add label smoothing for cross entropy and add fro reg
This commit is contained in:
@ -48,7 +48,10 @@ class TransformerLitModel(BaseLitModel):
|
||||
if args.bce:
|
||||
self.loss_fn = torch.nn.BCEWithLogitsLoss()
|
||||
elif args.label_smoothing != 0.0:
|
||||
self.loss_fn = LabelSmoothSoftmaxCEV1(lb_smooth=args.label_smoothing)
|
||||
self.cross_entropy_loss = nn.CrossEntropyLoss()
|
||||
self.smoothing = args.label_smoothing
|
||||
self.loss_fn = self.label_smoothed_cross_entropy
|
||||
# self.loss_fn = LabelSmoothSoftmaxCEV1(lb_smooth=args.label_smoothing)
|
||||
else:
|
||||
self.loss_fn = nn.CrossEntropyLoss()
|
||||
self.best_acc = 0
|
||||
@ -69,13 +72,71 @@ class TransformerLitModel(BaseLitModel):
|
||||
self.spatial_pos_encoder = nn.Embedding(5, self.num_heads, padding_idx=0)
|
||||
self.graph_token_virtual_distance = nn.Embedding(1, self.num_heads)
|
||||
|
||||
def label_smoothed_cross_entropy(self, logits, labels):
|
||||
num_classes = logits.size(1)
|
||||
one_hot = torch.zeros_like(logits).scatter(1, labels.unsqueeze(1), 1)
|
||||
one_hot = one_hot * (1 - self.smoothing) + (1 - one_hot) * self.smoothing / (num_classes - 1)
|
||||
loss = self.cross_entropy_loss(logits, labels)
|
||||
return loss
|
||||
|
||||
def frobenius_norm_loss(self):
|
||||
frobenius_norm = 0.0
|
||||
for name, param in self.model.named_parameters():
|
||||
if 'bias' not in name:
|
||||
frobenius_norm += torch.norm(param, p='fro')
|
||||
return frobenius_norm
|
||||
|
||||
def forward(self, x):
|
||||
return self.model(x)
|
||||
|
||||
def create_negatives(self, batch):
|
||||
negativeBatches = []
|
||||
label = batch['label']
|
||||
|
||||
for i in range(label.shape[0]):
|
||||
newBatch = {}
|
||||
newBatch['attention_mask'] = None
|
||||
newBatch['input_ids'] = torch.clone(batch['input_ids'])
|
||||
newBatch['label'] = torch.zeros_like(batch['label'])
|
||||
negativeBatches.append(newBatch)
|
||||
|
||||
entity_idx = []
|
||||
self_label = []
|
||||
for idx, l in enumerate(label):
|
||||
decoded = self.decode([batch['input_ids'][idx]])[0].split(' ')
|
||||
for j in range(1, len(decoded)):
|
||||
if (decoded[j].startswith("[ENTITY_")):
|
||||
entity_idx.append(j)
|
||||
self_label.append(batch['input_ids'][idx][j])
|
||||
break
|
||||
|
||||
for idx, lbl in enumerate(label):
|
||||
for i in range(label.shape[0]):
|
||||
if (negativeBatches[idx]['input_ids'][i][entity_idx[i]] != lbl):
|
||||
negativeBatches[idx]['input_ids'][i][entity_idx[i]] = lbl
|
||||
else:
|
||||
negativeBatches[idx]['input_ids'][i][entity_idx[i]] = self_label[i]
|
||||
|
||||
return negativeBatches
|
||||
|
||||
def training_step(self, batch, batch_idx): # pylint: disable=unused-argument
|
||||
# embed();exit()
|
||||
# print(self.optimizers().param_groups[1]['lr'])
|
||||
|
||||
negativeBatches = self.create_negatives(batch)
|
||||
|
||||
loss = 0
|
||||
|
||||
for negativeBatch in negativeBatches:
|
||||
label = negativeBatch.pop("label")
|
||||
input_ids = batch['input_ids']
|
||||
|
||||
logits = self.model(**negativeBatch, return_dict=True, distance_attention=None).logits
|
||||
_, mask_idx = (input_ids == self.tokenizer.mask_token_id).nonzero(as_tuple=True)
|
||||
bs = input_ids.shape[0]
|
||||
mask_logits = logits[torch.arange(bs), mask_idx][:, self.entity_id_st:self.entity_id_ed]
|
||||
loss += self.loss_fn(mask_logits, label) + self.frobenius_norm_loss()
|
||||
|
||||
labels = batch.pop("labels")
|
||||
label = batch.pop("label")
|
||||
pos = batch.pop("pos")
|
||||
@ -110,9 +171,9 @@ class TransformerLitModel(BaseLitModel):
|
||||
|
||||
assert mask_idx.shape[0] == bs, "only one mask in sequence!"
|
||||
if self.args.bce:
|
||||
loss = self.loss_fn(mask_logits, labels)
|
||||
loss += self.loss_fn(mask_logits, labels)
|
||||
else:
|
||||
loss = self.loss_fn(mask_logits, label)
|
||||
loss += self.loss_fn(mask_logits, label) + self.frobenius_norm_loss()
|
||||
|
||||
if batch_idx == 0:
|
||||
print('\n'.join(self.decode(batch['input_ids'][:4])))
|
||||
|
Reference in New Issue
Block a user