Compare commits

..

No commits in common. "negative_sampling_a2" and "main" have entirely different histories.

5 changed files with 10 additions and 90 deletions

36
.vscode/launch.json vendored
View File

@ -1,36 +0,0 @@
{
// Use IntelliSense to learn about possible attributes.
// Hover to view descriptions of existing attributes.
// For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
"version": "0.2.0",
"configurations": [
{
"name": "Python: Current File",
"type": "python",
"request": "launch",
"program": "${file}",
"console": "integratedTerminal",
"justMyCode": true,
"args": [
"--gpus", "1,",
"--max_epochs=16",
"--num_workers=32",
"--model_name_or_path", "bert-base-uncased",
"--accumulate_grad_batches", "1",
"--model_class", "BertKGC",
"--batch_size", "32",
"--checkpoint", "/root/kg_374/Relphormer/pretrain/output/FB15k-237/epoch=15-step=38899-Eval/hits10=0.96.ckpt",
"--pretrain", "0",
"--bce", "0",
"--check_val_every_n_epoch", "1",
"--data_dir", "dataset/FB15k-237",
"--eval_batch_size", "128",
"--max_seq_length", "128",
"--lr", "3e-5",
"--max_triplet", "64",
"--add_attn_bias", "True",
"--use_global_node", "True",
]
}
]
}

View File

@ -73,54 +73,9 @@ class TransformerLitModel(BaseLitModel):
def forward(self, x): def forward(self, x):
return self.model(x) return self.model(x)
def create_negatives(self, batch):
negativeBatches = []
label = batch['label']
for i in range(label.shape[0]):
newBatch = {}
newBatch['attention_mask'] = None
newBatch['input_ids'] = torch.clone(batch['input_ids'])
newBatch['label'] = torch.zeros_like(batch['label'])
negativeBatches.append(newBatch)
entity_idx = []
self_label = []
for idx, l in enumerate(label):
decoded = self.decode([batch['input_ids'][idx]])[0].split(' ')
for j in range(1, len(decoded)):
if (decoded[j].startswith("[ENTITY_")):
entity_idx.append(j)
self_label.append(batch['input_ids'][idx][j])
break
for idx, lbl in enumerate(label):
for i in range(label.shape[0]):
if (negativeBatches[idx]['input_ids'][i][entity_idx[i]] != lbl):
negativeBatches[idx]['input_ids'][i][entity_idx[i]] = lbl
else:
negativeBatches[idx]['input_ids'][i][entity_idx[i]] = self_label[i]
return negativeBatches
def training_step(self, batch, batch_idx): # pylint: disable=unused-argument def training_step(self, batch, batch_idx): # pylint: disable=unused-argument
# embed();exit() # embed();exit()
# print(self.optimizers().param_groups[1]['lr']) # print(self.optimizers().param_groups[1]['lr'])
negativeBatches = self.create_negatives(batch)
loss = 0
for negativeBatch in negativeBatches:
label = negativeBatch.pop("label")
input_ids = batch['input_ids']
logits = self.model(**negativeBatch, return_dict=True, distance_attention=None).logits
_, mask_idx = (input_ids == self.tokenizer.mask_token_id).nonzero(as_tuple=True)
bs = input_ids.shape[0]
mask_logits = logits[torch.arange(bs), mask_idx][:, self.entity_id_st:self.entity_id_ed]
loss += self.loss_fn(mask_logits, label)
labels = batch.pop("labels") labels = batch.pop("labels")
label = batch.pop("label") label = batch.pop("label")
pos = batch.pop("pos") pos = batch.pop("pos")
@ -155,9 +110,9 @@ class TransformerLitModel(BaseLitModel):
assert mask_idx.shape[0] == bs, "only one mask in sequence!" assert mask_idx.shape[0] == bs, "only one mask in sequence!"
if self.args.bce: if self.args.bce:
loss += self.loss_fn(mask_logits, labels) loss = self.loss_fn(mask_logits, labels)
else: else:
loss += self.loss_fn(mask_logits, label) loss = self.loss_fn(mask_logits, label)
if batch_idx == 0: if batch_idx == 0:
print('\n'.join(self.decode(batch['input_ids'][:4]))) print('\n'.join(self.decode(batch['input_ids'][:4])))

View File

@ -120,7 +120,7 @@ def main():
callbacks = [early_callback, model_checkpoint] callbacks = [early_callback, model_checkpoint]
# args.weights_summary = "full" # Print full summary of the model # args.weights_summary = "full" # Print full summary of the model
trainer = pl.Trainer.from_argparse_args(args, callbacks=callbacks, logger=logger, default_root_dir="training/logs") trainer = pl.Trainer.from_argparse_args(args, callbacks=callbacks, logger=logger, default_root_dir="training/logs", accelerator="ddp")
if "EntityEmbedding" not in lit_model.__class__.__name__: if "EntityEmbedding" not in lit_model.__class__.__name__:
trainer.fit(lit_model, datamodule=data) trainer.fit(lit_model, datamodule=data)

6
pretrain/scripts/pretrain_fb15k-237.sh Executable file → Normal file
View File

@ -1,13 +1,13 @@
nohup python -u main.py --gpus "1," --max_epochs=16 --num_workers=32 \ nohup python -u main.py --gpus "1" --max_epochs=16 --num_workers=32 \
--model_name_or_path bert-base-uncased \ --model_name_or_path bert-base-uncased \
--accumulate_grad_batches 1 \ --accumulate_grad_batches 1 \
--model_class BertKGC \ --model_class BertKGC \
--batch_size 64 \ --batch_size 128 \
--pretrain 1 \ --pretrain 1 \
--bce 0 \ --bce 0 \
--check_val_every_n_epoch 1 \ --check_val_every_n_epoch 1 \
--overwrite_cache \ --overwrite_cache \
--data_dir /root/kg_374/Relphormer/dataset/FB15k-237 \ --data_dir /kg_374/Relphormer/dataset/FB15k-237 \
--eval_batch_size 256 \ --eval_batch_size 256 \
--max_seq_length 64 \ --max_seq_length 64 \
--lr 1e-4 \ --lr 1e-4 \

7
scripts/fb15k-237/fb15k-237.sh Executable file → Normal file
View File

@ -1,12 +1,13 @@
nohup python -u main.py --gpus "1," --max_epochs=16 --num_workers=32 \ nohup python -u main.py --gpus "1" --max_epochs=16 --num_workers=32 \
--model_name_or_path bert-base-uncased \ --model_name_or_path bert-base-uncased \
--accumulate_grad_batches 1 \ --accumulate_grad_batches 1 \
--model_class BertKGC \ --model_class BertKGC \
--batch_size 16 \ --batch_size 64 \
--checkpoint /root/kg_374/Relphormer/pretrain/output/FB15k-237/epoch\=15-step\=38899-Eval/hits10=0.96.ckpt \ --checkpoint /kg_374/Relphormer/pretrain/output/FB15k-237/epoch=15-step=19299-Eval/hits10=0.96.ckpt \
--pretrain 0 \ --pretrain 0 \
--bce 0 \ --bce 0 \
--check_val_every_n_epoch 1 \ --check_val_every_n_epoch 1 \
--overwrite_cache \
--data_dir dataset/FB15k-237 \ --data_dir dataset/FB15k-237 \
--eval_batch_size 128 \ --eval_batch_size 128 \
--max_seq_length 128 \ --max_seq_length 128 \