
 | 
			
		||||
            fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
 | 
			
		||||
            fan_out //= m.groups
 | 
			
		||||
            m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
 | 
			
		||||
            if m.bias is not None:
 | 
			
		||||
                m.bias.data.zero_()
 | 
			
		||||
 | 
			
		||||
    def forward(self, x):
 | 
			
		||||
        x = self.proj(x)
 | 
			
		||||
        _, _, H, W = x.shape
 | 
			
		||||
        x = x.flatten(2).transpose(1, 2)
 | 
			
		||||
        x = self.norm(x)
 | 
			
		||||
 | 
			
		||||
        return x, H, W
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class PyramidVisionTransformerV2(nn.Module):
 | 
			
		||||
    def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dims=[64, 128, 256, 512],
 | 
			
		||||
                 num_heads=[1, 2, 4, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0.,
 | 
			
		||||
                 attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm,
 | 
			
		||||
                 depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], num_stages=4, linear=False):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        self.num_classes = num_classes
 | 
			
		||||
        self.depths = depths
 | 
			
		||||
        self.num_stages = num_stages
 | 
			
		||||
 | 
			
		||||
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule
 | 
			
		||||
        cur = 0
 | 
			
		||||
 | 
			
		||||
        for i in range(num_stages):
 | 
			
		||||
            patch_embed = OverlapPatchEmbed(img_size=img_size if i == 0 else img_size // (2 ** (i + 1)),
 | 
			
		||||
                                            patch_size=7 if i == 0 else 3,
 | 
			
		||||
                                            stride=4 if i == 0 else 2,
 | 
			
		||||
                                            in_chans=in_chans if i == 0 else embed_dims[i - 1],
 | 
			
		||||
                                            embed_dim=embed_dims[i])
 | 
			
		||||
 | 
			
		||||
            block = nn.ModuleList([Block(
 | 
			
		||||
                dim=embed_dims[i], num_heads=num_heads[i], mlp_ratio=mlp_ratios[i], qkv_bias=qkv_bias, qk_scale=qk_scale,
 | 
			
		||||
                drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + j], norm_layer=norm_layer,
 | 
			
		||||
                sr_ratio=sr_ratios[i], linear=linear)
 | 
			
		||||
                for j in range(depths[i])])
 | 
			
		||||
            norm = norm_layer(embed_dims[i])
 | 
			
		||||
            cur += depths[i]
 | 
			
		||||
 | 
			
		||||
            setattr(self, f"patch_embed{i + 1}", patch_embed)
 | 
			
		||||
            setattr(self, f"block{i + 1}", block)
 | 
			
		||||
            setattr(self, f"norm{i + 1}", norm)
 | 
			
		||||
 | 
			
		||||
        # classification head
 | 
			
		||||
        self.head = nn.Linear(embed_dims[3], num_classes) if num_classes > 0 else nn.Identity()
 | 
			
		||||
 | 
			
		||||
        self.apply(self._init_weights)
 | 
			
		||||
 | 
			
		||||
    def _init_weights(self, m):
 | 
			
		||||
        if isinstance(m, nn.Linear):
 | 
			
		||||
            trunc_normal_(m.weight, std=.02)
 | 
			
		||||
            if isinstance(m, nn.Linear) and m.bias is not None:
 | 
			
		||||
                nn.init.constant_(m.bias, 0)
 | 
			
		||||
        elif isinstance(m, nn.LayerNorm):
 | 
			
		||||
            nn.init.constant_(m.bias, 0)
 | 
			
		||||
            nn.init.constant_(m.weight, 1.0)
 | 
			
		||||
        elif isinstance(m, nn.Conv2d):
 | 
			
		||||
            fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
 | 
			
		||||
            fan_out //= m.groups
 | 
			
		||||
            m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
 | 
			
		||||
            if m.bias is not None:
 | 
			
		||||
                m.bias.data.zero_()
 | 
			
		||||
 | 
			
		||||
    def freeze_patch_emb(self):
 | 
			
		||||
        self.patch_embed1.requires_grad = False
 | 
			
		||||
 | 
			
		||||
    @torch.jit.ignore
 | 
			
		||||
    def no_weight_decay(self):
 | 
			
		||||
        return {'pos_embed1', 'pos_embed2', 'pos_embed3', 'pos_embed4', 'cls_token'}  # has pos_embed may be better
 | 
			
		||||
 | 
			
		||||
    def get_classifier(self):
 | 
			
		||||
        return self.head
 | 
			
		||||
 | 
			
		||||
    def reset_classifier(self, num_classes, global_pool=''):
 | 
			
		||||
        self.num_classes = num_classes
 | 
			
		||||
        self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
 | 
			
		||||
 | 
			
		||||
    def forward_features(self, x):
 | 
			
		||||
        B = x.shape[0]
 | 
			
		||||
 | 
			
		||||
        for i in range(self.num_stages):
 | 
			
		||||
            patch_embed = getattr(self, f"patch_embed{i + 1}")
 | 
			
		||||
            block = getattr(self, f"block{i + 1}")
 | 
			
		||||
            norm = getattr(self, f"norm{i + 1}")
 | 
			
		||||
            x, H, W = patch_embed(x)
 | 
			
		||||
            for blk in block:
 | 
			
		||||
                x = blk(x, H, W)
 | 
			
		||||
            x = norm(x)
 | 
			
		||||
            if i != self.num_stages - 1:
 | 
			
		||||
                x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
 | 
			
		||||
 | 
			
		||||
        return x.mean(dim=1)
 | 
			
		||||
 | 
			
		||||
    def forward(self, x):
 | 
			
		||||
        x = self.forward_features(x)
 | 
			
		||||
        x = self.head(x)
 | 
			
		||||
 | 
			
		||||
        return x
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class DWConv(nn.Module):
 | 
			
		||||
    def __init__(self, dim=768):
 | 
			
		||||
        super(DWConv, self).__init__()
 | 
			
		||||
        self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim)
 | 
			
		||||
 | 
			
		||||
    def forward(self, x, H, W):
 | 
			
		||||
        B, N, C = x.shape
 | 
			
		||||
        x = x.transpose(1, 2).view(B, C, H, W)
 | 
			
		||||
        x = self.dwconv(x)
 | 
			
		||||
        x = x.flatten(2).transpose(1, 2)
 | 
			
		||||
 | 
			
		||||
        return x
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _conv_filter(state_dict, patch_size=16):
 | 
			
		||||
    """ convert patch embedding weight from manual patchify + linear proj to conv"""
 | 
			
		||||
    out_dict = {}
 | 
			
		||||
    for k, v in state_dict.items():
 | 
			
		||||
        if 'patch_embed.proj.weight' in k:
 | 
			
		||||
            v = v.reshape((v.shape[0], 3, patch_size, patch_size))
 | 
			
		||||
        out_dict[k] = v
 | 
			
		||||
 | 
			
		||||
    return out_dict
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@register_model
 | 
			
		||||
def pvt_v2_b0(pretrained=False, **kwargs):
 | 
			
		||||
    model = PyramidVisionTransformerV2(
 | 
			
		||||
        patch_size=4, embed_dims=[32, 64, 160, 256], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True,
 | 
			
		||||
        norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
 | 
			
		||||
        **kwargs)
 | 
			
		||||
    model.default_cfg = _cfg()
 | 
			
		||||
 | 
			
		||||
    return model
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@register_model
 | 
			
		||||
def pvt_v2_b1(pretrained=False, **kwargs):
 | 
			
		||||
    model = PyramidVisionTransformerV2(
 | 
			
		||||
        patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True,
 | 
			
		||||
        norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
 | 
			
		||||
        **kwargs)
 | 
			
		||||
    model.default_cfg = _cfg()
 | 
			
		||||
 | 
			
		||||
    return model
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@register_model
 | 
			
		||||
def pvt_v2_b2(pretrained=False, **kwargs):
 | 
			
		||||
    model = PyramidVisionTransformerV2(
 | 
			
		||||
        patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True,
 | 
			
		||||
        norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], **kwargs)
 | 
			
		||||
    model.default_cfg = _cfg()
 | 
			
		||||
 | 
			
		||||
    return model
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@register_model
 | 
			
		||||
def pvt_v2_b3(pretrained=False, **kwargs):
 | 
			
		||||
    model = PyramidVisionTransformerV2(
 | 
			
		||||
        patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True,
 | 
			
		||||
        norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1],
 | 
			
		||||
        **kwargs)
 | 
			
		||||
    model.default_cfg = _cfg()
 | 
			
		||||
 | 
			
		||||
    return model
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@register_model
 | 
			
		||||
def pvt_v2_b4(pretrained=False, **kwargs):
 | 
			
		||||
    model = PyramidVisionTransformerV2(
 | 
			
		||||
        patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True,
 | 
			
		||||
        norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 8, 27, 3], sr_ratios=[8, 4, 2, 1],
 | 
			
		||||
        **kwargs)
 | 
			
		||||
    model.default_cfg = _cfg()
 | 
			
		||||
 | 
			
		||||
    return model
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@register_model
 | 
			
		||||
def pvt_v2_b5(pretrained=False, **kwargs):
 | 
			
		||||
    model = PyramidVisionTransformerV2(
 | 
			
		||||
        patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=True,
 | 
			
		||||
        norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 6, 40, 3], sr_ratios=[8, 4, 2, 1],
 | 
			
		||||
        **kwargs)
 | 
			
		||||
    model.default_cfg = _cfg()
 | 
			
		||||
 | 
			
		||||
    return model
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@register_model
 | 
			
		||||
def pvt_v2_b2_li(pretrained=False, **kwargs):
 | 
			
		||||
    model = PyramidVisionTransformerV2(
 | 
			
		||||
        patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True,
 | 
			
		||||
        norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], linear=True, **kwargs)
 | 
			
		||||
    model.default_cfg = _cfg()
 | 
			
		||||
 | 
			
		||||
    return model
 | 
			
		||||
		Reference in New Issue
	
	Block a user