Compare commits
6 Commits
Author | SHA1 | Date | |
---|---|---|---|
9075b53be6 | |||
ab5c1d0b4b | |||
3243b1d963 | |||
37b01708b4 | |||
a246d2bb64 | |||
4a962a02ad |
6
main.py
6
main.py
@ -478,7 +478,11 @@ class Main(object):
|
|||||||
batch, 'train')
|
batch, 'train')
|
||||||
|
|
||||||
pred = self.model.forward(sub, rel, neg_ent, self.p.train_strategy)
|
pred = self.model.forward(sub, rel, neg_ent, self.p.train_strategy)
|
||||||
loss = self.model.loss(pred, label, sub_samp)
|
try:
|
||||||
|
loss = self.model.loss(pred, label, sub_samp)
|
||||||
|
except Exception as e:
|
||||||
|
print(pred)
|
||||||
|
raise e
|
||||||
|
|
||||||
loss.backward()
|
loss.backward()
|
||||||
self.optimizer.step()
|
self.optimizer.step()
|
||||||
|
335
models.py
335
models.py
@ -1,9 +1,10 @@
|
|||||||
import torch
|
import torch
|
||||||
from torch import nn
|
from torch import nn, einsum
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from functools import partial
|
from functools import partial
|
||||||
from einops.layers.torch import Rearrange, Reduce
|
from einops.layers.torch import Rearrange, Reduce
|
||||||
|
from einops import rearrange, repeat
|
||||||
from utils import *
|
from utils import *
|
||||||
from layers import *
|
from layers import *
|
||||||
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
||||||
@ -435,50 +436,6 @@ class TuckER(torch.nn.Module):
|
|||||||
|
|
||||||
return pred
|
return pred
|
||||||
|
|
||||||
class PatchMerging(nn.Module):
|
|
||||||
r""" Patch Merging Layer.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
input_resolution (tuple[int]): Resolution of input feature.
|
|
||||||
dim (int): Number of input channels.
|
|
||||||
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self, dim, norm_layer=nn.LayerNorm):
|
|
||||||
super().__init__()
|
|
||||||
self.dim = dim
|
|
||||||
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
|
|
||||||
self.norm = norm_layer(2 * dim)
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
"""
|
|
||||||
x: B, C, H, W
|
|
||||||
"""
|
|
||||||
B, C, H, W = x.shape
|
|
||||||
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."
|
|
||||||
|
|
||||||
x = x.view(B, H, W, C)
|
|
||||||
|
|
||||||
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
|
|
||||||
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
|
|
||||||
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
|
|
||||||
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
|
|
||||||
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
|
|
||||||
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
|
|
||||||
|
|
||||||
x = self.reduction(x)
|
|
||||||
x = self.norm(x)
|
|
||||||
|
|
||||||
return x
|
|
||||||
|
|
||||||
def extra_repr(self) -> str:
|
|
||||||
return f"input_resolution={self.input_resolution}, dim={self.dim}"
|
|
||||||
|
|
||||||
def flops(self):
|
|
||||||
H, W = self.input_resolution
|
|
||||||
flops = (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim
|
|
||||||
flops += H * W * self.dim // 2
|
|
||||||
return flops
|
|
||||||
|
|
||||||
class FouriER(torch.nn.Module):
|
class FouriER(torch.nn.Module):
|
||||||
def __init__(self, params, hid_drop = None, embed_dim = None):
|
def __init__(self, params, hid_drop = None, embed_dim = None):
|
||||||
@ -532,10 +489,9 @@ class FouriER(torch.nn.Module):
|
|||||||
self.patch_embed = PatchEmbed(in_chans=channels, patch_size=self.p.patch_size,
|
self.patch_embed = PatchEmbed(in_chans=channels, patch_size=self.p.patch_size,
|
||||||
embed_dim=self.p.embed_dim, stride=4, padding=2)
|
embed_dim=self.p.embed_dim, stride=4, padding=2)
|
||||||
network = []
|
network = []
|
||||||
layers = [2, 2, 6, 2]
|
layers = [4, 4, 12, 4]
|
||||||
embed_dims = [self.p.embed_dim, 320, 256, 128]
|
embed_dims = [self.p.embed_dim, 128, 320, 128]
|
||||||
mlp_ratios = [4, 4, 8, 12]
|
mlp_ratios = [4, 4, 4, 4]
|
||||||
num_heads = [4, 4, 4, 4]
|
|
||||||
downsamples = [True, True, True, True]
|
downsamples = [True, True, True, True]
|
||||||
pool_size=3
|
pool_size=3
|
||||||
act_layer=nn.GELU
|
act_layer=nn.GELU
|
||||||
@ -547,7 +503,6 @@ class FouriER(torch.nn.Module):
|
|||||||
down_patch_size=3
|
down_patch_size=3
|
||||||
down_stride=2
|
down_stride=2
|
||||||
down_pad=1
|
down_pad=1
|
||||||
window_size = 4
|
|
||||||
num_classes=self.p.embed_dim
|
num_classes=self.p.embed_dim
|
||||||
for i in range(len(layers)):
|
for i in range(len(layers)):
|
||||||
stage = basic_blocks(embed_dims[i], i, layers,
|
stage = basic_blocks(embed_dims[i], i, layers,
|
||||||
@ -556,9 +511,7 @@ class FouriER(torch.nn.Module):
|
|||||||
drop_rate=drop_rate,
|
drop_rate=drop_rate,
|
||||||
drop_path_rate=drop_path_rate,
|
drop_path_rate=drop_path_rate,
|
||||||
use_layer_scale=use_layer_scale,
|
use_layer_scale=use_layer_scale,
|
||||||
layer_scale_init_value=layer_scale_init_value,
|
layer_scale_init_value=layer_scale_init_value)
|
||||||
num_heads=num_heads[i], input_resolution=(image_h // (2**i), image_w // (2**i)),
|
|
||||||
window_size=window_size, shift_size=0)
|
|
||||||
network.append(stage)
|
network.append(stage)
|
||||||
if i >= len(layers) - 1:
|
if i >= len(layers) - 1:
|
||||||
break
|
break
|
||||||
@ -570,7 +523,6 @@ class FouriER(torch.nn.Module):
|
|||||||
padding=down_pad,
|
padding=down_pad,
|
||||||
in_chans=embed_dims[i], embed_dim=embed_dims[i+1]
|
in_chans=embed_dims[i], embed_dim=embed_dims[i+1]
|
||||||
)
|
)
|
||||||
# PatchMerging(dim=embed_dims[i+1])
|
|
||||||
)
|
)
|
||||||
|
|
||||||
self.network = nn.ModuleList(network)
|
self.network = nn.ModuleList(network)
|
||||||
@ -606,6 +558,8 @@ class FouriER(torch.nn.Module):
|
|||||||
z = self.forward_embeddings(y)
|
z = self.forward_embeddings(y)
|
||||||
z = self.forward_tokens(z)
|
z = self.forward_tokens(z)
|
||||||
z = z.mean([-2, -1])
|
z = z.mean([-2, -1])
|
||||||
|
if np.count_nonzero(np.isnan(z)) > 0:
|
||||||
|
print("ZZZ")
|
||||||
z = self.norm(z)
|
z = self.norm(z)
|
||||||
x = self.head(z)
|
x = self.head(z)
|
||||||
x = self.hidden_drop(x)
|
x = self.hidden_drop(x)
|
||||||
@ -736,7 +690,7 @@ def basic_blocks(dim, index, layers,
|
|||||||
pool_size=3, mlp_ratio=4.,
|
pool_size=3, mlp_ratio=4.,
|
||||||
act_layer=nn.GELU, norm_layer=GroupNorm,
|
act_layer=nn.GELU, norm_layer=GroupNorm,
|
||||||
drop_rate=.0, drop_path_rate=0.,
|
drop_rate=.0, drop_path_rate=0.,
|
||||||
use_layer_scale=True, layer_scale_init_value=1e-5, num_heads = 4, input_resolution = None, window_size = 4, shift_size = 2):
|
use_layer_scale=True, layer_scale_init_value=1e-5):
|
||||||
"""
|
"""
|
||||||
generate PoolFormer blocks for a stage
|
generate PoolFormer blocks for a stage
|
||||||
return: PoolFormer blocks
|
return: PoolFormer blocks
|
||||||
@ -751,8 +705,6 @@ def basic_blocks(dim, index, layers,
|
|||||||
drop=drop_rate, drop_path=block_dpr,
|
drop=drop_rate, drop_path=block_dpr,
|
||||||
use_layer_scale=use_layer_scale,
|
use_layer_scale=use_layer_scale,
|
||||||
layer_scale_init_value=layer_scale_init_value,
|
layer_scale_init_value=layer_scale_init_value,
|
||||||
num_heads=num_heads, input_resolution = input_resolution,
|
|
||||||
window_size=window_size, shift_size=shift_size
|
|
||||||
))
|
))
|
||||||
blocks = nn.Sequential(*blocks)
|
blocks = nn.Sequential(*blocks)
|
||||||
|
|
||||||
@ -872,12 +824,9 @@ class WindowAttention(nn.Module):
|
|||||||
attn = attn + relative_position_bias.unsqueeze(0)
|
attn = attn + relative_position_bias.unsqueeze(0)
|
||||||
|
|
||||||
if mask is not None:
|
if mask is not None:
|
||||||
try:
|
nW = mask.shape[0]
|
||||||
nW = mask.shape[0]
|
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
|
||||||
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
|
attn = attn.view(-1, self.num_heads, N, N)
|
||||||
attn = attn.view(-1, self.num_heads, N, N)
|
|
||||||
except:
|
|
||||||
pass
|
|
||||||
attn = self.softmax(attn)
|
attn = self.softmax(attn)
|
||||||
else:
|
else:
|
||||||
attn = self.softmax(attn)
|
attn = self.softmax(attn)
|
||||||
@ -922,6 +871,203 @@ def window_reverse(windows, window_size, H, W):
|
|||||||
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, -1, H, W)
|
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, -1, H, W)
|
||||||
return x
|
return x
|
||||||
|
|
||||||
|
def cast_tuple(val, length = 1):
|
||||||
|
return val if isinstance(val, tuple) else ((val,) * length)
|
||||||
|
|
||||||
|
# helper classes
|
||||||
|
|
||||||
|
class ChanLayerNorm(nn.Module):
|
||||||
|
def __init__(self, dim, eps = 1e-5):
|
||||||
|
super().__init__()
|
||||||
|
self.eps = eps
|
||||||
|
self.g = nn.Parameter(torch.ones(1, dim, 1, 1))
|
||||||
|
self.b = nn.Parameter(torch.zeros(1, dim, 1, 1))
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
var = torch.var(x, dim = 1, unbiased = False, keepdim = True)
|
||||||
|
mean = torch.mean(x, dim = 1, keepdim = True)
|
||||||
|
return (x - mean) / (var + self.eps).sqrt() * self.g + self.b
|
||||||
|
|
||||||
|
class OverlappingPatchEmbed(nn.Module):
|
||||||
|
def __init__(self, dim_in, dim_out, stride = 2):
|
||||||
|
super().__init__()
|
||||||
|
kernel_size = stride * 2 - 1
|
||||||
|
padding = kernel_size // 2
|
||||||
|
self.conv = nn.Conv2d(dim_in, dim_out, kernel_size, stride = stride, padding = padding)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return self.conv(x)
|
||||||
|
|
||||||
|
class PEG(nn.Module):
|
||||||
|
def __init__(self, dim, kernel_size = 3):
|
||||||
|
super().__init__()
|
||||||
|
self.proj = nn.Conv2d(dim, dim, kernel_size = kernel_size, padding = kernel_size // 2, groups = dim, stride = 1)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return self.proj(x) + x
|
||||||
|
|
||||||
|
# feedforward
|
||||||
|
|
||||||
|
class FeedForwardDSSA(nn.Module):
|
||||||
|
def __init__(self, dim, mult = 4, dropout = 0.):
|
||||||
|
super().__init__()
|
||||||
|
inner_dim = int(dim * mult)
|
||||||
|
self.net = nn.Sequential(
|
||||||
|
ChanLayerNorm(dim),
|
||||||
|
nn.Conv2d(dim, inner_dim, 1),
|
||||||
|
nn.GELU(),
|
||||||
|
nn.Dropout(dropout),
|
||||||
|
nn.Conv2d(inner_dim, dim, 1),
|
||||||
|
nn.Dropout(dropout)
|
||||||
|
)
|
||||||
|
def forward(self, x):
|
||||||
|
return self.net(x)
|
||||||
|
|
||||||
|
# attention
|
||||||
|
|
||||||
|
class DSSA(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
dim,
|
||||||
|
heads = 8,
|
||||||
|
dim_head = 32,
|
||||||
|
dropout = 0.,
|
||||||
|
window_size = 7
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
self.heads = heads
|
||||||
|
self.scale = dim_head ** -0.5
|
||||||
|
self.window_size = window_size
|
||||||
|
inner_dim = dim_head * heads
|
||||||
|
|
||||||
|
self.norm = ChanLayerNorm(dim)
|
||||||
|
|
||||||
|
self.attend = nn.Sequential(
|
||||||
|
nn.Softmax(dim = -1),
|
||||||
|
nn.Dropout(dropout)
|
||||||
|
)
|
||||||
|
|
||||||
|
self.to_qkv = nn.Conv1d(dim, inner_dim * 3, 1, bias = False)
|
||||||
|
|
||||||
|
# window tokens
|
||||||
|
|
||||||
|
self.window_tokens = nn.Parameter(torch.randn(dim))
|
||||||
|
|
||||||
|
# prenorm and non-linearity for window tokens
|
||||||
|
# then projection to queries and keys for window tokens
|
||||||
|
|
||||||
|
self.window_tokens_to_qk = nn.Sequential(
|
||||||
|
nn.LayerNorm(dim_head),
|
||||||
|
nn.GELU(),
|
||||||
|
Rearrange('b h n c -> b (h c) n'),
|
||||||
|
nn.Conv1d(inner_dim, inner_dim * 2, 1),
|
||||||
|
Rearrange('b (h c) n -> b h n c', h = heads),
|
||||||
|
)
|
||||||
|
|
||||||
|
# window attention
|
||||||
|
|
||||||
|
self.window_attend = nn.Sequential(
|
||||||
|
nn.Softmax(dim = -1),
|
||||||
|
nn.Dropout(dropout)
|
||||||
|
)
|
||||||
|
|
||||||
|
self.to_out = nn.Sequential(
|
||||||
|
nn.Conv2d(inner_dim, dim, 1),
|
||||||
|
nn.Dropout(dropout)
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
"""
|
||||||
|
einstein notation
|
||||||
|
|
||||||
|
b - batch
|
||||||
|
c - channels
|
||||||
|
w1 - window size (height)
|
||||||
|
w2 - also window size (width)
|
||||||
|
i - sequence dimension (source)
|
||||||
|
j - sequence dimension (target dimension to be reduced)
|
||||||
|
h - heads
|
||||||
|
x - height of feature map divided by window size
|
||||||
|
y - width of feature map divided by window size
|
||||||
|
"""
|
||||||
|
|
||||||
|
batch, height, width, heads, wsz = x.shape[0], *x.shape[-2:], self.heads, self.window_size
|
||||||
|
assert (height % wsz) == 0 and (width % wsz) == 0, f'height {height} and width {width} must be divisible by window size {wsz}'
|
||||||
|
num_windows = (height // wsz) * (width // wsz)
|
||||||
|
|
||||||
|
x = self.norm(x)
|
||||||
|
|
||||||
|
# fold in windows for "depthwise" attention - not sure why it is named depthwise when it is just "windowed" attention
|
||||||
|
|
||||||
|
x = rearrange(x, 'b c (h w1) (w w2) -> (b h w) c (w1 w2)', w1 = wsz, w2 = wsz)
|
||||||
|
|
||||||
|
# add windowing tokens
|
||||||
|
|
||||||
|
w = repeat(self.window_tokens, 'c -> b c 1', b = x.shape[0])
|
||||||
|
x = torch.cat((w, x), dim = -1)
|
||||||
|
|
||||||
|
# project for queries, keys, value
|
||||||
|
|
||||||
|
q, k, v = self.to_qkv(x).chunk(3, dim = 1)
|
||||||
|
|
||||||
|
# split out heads
|
||||||
|
|
||||||
|
q, k, v = map(lambda t: rearrange(t, 'b (h d) ... -> b h (...) d', h = heads), (q, k, v))
|
||||||
|
|
||||||
|
# scale
|
||||||
|
|
||||||
|
q = q * self.scale
|
||||||
|
|
||||||
|
# similarity
|
||||||
|
|
||||||
|
dots = einsum('b h i d, b h j d -> b h i j', q, k)
|
||||||
|
|
||||||
|
# attention
|
||||||
|
|
||||||
|
attn = self.attend(dots)
|
||||||
|
|
||||||
|
# aggregate values
|
||||||
|
|
||||||
|
out = torch.matmul(attn, v)
|
||||||
|
|
||||||
|
# split out windowed tokens
|
||||||
|
|
||||||
|
window_tokens, windowed_fmaps = out[:, :, 0], out[:, :, 1:]
|
||||||
|
|
||||||
|
# early return if there is only 1 window
|
||||||
|
|
||||||
|
if num_windows == 1:
|
||||||
|
fmap = rearrange(windowed_fmaps, '(b x y) h (w1 w2) d -> b (h d) (x w1) (y w2)', x = height // wsz, y = width // wsz, w1 = wsz, w2 = wsz)
|
||||||
|
return self.to_out(fmap)
|
||||||
|
|
||||||
|
# carry out the pointwise attention, the main novelty in the paper
|
||||||
|
|
||||||
|
window_tokens = rearrange(window_tokens, '(b x y) h d -> b h (x y) d', x = height // wsz, y = width // wsz)
|
||||||
|
windowed_fmaps = rearrange(windowed_fmaps, '(b x y) h n d -> b h (x y) n d', x = height // wsz, y = width // wsz)
|
||||||
|
|
||||||
|
# windowed queries and keys (preceded by prenorm activation)
|
||||||
|
|
||||||
|
w_q, w_k = self.window_tokens_to_qk(window_tokens).chunk(2, dim = -1)
|
||||||
|
|
||||||
|
# scale
|
||||||
|
|
||||||
|
w_q = w_q * self.scale
|
||||||
|
|
||||||
|
# similarities
|
||||||
|
|
||||||
|
w_dots = einsum('b h i d, b h j d -> b h i j', w_q, w_k)
|
||||||
|
|
||||||
|
w_attn = self.window_attend(w_dots)
|
||||||
|
|
||||||
|
# aggregate the feature maps from the "depthwise" attention step (the most interesting part of the paper, one i haven't seen before)
|
||||||
|
|
||||||
|
aggregated_windowed_fmap = einsum('b h i j, b h j w d -> b h i w d', w_attn, windowed_fmaps)
|
||||||
|
|
||||||
|
# fold back the windows and then combine heads for aggregation
|
||||||
|
|
||||||
|
fmap = rearrange(aggregated_windowed_fmap, 'b h (x y) (w1 w2) d -> b (h d) (x w1) (y w2)', x = height // wsz, y = width // wsz, w1 = wsz, w2 = wsz)
|
||||||
|
return self.to_out(fmap)
|
||||||
|
|
||||||
class PoolFormerBlock(nn.Module):
|
class PoolFormerBlock(nn.Module):
|
||||||
"""
|
"""
|
||||||
Implementation of one PoolFormer block.
|
Implementation of one PoolFormer block.
|
||||||
@ -938,18 +1084,22 @@ class PoolFormerBlock(nn.Module):
|
|||||||
"""
|
"""
|
||||||
def __init__(self, dim, pool_size=3, mlp_ratio=4.,
|
def __init__(self, dim, pool_size=3, mlp_ratio=4.,
|
||||||
act_layer=nn.GELU, norm_layer=GroupNorm,
|
act_layer=nn.GELU, norm_layer=GroupNorm,
|
||||||
drop=0., drop_path=0., num_heads=4,
|
drop=0., drop_path=0.,
|
||||||
use_layer_scale=True, layer_scale_init_value=1e-5, input_resolution = None, window_size = 4, shift_size = 2):
|
use_layer_scale=True, layer_scale_init_value=1e-5):
|
||||||
|
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
|
||||||
self.norm1 = norm_layer(dim)
|
self.norm1 = norm_layer(dim)
|
||||||
#self.token_mixer = Pooling(pool_size=pool_size)
|
#self.token_mixer = Pooling(pool_size=pool_size)
|
||||||
# self.token_mixer = FNetBlock()
|
# self.token_mixer = FNetBlock()
|
||||||
self.window_size = window_size
|
self.window_size = 4
|
||||||
self.shift_size = shift_size
|
self.attn_heads = 4
|
||||||
self.input_resolution = input_resolution
|
self.attn_mask = None
|
||||||
self.token_mixer = WindowAttention(dim=dim, window_size=to_2tuple(self.window_size), num_heads=num_heads, attn_drop=0.2, proj_drop=0.1)
|
# self.token_mixer = WindowAttention(dim=dim, window_size=to_2tuple(self.window_size), num_heads=4)
|
||||||
|
self.token_mixer = nn.ModuleList([
|
||||||
|
DSSA(dim, heads=self.attn_heads, window_size=self.window_size),
|
||||||
|
FeedForwardDSSA(dim)
|
||||||
|
])
|
||||||
self.norm2 = norm_layer(dim)
|
self.norm2 = norm_layer(dim)
|
||||||
mlp_hidden_dim = int(dim * mlp_ratio)
|
mlp_hidden_dim = int(dim * mlp_ratio)
|
||||||
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim,
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim,
|
||||||
@ -965,42 +1115,14 @@ class PoolFormerBlock(nn.Module):
|
|||||||
self.layer_scale_2 = nn.Parameter(
|
self.layer_scale_2 = nn.Parameter(
|
||||||
layer_scale_init_value * torch.ones((dim)), requires_grad=True)
|
layer_scale_init_value * torch.ones((dim)), requires_grad=True)
|
||||||
|
|
||||||
if self.shift_size > 0:
|
|
||||||
# calculate attention mask for SW-MSA
|
|
||||||
H, W = self.input_resolution
|
|
||||||
img_mask = torch.zeros((1, 1, H, W)) # 1 H W 1
|
|
||||||
h_slices = (slice(0, -self.window_size),
|
|
||||||
slice(-self.window_size, -self.shift_size),
|
|
||||||
slice(-self.shift_size, None))
|
|
||||||
w_slices = (slice(0, -self.window_size),
|
|
||||||
slice(-self.window_size, -self.shift_size),
|
|
||||||
slice(-self.shift_size, None))
|
|
||||||
cnt = 0
|
|
||||||
for h in h_slices:
|
|
||||||
for w in w_slices:
|
|
||||||
img_mask[:, :, h, w] = cnt
|
|
||||||
cnt += 1
|
|
||||||
|
|
||||||
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
|
|
||||||
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
|
|
||||||
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
|
||||||
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
|
|
||||||
else:
|
|
||||||
attn_mask = None
|
|
||||||
|
|
||||||
self.register_buffer("attn_mask", attn_mask)
|
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
B, C, H, W = x.shape
|
B, C, H, W = x.shape
|
||||||
x_windows = window_partition(x, self.window_size)
|
# x_windows = window_partition(x, self.window_size)
|
||||||
x_windows = x_windows.view(-1, self.window_size * self.window_size, C)
|
# x_windows = x_windows.view(-1, self.window_size * self.window_size, C)
|
||||||
attn_windows = self.token_mixer(x_windows, mask=self.attn_mask)
|
# attn_windows = self.token_mixer(x_windows, mask=self.attn_mask)
|
||||||
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
# attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
||||||
x_attn = window_reverse(attn_windows, self.window_size, H, W)
|
# x_attn = window_reverse(attn_windows, self.window_size, H, W)
|
||||||
if self.shift_size > 0:
|
x_attn = self.token_mixer(x)
|
||||||
x = torch.roll(x_attn, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
|
|
||||||
else:
|
|
||||||
x = x_attn
|
|
||||||
if self.use_layer_scale:
|
if self.use_layer_scale:
|
||||||
x = x + self.drop_path(
|
x = x + self.drop_path(
|
||||||
self.layer_scale_1.unsqueeze(-1).unsqueeze(-1)
|
self.layer_scale_1.unsqueeze(-1).unsqueeze(-1)
|
||||||
@ -1011,6 +1133,9 @@ class PoolFormerBlock(nn.Module):
|
|||||||
else:
|
else:
|
||||||
x = x + self.drop_path(x_attn)
|
x = x + self.drop_path(x_attn)
|
||||||
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
||||||
|
|
||||||
|
if np.count_nonzero(np.isnan(x)) > 0:
|
||||||
|
print("PFBlock")
|
||||||
return x
|
return x
|
||||||
class PatchEmbed(nn.Module):
|
class PatchEmbed(nn.Module):
|
||||||
"""
|
"""
|
||||||
@ -1096,7 +1221,7 @@ class LayerNormChannel(nn.Module):
|
|||||||
+ self.bias.unsqueeze(-1).unsqueeze(-1)
|
+ self.bias.unsqueeze(-1).unsqueeze(-1)
|
||||||
return x
|
return x
|
||||||
|
|
||||||
class FeedForward(nn.Module):
|
class FeedForwardFNet(nn.Module):
|
||||||
def __init__(self, dim, hidden_dim, dropout = 0.):
|
def __init__(self, dim, hidden_dim, dropout = 0.):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.net = nn.Sequential(
|
self.net = nn.Sequential(
|
||||||
@ -1132,7 +1257,7 @@ class FNet(nn.Module):
|
|||||||
for _ in range(depth):
|
for _ in range(depth):
|
||||||
self.layers.append(nn.ModuleList([
|
self.layers.append(nn.ModuleList([
|
||||||
PreNorm(dim, FNetBlock()),
|
PreNorm(dim, FNetBlock()),
|
||||||
PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))
|
PreNorm(dim, FeedForwardFNet(dim, mlp_dim, dropout = dropout))
|
||||||
]))
|
]))
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
for attn, ff in self.layers:
|
for attn, ff in self.layers:
|
||||||
|
Reference in New Issue
Block a user