Compare commits
	
		
			1 Commits
		
	
	
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
|  | d443caf0ef | 
							
								
								
									
										401
									
								
								pvt.py
									
									
									
									
									
								
							
							
						
						
									
										401
									
								
								pvt.py
									
									
									
									
									
								
							| @@ -1,401 +0,0 @@ | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
| from functools import partial | ||||
|  | ||||
| from timm.models.layers import DropPath, to_2tuple, trunc_normal_ | ||||
| from timm.models.registry import register_model | ||||
| from timm.models.vision_transformer import _cfg | ||||
| import math | ||||
|  | ||||
|  | ||||
| class Mlp(nn.Module): | ||||
|     def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0., linear=False): | ||||
|         super().__init__() | ||||
|         out_features = out_features or in_features | ||||
|         hidden_features = hidden_features or in_features | ||||
|         self.fc1 = nn.Linear(in_features, hidden_features) | ||||
|         self.dwconv = DWConv(hidden_features) | ||||
|         self.act = act_layer() | ||||
|         self.fc2 = nn.Linear(hidden_features, out_features) | ||||
|         self.drop = nn.Dropout(drop) | ||||
|         self.linear = linear | ||||
|         if self.linear: | ||||
|             self.relu = nn.ReLU(inplace=True) | ||||
|         self.apply(self._init_weights) | ||||
|  | ||||
|     def _init_weights(self, m): | ||||
|         if isinstance(m, nn.Linear): | ||||
|             trunc_normal_(m.weight, std=.02) | ||||
|             if isinstance(m, nn.Linear) and m.bias is not None: | ||||
|                 nn.init.constant_(m.bias, 0) | ||||
|         elif isinstance(m, nn.LayerNorm): | ||||
|             nn.init.constant_(m.bias, 0) | ||||
|             nn.init.constant_(m.weight, 1.0) | ||||
|         elif isinstance(m, nn.Conv2d): | ||||
|             fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | ||||
|             fan_out //= m.groups | ||||
|             m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) | ||||
|             if m.bias is not None: | ||||
|                 m.bias.data.zero_() | ||||
|  | ||||
|     def forward(self, x, H, W): | ||||
|         x = self.fc1(x) | ||||
|         if self.linear: | ||||
|             x = self.relu(x) | ||||
|         x = self.dwconv(x, H, W) | ||||
|         x = self.act(x) | ||||
|         x = self.drop(x) | ||||
|         x = self.fc2(x) | ||||
|         x = self.drop(x) | ||||
|         return x | ||||
|  | ||||
|  | ||||
| class Attention(nn.Module): | ||||
|     def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1, linear=False): | ||||
|         super().__init__() | ||||
|         assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}." | ||||
|  | ||||
|         self.dim = dim | ||||
|         self.num_heads = num_heads | ||||
|         head_dim = dim // num_heads | ||||
|         self.scale = qk_scale or head_dim ** -0.5 | ||||
|  | ||||
|         self.q = nn.Linear(dim, dim, bias=qkv_bias) | ||||
|         self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias) | ||||
|         self.attn_drop = nn.Dropout(attn_drop) | ||||
|         self.proj = nn.Linear(dim, dim) | ||||
|         self.proj_drop = nn.Dropout(proj_drop) | ||||
|  | ||||
|         self.linear = linear | ||||
|         self.sr_ratio = sr_ratio | ||||
|         if not linear: | ||||
|             if sr_ratio > 1: | ||||
|                 self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio) | ||||
|                 self.norm = nn.LayerNorm(dim) | ||||
|         else: | ||||
|             self.pool = nn.AdaptiveAvgPool2d(7) | ||||
|             self.sr = nn.Conv2d(dim, dim, kernel_size=1, stride=1) | ||||
|             self.norm = nn.LayerNorm(dim) | ||||
|             self.act = nn.GELU() | ||||
|         self.apply(self._init_weights) | ||||
|  | ||||
|     def _init_weights(self, m): | ||||
|         if isinstance(m, nn.Linear): | ||||
|             trunc_normal_(m.weight, std=.02) | ||||
|             if isinstance(m, nn.Linear) and m.bias is not None: | ||||
|                 nn.init.constant_(m.bias, 0) | ||||
|         elif isinstance(m, nn.LayerNorm): | ||||
|             nn.init.constant_(m.bias, 0) | ||||
|             nn.init.constant_(m.weight, 1.0) | ||||
|         elif isinstance(m, nn.Conv2d): | ||||
|             fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | ||||
|             fan_out //= m.groups | ||||
|             m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) | ||||
|             if m.bias is not None: | ||||
|                 m.bias.data.zero_() | ||||
|  | ||||
|     def forward(self, x, H, W): | ||||
|         B, N, C = x.shape | ||||
|         q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) | ||||
|  | ||||
|         if not self.linear: | ||||
|             if self.sr_ratio > 1: | ||||
|                 x_ = x.permute(0, 2, 1).reshape(B, C, H, W) | ||||
|                 x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1) | ||||
|                 x_ = self.norm(x_) | ||||
|                 kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | ||||
|             else: | ||||
|                 kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | ||||
|         else: | ||||
|             x_ = x.permute(0, 2, 1).reshape(B, C, H, W) | ||||
|             x_ = self.sr(self.pool(x_)).reshape(B, C, -1).permute(0, 2, 1) | ||||
|             x_ = self.norm(x_) | ||||
|             x_ = self.act(x_) | ||||
|             kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | ||||
|         k, v = kv[0], kv[1] | ||||
|  | ||||
|         attn = (q @ k.transpose(-2, -1)) * self.scale | ||||
|         attn = attn.softmax(dim=-1) | ||||
|         attn = self.attn_drop(attn) | ||||
|  | ||||
|         x = (attn @ v).transpose(1, 2).reshape(B, N, C) | ||||
|         x = self.proj(x) | ||||
|         x = self.proj_drop(x) | ||||
|  | ||||
|         return x | ||||
|  | ||||
|  | ||||
| class Block(nn.Module): | ||||
|  | ||||
|     def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., | ||||
|                  drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1, linear=False): | ||||
|         super().__init__() | ||||
|         self.norm1 = norm_layer(dim) | ||||
|         self.attn = Attention( | ||||
|             dim, | ||||
|             num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, | ||||
|             attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio, linear=linear) | ||||
|         # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here | ||||
|         self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | ||||
|         self.norm2 = norm_layer(dim) | ||||
|         mlp_hidden_dim = int(dim * mlp_ratio) | ||||
|         self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop, linear=linear) | ||||
|  | ||||
|         self.apply(self._init_weights) | ||||
|  | ||||
|     def _init_weights(self, m): | ||||
|         if isinstance(m, nn.Linear): | ||||
|             trunc_normal_(m.weight, std=.02) | ||||
|             if isinstance(m, nn.Linear) and m.bias is not None: | ||||
|                 nn.init.constant_(m.bias, 0) | ||||
|         elif isinstance(m, nn.LayerNorm): | ||||
|             nn.init.constant_(m.bias, 0) | ||||
|             nn.init.constant_(m.weight, 1.0) | ||||
|         elif isinstance(m, nn.Conv2d): | ||||
|             fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | ||||
|             fan_out //= m.groups | ||||
|             m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) | ||||
|             if m.bias is not None: | ||||
|                 m.bias.data.zero_() | ||||
|  | ||||
|     def forward(self, x, H, W): | ||||
|         x = x + self.drop_path(self.attn(self.norm1(x), H, W)) | ||||
|         x = x + self.drop_path(self.mlp(self.norm2(x), H, W)) | ||||
|  | ||||
|         return x | ||||
|  | ||||
|  | ||||
| class OverlapPatchEmbed(nn.Module): | ||||
|     """ Image to Patch Embedding | ||||
|     """ | ||||
|  | ||||
|     def __init__(self, img_size=224, patch_size=7, stride=4, in_chans=3, embed_dim=768): | ||||
|         super().__init__() | ||||
|          | ||||
|         img_size = to_2tuple(img_size) | ||||
|         patch_size = to_2tuple(patch_size) | ||||
|          | ||||
|         assert max(patch_size) > stride, "Set larger patch_size than stride" | ||||
|          | ||||
|         self.img_size = img_size | ||||
|         self.patch_size = patch_size | ||||
|         self.H, self.W = img_size[0] // stride, img_size[1] // stride | ||||
|         self.num_patches = self.H * self.W | ||||
|         self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=stride, | ||||
|                               padding=(patch_size[0] // 2, patch_size[1] // 2)) | ||||
|         self.norm = nn.LayerNorm(embed_dim) | ||||
|  | ||||
|         self.apply(self._init_weights) | ||||
|  | ||||
|     def _init_weights(self, m): | ||||
|         if isinstance(m, nn.Linear): | ||||
|             trunc_normal_(m.weight, std=.02) | ||||
|             if isinstance(m, nn.Linear) and m.bias is not None: | ||||
|                 nn.init.constant_(m.bias, 0) | ||||
|         elif isinstance(m, nn.LayerNorm): | ||||
|             nn.init.constant_(m.bias, 0) | ||||
|             nn.init.constant_(m.weight, 1.0) | ||||
|         elif isinstance(m, nn.Conv2d): | ||||
|             fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | ||||
|             fan_out //= m.groups | ||||
|             m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) | ||||
|             if m.bias is not None: | ||||
|                 m.bias.data.zero_() | ||||
|  | ||||
|     def forward(self, x): | ||||
|         x = self.proj(x) | ||||
|         _, _, H, W = x.shape | ||||
|         x = x.flatten(2).transpose(1, 2) | ||||
|         x = self.norm(x) | ||||
|  | ||||
|         return x, H, W | ||||
|  | ||||
|  | ||||
| class PyramidVisionTransformerV2(nn.Module): | ||||
|     def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dims=[64, 128, 256, 512], | ||||
|                  num_heads=[1, 2, 4, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0., | ||||
|                  attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm, | ||||
|                  depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], num_stages=4, linear=False): | ||||
|         super().__init__() | ||||
|         self.num_classes = num_classes | ||||
|         self.depths = depths | ||||
|         self.num_stages = num_stages | ||||
|  | ||||
|         dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule | ||||
|         cur = 0 | ||||
|  | ||||
|         for i in range(num_stages): | ||||
|             patch_embed = OverlapPatchEmbed(img_size=img_size if i == 0 else img_size // (2 ** (i + 1)), | ||||
|                                             patch_size=7 if i == 0 else 3, | ||||
|                                             stride=4 if i == 0 else 2, | ||||
|                                             in_chans=in_chans if i == 0 else embed_dims[i - 1], | ||||
|                                             embed_dim=embed_dims[i]) | ||||
|  | ||||
|             block = nn.ModuleList([Block( | ||||
|                 dim=embed_dims[i], num_heads=num_heads[i], mlp_ratio=mlp_ratios[i], qkv_bias=qkv_bias, qk_scale=qk_scale, | ||||
|                 drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + j], norm_layer=norm_layer, | ||||
|                 sr_ratio=sr_ratios[i], linear=linear) | ||||
|                 for j in range(depths[i])]) | ||||
|             norm = norm_layer(embed_dims[i]) | ||||
|             cur += depths[i] | ||||
|  | ||||
|             setattr(self, f"patch_embed{i + 1}", patch_embed) | ||||
|             setattr(self, f"block{i + 1}", block) | ||||
|             setattr(self, f"norm{i + 1}", norm) | ||||
|  | ||||
|         # classification head | ||||
|         self.head = nn.Linear(embed_dims[3], num_classes) if num_classes > 0 else nn.Identity() | ||||
|  | ||||
|         self.apply(self._init_weights) | ||||
|  | ||||
|     def _init_weights(self, m): | ||||
|         if isinstance(m, nn.Linear): | ||||
|             trunc_normal_(m.weight, std=.02) | ||||
|             if isinstance(m, nn.Linear) and m.bias is not None: | ||||
|                 nn.init.constant_(m.bias, 0) | ||||
|         elif isinstance(m, nn.LayerNorm): | ||||
|             nn.init.constant_(m.bias, 0) | ||||
|             nn.init.constant_(m.weight, 1.0) | ||||
|         elif isinstance(m, nn.Conv2d): | ||||
|             fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | ||||
|             fan_out //= m.groups | ||||
|             m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) | ||||
|             if m.bias is not None: | ||||
|                 m.bias.data.zero_() | ||||
|  | ||||
|     def freeze_patch_emb(self): | ||||
|         self.patch_embed1.requires_grad = False | ||||
|  | ||||
|     @torch.jit.ignore | ||||
|     def no_weight_decay(self): | ||||
|         return {'pos_embed1', 'pos_embed2', 'pos_embed3', 'pos_embed4', 'cls_token'}  # has pos_embed may be better | ||||
|  | ||||
|     def get_classifier(self): | ||||
|         return self.head | ||||
|  | ||||
|     def reset_classifier(self, num_classes, global_pool=''): | ||||
|         self.num_classes = num_classes | ||||
|         self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() | ||||
|  | ||||
|     def forward_features(self, x): | ||||
|         B = x.shape[0] | ||||
|  | ||||
|         for i in range(self.num_stages): | ||||
|             patch_embed = getattr(self, f"patch_embed{i + 1}") | ||||
|             block = getattr(self, f"block{i + 1}") | ||||
|             norm = getattr(self, f"norm{i + 1}") | ||||
|             x, H, W = patch_embed(x) | ||||
|             for blk in block: | ||||
|                 x = blk(x, H, W) | ||||
|             x = norm(x) | ||||
|             if i != self.num_stages - 1: | ||||
|                 x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() | ||||
|  | ||||
|         return x.mean(dim=1) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         x = self.forward_features(x) | ||||
|         x = self.head(x) | ||||
|  | ||||
|         return x | ||||
|  | ||||
|  | ||||
| class DWConv(nn.Module): | ||||
|     def __init__(self, dim=768): | ||||
|         super(DWConv, self).__init__() | ||||
|         self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim) | ||||
|  | ||||
|     def forward(self, x, H, W): | ||||
|         B, N, C = x.shape | ||||
|         x = x.transpose(1, 2).view(B, C, H, W) | ||||
|         x = self.dwconv(x) | ||||
|         x = x.flatten(2).transpose(1, 2) | ||||
|  | ||||
|         return x | ||||
|  | ||||
|  | ||||
| def _conv_filter(state_dict, patch_size=16): | ||||
|     """ convert patch embedding weight from manual patchify + linear proj to conv""" | ||||
|     out_dict = {} | ||||
|     for k, v in state_dict.items(): | ||||
|         if 'patch_embed.proj.weight' in k: | ||||
|             v = v.reshape((v.shape[0], 3, patch_size, patch_size)) | ||||
|         out_dict[k] = v | ||||
|  | ||||
|     return out_dict | ||||
|  | ||||
|  | ||||
| @register_model | ||||
| def pvt_v2_b0(pretrained=False, **kwargs): | ||||
|     model = PyramidVisionTransformerV2( | ||||
|         patch_size=4, embed_dims=[32, 64, 160, 256], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True, | ||||
|         norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1], | ||||
|         **kwargs) | ||||
|     model.default_cfg = _cfg() | ||||
|  | ||||
|     return model | ||||
|  | ||||
|  | ||||
| @register_model | ||||
| def pvt_v2_b1(pretrained=False, **kwargs): | ||||
|     model = PyramidVisionTransformerV2( | ||||
|         patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True, | ||||
|         norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1], | ||||
|         **kwargs) | ||||
|     model.default_cfg = _cfg() | ||||
|  | ||||
|     return model | ||||
|  | ||||
|  | ||||
| @register_model | ||||
| def pvt_v2_b2(pretrained=False, **kwargs): | ||||
|     model = PyramidVisionTransformerV2( | ||||
|         patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True, | ||||
|         norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], **kwargs) | ||||
|     model.default_cfg = _cfg() | ||||
|  | ||||
|     return model | ||||
|  | ||||
|  | ||||
| @register_model | ||||
| def pvt_v2_b3(pretrained=False, **kwargs): | ||||
|     model = PyramidVisionTransformerV2( | ||||
|         patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True, | ||||
|         norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1], | ||||
|         **kwargs) | ||||
|     model.default_cfg = _cfg() | ||||
|  | ||||
|     return model | ||||
|  | ||||
|  | ||||
| @register_model | ||||
| def pvt_v2_b4(pretrained=False, **kwargs): | ||||
|     model = PyramidVisionTransformerV2( | ||||
|         patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True, | ||||
|         norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 8, 27, 3], sr_ratios=[8, 4, 2, 1], | ||||
|         **kwargs) | ||||
|     model.default_cfg = _cfg() | ||||
|  | ||||
|     return model | ||||
|  | ||||
|  | ||||
| @register_model | ||||
| def pvt_v2_b5(pretrained=False, **kwargs): | ||||
|     model = PyramidVisionTransformerV2( | ||||
|         patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=True, | ||||
|         norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 6, 40, 3], sr_ratios=[8, 4, 2, 1], | ||||
|         **kwargs) | ||||
|     model.default_cfg = _cfg() | ||||
|  | ||||
|     return model | ||||
|  | ||||
|  | ||||
| @register_model | ||||
| def pvt_v2_b2_li(pretrained=False, **kwargs): | ||||
|     model = PyramidVisionTransformerV2( | ||||
|         patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True, | ||||
|         norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], linear=True, **kwargs) | ||||
|     model.default_cfg = _cfg() | ||||
|  | ||||
|     return model | ||||
		Reference in New Issue
	
	Block a user