Compare commits
6 Commits
Author | SHA1 | Date | |
---|---|---|---|
9075b53be6 | |||
ab5c1d0b4b | |||
3243b1d963 | |||
37b01708b4 | |||
a246d2bb64 | |||
4a962a02ad |
4
main.py
4
main.py
@ -478,7 +478,11 @@ class Main(object):
|
||||
batch, 'train')
|
||||
|
||||
pred = self.model.forward(sub, rel, neg_ent, self.p.train_strategy)
|
||||
try:
|
||||
loss = self.model.loss(pred, label, sub_samp)
|
||||
except Exception as e:
|
||||
print(pred)
|
||||
raise e
|
||||
|
||||
loss.backward()
|
||||
self.optimizer.step()
|
||||
|
227
models.py
227
models.py
@ -1,9 +1,10 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch import nn, einsum
|
||||
import torch.nn.functional as F
|
||||
import numpy as np
|
||||
from functools import partial
|
||||
from einops.layers.torch import Rearrange, Reduce
|
||||
from einops import rearrange, repeat
|
||||
from utils import *
|
||||
from layers import *
|
||||
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
||||
@ -557,6 +558,8 @@ class FouriER(torch.nn.Module):
|
||||
z = self.forward_embeddings(y)
|
||||
z = self.forward_tokens(z)
|
||||
z = z.mean([-2, -1])
|
||||
if np.count_nonzero(np.isnan(z)) > 0:
|
||||
print("ZZZ")
|
||||
z = self.norm(z)
|
||||
x = self.head(z)
|
||||
x = self.hidden_drop(x)
|
||||
@ -868,6 +871,203 @@ def window_reverse(windows, window_size, H, W):
|
||||
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, -1, H, W)
|
||||
return x
|
||||
|
||||
def cast_tuple(val, length = 1):
|
||||
return val if isinstance(val, tuple) else ((val,) * length)
|
||||
|
||||
# helper classes
|
||||
|
||||
class ChanLayerNorm(nn.Module):
|
||||
def __init__(self, dim, eps = 1e-5):
|
||||
super().__init__()
|
||||
self.eps = eps
|
||||
self.g = nn.Parameter(torch.ones(1, dim, 1, 1))
|
||||
self.b = nn.Parameter(torch.zeros(1, dim, 1, 1))
|
||||
|
||||
def forward(self, x):
|
||||
var = torch.var(x, dim = 1, unbiased = False, keepdim = True)
|
||||
mean = torch.mean(x, dim = 1, keepdim = True)
|
||||
return (x - mean) / (var + self.eps).sqrt() * self.g + self.b
|
||||
|
||||
class OverlappingPatchEmbed(nn.Module):
|
||||
def __init__(self, dim_in, dim_out, stride = 2):
|
||||
super().__init__()
|
||||
kernel_size = stride * 2 - 1
|
||||
padding = kernel_size // 2
|
||||
self.conv = nn.Conv2d(dim_in, dim_out, kernel_size, stride = stride, padding = padding)
|
||||
|
||||
def forward(self, x):
|
||||
return self.conv(x)
|
||||
|
||||
class PEG(nn.Module):
|
||||
def __init__(self, dim, kernel_size = 3):
|
||||
super().__init__()
|
||||
self.proj = nn.Conv2d(dim, dim, kernel_size = kernel_size, padding = kernel_size // 2, groups = dim, stride = 1)
|
||||
|
||||
def forward(self, x):
|
||||
return self.proj(x) + x
|
||||
|
||||
# feedforward
|
||||
|
||||
class FeedForwardDSSA(nn.Module):
|
||||
def __init__(self, dim, mult = 4, dropout = 0.):
|
||||
super().__init__()
|
||||
inner_dim = int(dim * mult)
|
||||
self.net = nn.Sequential(
|
||||
ChanLayerNorm(dim),
|
||||
nn.Conv2d(dim, inner_dim, 1),
|
||||
nn.GELU(),
|
||||
nn.Dropout(dropout),
|
||||
nn.Conv2d(inner_dim, dim, 1),
|
||||
nn.Dropout(dropout)
|
||||
)
|
||||
def forward(self, x):
|
||||
return self.net(x)
|
||||
|
||||
# attention
|
||||
|
||||
class DSSA(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
heads = 8,
|
||||
dim_head = 32,
|
||||
dropout = 0.,
|
||||
window_size = 7
|
||||
):
|
||||
super().__init__()
|
||||
self.heads = heads
|
||||
self.scale = dim_head ** -0.5
|
||||
self.window_size = window_size
|
||||
inner_dim = dim_head * heads
|
||||
|
||||
self.norm = ChanLayerNorm(dim)
|
||||
|
||||
self.attend = nn.Sequential(
|
||||
nn.Softmax(dim = -1),
|
||||
nn.Dropout(dropout)
|
||||
)
|
||||
|
||||
self.to_qkv = nn.Conv1d(dim, inner_dim * 3, 1, bias = False)
|
||||
|
||||
# window tokens
|
||||
|
||||
self.window_tokens = nn.Parameter(torch.randn(dim))
|
||||
|
||||
# prenorm and non-linearity for window tokens
|
||||
# then projection to queries and keys for window tokens
|
||||
|
||||
self.window_tokens_to_qk = nn.Sequential(
|
||||
nn.LayerNorm(dim_head),
|
||||
nn.GELU(),
|
||||
Rearrange('b h n c -> b (h c) n'),
|
||||
nn.Conv1d(inner_dim, inner_dim * 2, 1),
|
||||
Rearrange('b (h c) n -> b h n c', h = heads),
|
||||
)
|
||||
|
||||
# window attention
|
||||
|
||||
self.window_attend = nn.Sequential(
|
||||
nn.Softmax(dim = -1),
|
||||
nn.Dropout(dropout)
|
||||
)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
nn.Conv2d(inner_dim, dim, 1),
|
||||
nn.Dropout(dropout)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
einstein notation
|
||||
|
||||
b - batch
|
||||
c - channels
|
||||
w1 - window size (height)
|
||||
w2 - also window size (width)
|
||||
i - sequence dimension (source)
|
||||
j - sequence dimension (target dimension to be reduced)
|
||||
h - heads
|
||||
x - height of feature map divided by window size
|
||||
y - width of feature map divided by window size
|
||||
"""
|
||||
|
||||
batch, height, width, heads, wsz = x.shape[0], *x.shape[-2:], self.heads, self.window_size
|
||||
assert (height % wsz) == 0 and (width % wsz) == 0, f'height {height} and width {width} must be divisible by window size {wsz}'
|
||||
num_windows = (height // wsz) * (width // wsz)
|
||||
|
||||
x = self.norm(x)
|
||||
|
||||
# fold in windows for "depthwise" attention - not sure why it is named depthwise when it is just "windowed" attention
|
||||
|
||||
x = rearrange(x, 'b c (h w1) (w w2) -> (b h w) c (w1 w2)', w1 = wsz, w2 = wsz)
|
||||
|
||||
# add windowing tokens
|
||||
|
||||
w = repeat(self.window_tokens, 'c -> b c 1', b = x.shape[0])
|
||||
x = torch.cat((w, x), dim = -1)
|
||||
|
||||
# project for queries, keys, value
|
||||
|
||||
q, k, v = self.to_qkv(x).chunk(3, dim = 1)
|
||||
|
||||
# split out heads
|
||||
|
||||
q, k, v = map(lambda t: rearrange(t, 'b (h d) ... -> b h (...) d', h = heads), (q, k, v))
|
||||
|
||||
# scale
|
||||
|
||||
q = q * self.scale
|
||||
|
||||
# similarity
|
||||
|
||||
dots = einsum('b h i d, b h j d -> b h i j', q, k)
|
||||
|
||||
# attention
|
||||
|
||||
attn = self.attend(dots)
|
||||
|
||||
# aggregate values
|
||||
|
||||
out = torch.matmul(attn, v)
|
||||
|
||||
# split out windowed tokens
|
||||
|
||||
window_tokens, windowed_fmaps = out[:, :, 0], out[:, :, 1:]
|
||||
|
||||
# early return if there is only 1 window
|
||||
|
||||
if num_windows == 1:
|
||||
fmap = rearrange(windowed_fmaps, '(b x y) h (w1 w2) d -> b (h d) (x w1) (y w2)', x = height // wsz, y = width // wsz, w1 = wsz, w2 = wsz)
|
||||
return self.to_out(fmap)
|
||||
|
||||
# carry out the pointwise attention, the main novelty in the paper
|
||||
|
||||
window_tokens = rearrange(window_tokens, '(b x y) h d -> b h (x y) d', x = height // wsz, y = width // wsz)
|
||||
windowed_fmaps = rearrange(windowed_fmaps, '(b x y) h n d -> b h (x y) n d', x = height // wsz, y = width // wsz)
|
||||
|
||||
# windowed queries and keys (preceded by prenorm activation)
|
||||
|
||||
w_q, w_k = self.window_tokens_to_qk(window_tokens).chunk(2, dim = -1)
|
||||
|
||||
# scale
|
||||
|
||||
w_q = w_q * self.scale
|
||||
|
||||
# similarities
|
||||
|
||||
w_dots = einsum('b h i d, b h j d -> b h i j', w_q, w_k)
|
||||
|
||||
w_attn = self.window_attend(w_dots)
|
||||
|
||||
# aggregate the feature maps from the "depthwise" attention step (the most interesting part of the paper, one i haven't seen before)
|
||||
|
||||
aggregated_windowed_fmap = einsum('b h i j, b h j w d -> b h i w d', w_attn, windowed_fmaps)
|
||||
|
||||
# fold back the windows and then combine heads for aggregation
|
||||
|
||||
fmap = rearrange(aggregated_windowed_fmap, 'b h (x y) (w1 w2) d -> b (h d) (x w1) (y w2)', x = height // wsz, y = width // wsz, w1 = wsz, w2 = wsz)
|
||||
return self.to_out(fmap)
|
||||
|
||||
class PoolFormerBlock(nn.Module):
|
||||
"""
|
||||
Implementation of one PoolFormer block.
|
||||
@ -893,8 +1093,13 @@ class PoolFormerBlock(nn.Module):
|
||||
#self.token_mixer = Pooling(pool_size=pool_size)
|
||||
# self.token_mixer = FNetBlock()
|
||||
self.window_size = 4
|
||||
self.attn_heads = 4
|
||||
self.attn_mask = None
|
||||
self.token_mixer = WindowAttention(dim=dim, window_size=to_2tuple(self.window_size), num_heads=4)
|
||||
# self.token_mixer = WindowAttention(dim=dim, window_size=to_2tuple(self.window_size), num_heads=4)
|
||||
self.token_mixer = nn.ModuleList([
|
||||
DSSA(dim, heads=self.attn_heads, window_size=self.window_size),
|
||||
FeedForwardDSSA(dim)
|
||||
])
|
||||
self.norm2 = norm_layer(dim)
|
||||
mlp_hidden_dim = int(dim * mlp_ratio)
|
||||
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim,
|
||||
@ -912,11 +1117,12 @@ class PoolFormerBlock(nn.Module):
|
||||
|
||||
def forward(self, x):
|
||||
B, C, H, W = x.shape
|
||||
x_windows = window_partition(x, self.window_size)
|
||||
x_windows = x_windows.view(-1, self.window_size * self.window_size, C)
|
||||
attn_windows = self.token_mixer(x_windows, mask=self.attn_mask)
|
||||
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
||||
x_attn = window_reverse(attn_windows, self.window_size, H, W)
|
||||
# x_windows = window_partition(x, self.window_size)
|
||||
# x_windows = x_windows.view(-1, self.window_size * self.window_size, C)
|
||||
# attn_windows = self.token_mixer(x_windows, mask=self.attn_mask)
|
||||
# attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
||||
# x_attn = window_reverse(attn_windows, self.window_size, H, W)
|
||||
x_attn = self.token_mixer(x)
|
||||
if self.use_layer_scale:
|
||||
x = x + self.drop_path(
|
||||
self.layer_scale_1.unsqueeze(-1).unsqueeze(-1)
|
||||
@ -927,6 +1133,9 @@ class PoolFormerBlock(nn.Module):
|
||||
else:
|
||||
x = x + self.drop_path(x_attn)
|
||||
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
||||
|
||||
if np.count_nonzero(np.isnan(x)) > 0:
|
||||
print("PFBlock")
|
||||
return x
|
||||
class PatchEmbed(nn.Module):
|
||||
"""
|
||||
@ -1012,7 +1221,7 @@ class LayerNormChannel(nn.Module):
|
||||
+ self.bias.unsqueeze(-1).unsqueeze(-1)
|
||||
return x
|
||||
|
||||
class FeedForward(nn.Module):
|
||||
class FeedForwardFNet(nn.Module):
|
||||
def __init__(self, dim, hidden_dim, dropout = 0.):
|
||||
super().__init__()
|
||||
self.net = nn.Sequential(
|
||||
@ -1048,7 +1257,7 @@ class FNet(nn.Module):
|
||||
for _ in range(depth):
|
||||
self.layers.append(nn.ModuleList([
|
||||
PreNorm(dim, FNetBlock()),
|
||||
PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))
|
||||
PreNorm(dim, FeedForwardFNet(dim, mlp_dim, dropout = dropout))
|
||||
]))
|
||||
def forward(self, x):
|
||||
for attn, ff in self.layers:
|
||||
|
Reference in New Issue
Block a user