Compare commits
	
		
			6 Commits
		
	
	
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
|  | 9075b53be6 | ||
|  | ab5c1d0b4b | ||
|  | 3243b1d963 | ||
|  | 37b01708b4 | ||
|  | a246d2bb64 | ||
|  | 4a962a02ad | 
							
								
								
									
										6
									
								
								main.py
									
									
									
									
									
								
							
							
						
						
									
										6
									
								
								main.py
									
									
									
									
									
								
							| @@ -478,7 +478,11 @@ class Main(object): | ||||
|                 batch, 'train') | ||||
|  | ||||
|             pred = self.model.forward(sub, rel, neg_ent, self.p.train_strategy) | ||||
|             loss = self.model.loss(pred, label, sub_samp) | ||||
|             try: | ||||
|                 loss = self.model.loss(pred, label, sub_samp) | ||||
|             except Exception as e: | ||||
|                 print(pred) | ||||
|                 raise e | ||||
|  | ||||
|             loss.backward() | ||||
|             self.optimizer.step() | ||||
|   | ||||
							
								
								
									
										335
									
								
								models.py
									
									
									
									
									
								
							
							
						
						
									
										335
									
								
								models.py
									
									
									
									
									
								
							| @@ -1,9 +1,10 @@ | ||||
| import torch | ||||
| from torch import nn | ||||
| from torch import nn, einsum | ||||
| import torch.nn.functional as F | ||||
| import numpy as np | ||||
| from functools import partial | ||||
| from einops.layers.torch import Rearrange, Reduce | ||||
| from einops import rearrange, repeat | ||||
| from utils import * | ||||
| from layers import * | ||||
| from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | ||||
| @@ -435,50 +436,6 @@ class TuckER(torch.nn.Module): | ||||
|  | ||||
|         return pred | ||||
|  | ||||
| class PatchMerging(nn.Module): | ||||
|     r""" Patch Merging Layer. | ||||
|  | ||||
|     Args: | ||||
|         input_resolution (tuple[int]): Resolution of input feature. | ||||
|         dim (int): Number of input channels. | ||||
|         norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm | ||||
|     """ | ||||
|  | ||||
|     def __init__(self, dim, norm_layer=nn.LayerNorm): | ||||
|         super().__init__() | ||||
|         self.dim = dim | ||||
|         self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) | ||||
|         self.norm = norm_layer(2 * dim) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         """ | ||||
|         x: B, C, H, W | ||||
|         """ | ||||
|         B, C, H, W = x.shape | ||||
|         assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even." | ||||
|  | ||||
|         x = x.view(B, H, W, C) | ||||
|  | ||||
|         x0 = x[:, 0::2, 0::2, :]  # B H/2 W/2 C | ||||
|         x1 = x[:, 1::2, 0::2, :]  # B H/2 W/2 C | ||||
|         x2 = x[:, 0::2, 1::2, :]  # B H/2 W/2 C | ||||
|         x3 = x[:, 1::2, 1::2, :]  # B H/2 W/2 C | ||||
|         x = torch.cat([x0, x1, x2, x3], -1)  # B H/2 W/2 4*C | ||||
|         x = x.view(B, -1, 4 * C)  # B H/2*W/2 4*C | ||||
|  | ||||
|         x = self.reduction(x) | ||||
|         x = self.norm(x) | ||||
|  | ||||
|         return x | ||||
|  | ||||
|     def extra_repr(self) -> str: | ||||
|         return f"input_resolution={self.input_resolution}, dim={self.dim}" | ||||
|  | ||||
|     def flops(self): | ||||
|         H, W = self.input_resolution | ||||
|         flops = (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim | ||||
|         flops += H * W * self.dim // 2 | ||||
|         return flops | ||||
|  | ||||
| class FouriER(torch.nn.Module): | ||||
|     def __init__(self, params, hid_drop = None, embed_dim = None): | ||||
| @@ -532,10 +489,9 @@ class FouriER(torch.nn.Module): | ||||
|         self.patch_embed = PatchEmbed(in_chans=channels, patch_size=self.p.patch_size,  | ||||
|                                       embed_dim=self.p.embed_dim, stride=4, padding=2) | ||||
|         network = [] | ||||
|         layers = [2, 2, 6, 2] | ||||
|         embed_dims = [self.p.embed_dim, 320, 256, 128] | ||||
|         mlp_ratios = [4, 4, 8, 12] | ||||
|         num_heads = [4, 4, 4, 4] | ||||
|         layers = [4, 4, 12, 4] | ||||
|         embed_dims = [self.p.embed_dim, 128, 320, 128] | ||||
|         mlp_ratios = [4, 4, 4, 4] | ||||
|         downsamples = [True, True, True, True] | ||||
|         pool_size=3 | ||||
|         act_layer=nn.GELU | ||||
| @@ -547,7 +503,6 @@ class FouriER(torch.nn.Module): | ||||
|         down_patch_size=3 | ||||
|         down_stride=2 | ||||
|         down_pad=1 | ||||
|         window_size = 4 | ||||
|         num_classes=self.p.embed_dim | ||||
|         for i in range(len(layers)): | ||||
|             stage = basic_blocks(embed_dims[i], i, layers,  | ||||
| @@ -556,9 +511,7 @@ class FouriER(torch.nn.Module): | ||||
|                                  drop_rate=drop_rate,  | ||||
|                                  drop_path_rate=drop_path_rate, | ||||
|                                  use_layer_scale=use_layer_scale,  | ||||
|                                  layer_scale_init_value=layer_scale_init_value, | ||||
|                                  num_heads=num_heads[i], input_resolution=(image_h // (2**i), image_w // (2**i)), | ||||
|                                  window_size=window_size, shift_size=0) | ||||
|                                  layer_scale_init_value=layer_scale_init_value) | ||||
|             network.append(stage) | ||||
|             if i >= len(layers) - 1: | ||||
|                 break | ||||
| @@ -570,7 +523,6 @@ class FouriER(torch.nn.Module): | ||||
|                         padding=down_pad,  | ||||
|                         in_chans=embed_dims[i], embed_dim=embed_dims[i+1] | ||||
|                         ) | ||||
|                     # PatchMerging(dim=embed_dims[i+1]) | ||||
|                     ) | ||||
|  | ||||
|         self.network = nn.ModuleList(network) | ||||
| @@ -606,6 +558,8 @@ class FouriER(torch.nn.Module): | ||||
|         z = self.forward_embeddings(y) | ||||
|         z = self.forward_tokens(z) | ||||
|         z = z.mean([-2, -1]) | ||||
|         if np.count_nonzero(np.isnan(z)) > 0: | ||||
|             print("ZZZ") | ||||
|         z = self.norm(z) | ||||
|         x = self.head(z) | ||||
|         x = self.hidden_drop(x) | ||||
| @@ -736,7 +690,7 @@ def basic_blocks(dim, index, layers, | ||||
|                  pool_size=3, mlp_ratio=4.,  | ||||
|                  act_layer=nn.GELU, norm_layer=GroupNorm,  | ||||
|                  drop_rate=.0, drop_path_rate=0.,  | ||||
|                  use_layer_scale=True, layer_scale_init_value=1e-5, num_heads = 4, input_resolution = None, window_size = 4, shift_size = 2): | ||||
|                  use_layer_scale=True, layer_scale_init_value=1e-5): | ||||
|     """ | ||||
|     generate PoolFormer blocks for a stage | ||||
|     return: PoolFormer blocks  | ||||
| @@ -751,8 +705,6 @@ def basic_blocks(dim, index, layers, | ||||
|             drop=drop_rate, drop_path=block_dpr,  | ||||
|             use_layer_scale=use_layer_scale,  | ||||
|             layer_scale_init_value=layer_scale_init_value,  | ||||
|             num_heads=num_heads, input_resolution = input_resolution, | ||||
|             window_size=window_size, shift_size=shift_size | ||||
|             )) | ||||
|     blocks = nn.Sequential(*blocks) | ||||
|  | ||||
| @@ -872,12 +824,9 @@ class WindowAttention(nn.Module): | ||||
|         attn = attn + relative_position_bias.unsqueeze(0) | ||||
|  | ||||
|         if mask is not None: | ||||
|             try: | ||||
|                 nW = mask.shape[0] | ||||
|                 attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) | ||||
|                 attn = attn.view(-1, self.num_heads, N, N) | ||||
|             except: | ||||
|                 pass | ||||
|             nW = mask.shape[0] | ||||
|             attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) | ||||
|             attn = attn.view(-1, self.num_heads, N, N) | ||||
|             attn = self.softmax(attn) | ||||
|         else: | ||||
|             attn = self.softmax(attn) | ||||
| @@ -922,6 +871,203 @@ def window_reverse(windows, window_size, H, W): | ||||
|     x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, -1, H, W) | ||||
|     return x | ||||
|  | ||||
| def cast_tuple(val, length = 1): | ||||
|     return val if isinstance(val, tuple) else ((val,) * length) | ||||
|  | ||||
| # helper classes | ||||
|  | ||||
| class ChanLayerNorm(nn.Module): | ||||
|     def __init__(self, dim, eps = 1e-5): | ||||
|         super().__init__() | ||||
|         self.eps = eps | ||||
|         self.g = nn.Parameter(torch.ones(1, dim, 1, 1)) | ||||
|         self.b = nn.Parameter(torch.zeros(1, dim, 1, 1)) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         var = torch.var(x, dim = 1, unbiased = False, keepdim = True) | ||||
|         mean = torch.mean(x, dim = 1, keepdim = True) | ||||
|         return (x - mean) / (var + self.eps).sqrt() * self.g + self.b | ||||
|  | ||||
| class OverlappingPatchEmbed(nn.Module): | ||||
|     def __init__(self, dim_in, dim_out, stride = 2): | ||||
|         super().__init__() | ||||
|         kernel_size = stride * 2 - 1 | ||||
|         padding = kernel_size // 2 | ||||
|         self.conv = nn.Conv2d(dim_in, dim_out, kernel_size, stride = stride, padding = padding) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         return self.conv(x) | ||||
|  | ||||
| class PEG(nn.Module): | ||||
|     def __init__(self, dim, kernel_size = 3): | ||||
|         super().__init__() | ||||
|         self.proj = nn.Conv2d(dim, dim, kernel_size = kernel_size, padding = kernel_size // 2, groups = dim, stride = 1) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         return self.proj(x) + x | ||||
|  | ||||
| # feedforward | ||||
|  | ||||
| class FeedForwardDSSA(nn.Module): | ||||
|     def __init__(self, dim, mult = 4, dropout = 0.): | ||||
|         super().__init__() | ||||
|         inner_dim = int(dim * mult) | ||||
|         self.net = nn.Sequential( | ||||
|             ChanLayerNorm(dim), | ||||
|             nn.Conv2d(dim, inner_dim, 1), | ||||
|             nn.GELU(), | ||||
|             nn.Dropout(dropout), | ||||
|             nn.Conv2d(inner_dim, dim, 1), | ||||
|             nn.Dropout(dropout) | ||||
|         ) | ||||
|     def forward(self, x): | ||||
|         return self.net(x) | ||||
|  | ||||
| # attention | ||||
|  | ||||
| class DSSA(nn.Module): | ||||
|     def __init__( | ||||
|         self, | ||||
|         dim, | ||||
|         heads = 8, | ||||
|         dim_head = 32, | ||||
|         dropout = 0., | ||||
|         window_size = 7 | ||||
|     ): | ||||
|         super().__init__() | ||||
|         self.heads = heads | ||||
|         self.scale = dim_head ** -0.5 | ||||
|         self.window_size = window_size | ||||
|         inner_dim = dim_head * heads | ||||
|  | ||||
|         self.norm = ChanLayerNorm(dim) | ||||
|  | ||||
|         self.attend = nn.Sequential( | ||||
|             nn.Softmax(dim = -1), | ||||
|             nn.Dropout(dropout) | ||||
|         ) | ||||
|  | ||||
|         self.to_qkv = nn.Conv1d(dim, inner_dim * 3, 1, bias = False) | ||||
|  | ||||
|         # window tokens | ||||
|  | ||||
|         self.window_tokens = nn.Parameter(torch.randn(dim)) | ||||
|  | ||||
|         # prenorm and non-linearity for window tokens | ||||
|         # then projection to queries and keys for window tokens | ||||
|  | ||||
|         self.window_tokens_to_qk = nn.Sequential( | ||||
|             nn.LayerNorm(dim_head), | ||||
|             nn.GELU(), | ||||
|             Rearrange('b h n c -> b (h c) n'), | ||||
|             nn.Conv1d(inner_dim, inner_dim * 2, 1), | ||||
|             Rearrange('b (h c) n -> b h n c', h = heads), | ||||
|         ) | ||||
|  | ||||
|         # window attention | ||||
|  | ||||
|         self.window_attend = nn.Sequential( | ||||
|             nn.Softmax(dim = -1), | ||||
|             nn.Dropout(dropout) | ||||
|         ) | ||||
|  | ||||
|         self.to_out = nn.Sequential( | ||||
|             nn.Conv2d(inner_dim, dim, 1), | ||||
|             nn.Dropout(dropout) | ||||
|         ) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         """ | ||||
|         einstein notation | ||||
|  | ||||
|         b - batch | ||||
|         c - channels | ||||
|         w1 - window size (height) | ||||
|         w2 - also window size (width) | ||||
|         i - sequence dimension (source) | ||||
|         j - sequence dimension (target dimension to be reduced) | ||||
|         h - heads | ||||
|         x - height of feature map divided by window size | ||||
|         y - width of feature map divided by window size | ||||
|         """ | ||||
|  | ||||
|         batch, height, width, heads, wsz = x.shape[0], *x.shape[-2:], self.heads, self.window_size | ||||
|         assert (height % wsz) == 0 and (width % wsz) == 0, f'height {height} and width {width} must be divisible by window size {wsz}' | ||||
|         num_windows = (height // wsz) * (width // wsz) | ||||
|  | ||||
|         x = self.norm(x) | ||||
|  | ||||
|         # fold in windows for "depthwise" attention - not sure why it is named depthwise when it is just "windowed" attention | ||||
|  | ||||
|         x = rearrange(x, 'b c (h w1) (w w2) -> (b h w) c (w1 w2)', w1 = wsz, w2 = wsz) | ||||
|  | ||||
|         # add windowing tokens | ||||
|  | ||||
|         w = repeat(self.window_tokens, 'c -> b c 1', b = x.shape[0]) | ||||
|         x = torch.cat((w, x), dim = -1) | ||||
|  | ||||
|         # project for queries, keys, value | ||||
|  | ||||
|         q, k, v = self.to_qkv(x).chunk(3, dim = 1) | ||||
|  | ||||
|         # split out heads | ||||
|  | ||||
|         q, k, v = map(lambda t: rearrange(t, 'b (h d) ... -> b h (...) d', h = heads), (q, k, v)) | ||||
|  | ||||
|         # scale | ||||
|  | ||||
|         q = q * self.scale | ||||
|  | ||||
|         # similarity | ||||
|  | ||||
|         dots = einsum('b h i d, b h j d -> b h i j', q, k) | ||||
|  | ||||
|         # attention | ||||
|  | ||||
|         attn = self.attend(dots) | ||||
|  | ||||
|         # aggregate values | ||||
|  | ||||
|         out = torch.matmul(attn, v) | ||||
|  | ||||
|         # split out windowed tokens | ||||
|  | ||||
|         window_tokens, windowed_fmaps = out[:, :, 0], out[:, :, 1:] | ||||
|  | ||||
|         # early return if there is only 1 window | ||||
|  | ||||
|         if num_windows == 1: | ||||
|             fmap = rearrange(windowed_fmaps, '(b x y) h (w1 w2) d -> b (h d) (x w1) (y w2)', x = height // wsz, y = width // wsz, w1 = wsz, w2 = wsz) | ||||
|             return self.to_out(fmap) | ||||
|  | ||||
|         # carry out the pointwise attention, the main novelty in the paper | ||||
|  | ||||
|         window_tokens = rearrange(window_tokens, '(b x y) h d -> b h (x y) d', x = height // wsz, y = width // wsz) | ||||
|         windowed_fmaps = rearrange(windowed_fmaps, '(b x y) h n d -> b h (x y) n d', x = height // wsz, y = width // wsz) | ||||
|  | ||||
|         # windowed queries and keys (preceded by prenorm activation) | ||||
|  | ||||
|         w_q, w_k = self.window_tokens_to_qk(window_tokens).chunk(2, dim = -1) | ||||
|  | ||||
|         # scale | ||||
|  | ||||
|         w_q = w_q * self.scale | ||||
|  | ||||
|         # similarities | ||||
|  | ||||
|         w_dots = einsum('b h i d, b h j d -> b h i j', w_q, w_k) | ||||
|  | ||||
|         w_attn = self.window_attend(w_dots) | ||||
|  | ||||
|         # aggregate the feature maps from the "depthwise" attention step (the most interesting part of the paper, one i haven't seen before) | ||||
|  | ||||
|         aggregated_windowed_fmap = einsum('b h i j, b h j w d -> b h i w d', w_attn, windowed_fmaps) | ||||
|  | ||||
|         # fold back the windows and then combine heads for aggregation | ||||
|  | ||||
|         fmap = rearrange(aggregated_windowed_fmap, 'b h (x y) (w1 w2) d -> b (h d) (x w1) (y w2)', x = height // wsz, y = width // wsz, w1 = wsz, w2 = wsz) | ||||
|         return self.to_out(fmap) | ||||
|  | ||||
| class PoolFormerBlock(nn.Module): | ||||
|     """ | ||||
|     Implementation of one PoolFormer block. | ||||
| @@ -938,18 +1084,22 @@ class PoolFormerBlock(nn.Module): | ||||
|     """ | ||||
|     def __init__(self, dim, pool_size=3, mlp_ratio=4.,  | ||||
|                  act_layer=nn.GELU, norm_layer=GroupNorm,  | ||||
|                  drop=0., drop_path=0., num_heads=4, | ||||
|                  use_layer_scale=True, layer_scale_init_value=1e-5, input_resolution = None, window_size = 4, shift_size = 2): | ||||
|                  drop=0., drop_path=0.,  | ||||
|                  use_layer_scale=True, layer_scale_init_value=1e-5): | ||||
|  | ||||
|         super().__init__() | ||||
|  | ||||
|         self.norm1 = norm_layer(dim) | ||||
|         #self.token_mixer = Pooling(pool_size=pool_size) | ||||
|         # self.token_mixer = FNetBlock() | ||||
|         self.window_size = window_size | ||||
|         self.shift_size = shift_size | ||||
|         self.input_resolution = input_resolution | ||||
|         self.token_mixer = WindowAttention(dim=dim, window_size=to_2tuple(self.window_size), num_heads=num_heads, attn_drop=0.2, proj_drop=0.1) | ||||
|         self.window_size = 4 | ||||
|         self.attn_heads = 4 | ||||
|         self.attn_mask = None | ||||
|         # self.token_mixer = WindowAttention(dim=dim, window_size=to_2tuple(self.window_size), num_heads=4) | ||||
|         self.token_mixer = nn.ModuleList([ | ||||
|             DSSA(dim, heads=self.attn_heads, window_size=self.window_size), | ||||
|             FeedForwardDSSA(dim) | ||||
|         ]) | ||||
|         self.norm2 = norm_layer(dim) | ||||
|         mlp_hidden_dim = int(dim * mlp_ratio) | ||||
|         self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim,  | ||||
| @@ -965,42 +1115,14 @@ class PoolFormerBlock(nn.Module): | ||||
|             self.layer_scale_2 = nn.Parameter( | ||||
|                 layer_scale_init_value * torch.ones((dim)), requires_grad=True) | ||||
|  | ||||
|         if self.shift_size > 0: | ||||
|             # calculate attention mask for SW-MSA | ||||
|             H, W = self.input_resolution | ||||
|             img_mask = torch.zeros((1, 1, H, W))  # 1 H W 1 | ||||
|             h_slices = (slice(0, -self.window_size), | ||||
|                         slice(-self.window_size, -self.shift_size), | ||||
|                         slice(-self.shift_size, None)) | ||||
|             w_slices = (slice(0, -self.window_size), | ||||
|                         slice(-self.window_size, -self.shift_size), | ||||
|                         slice(-self.shift_size, None)) | ||||
|             cnt = 0 | ||||
|             for h in h_slices: | ||||
|                 for w in w_slices: | ||||
|                     img_mask[:, :, h, w] = cnt | ||||
|                     cnt += 1 | ||||
|  | ||||
|             mask_windows = window_partition(img_mask, self.window_size)  # nW, window_size, window_size, 1 | ||||
|             mask_windows = mask_windows.view(-1, self.window_size * self.window_size) | ||||
|             attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) | ||||
|             attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) | ||||
|         else: | ||||
|             attn_mask = None | ||||
|  | ||||
|         self.register_buffer("attn_mask", attn_mask) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         B, C, H, W = x.shape | ||||
|         x_windows = window_partition(x, self.window_size) | ||||
|         x_windows = x_windows.view(-1, self.window_size * self.window_size, C) | ||||
|         attn_windows = self.token_mixer(x_windows, mask=self.attn_mask) | ||||
|         attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) | ||||
|         x_attn = window_reverse(attn_windows, self.window_size, H, W) | ||||
|         if self.shift_size > 0: | ||||
|             x = torch.roll(x_attn, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) | ||||
|         else: | ||||
|             x = x_attn | ||||
|         # x_windows = window_partition(x, self.window_size) | ||||
|         # x_windows = x_windows.view(-1, self.window_size * self.window_size, C) | ||||
|         # attn_windows = self.token_mixer(x_windows, mask=self.attn_mask) | ||||
|         # attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) | ||||
|         # x_attn = window_reverse(attn_windows, self.window_size, H, W) | ||||
|         x_attn = self.token_mixer(x) | ||||
|         if self.use_layer_scale: | ||||
|             x = x + self.drop_path( | ||||
|                 self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) | ||||
| @@ -1011,6 +1133,9 @@ class PoolFormerBlock(nn.Module): | ||||
|         else: | ||||
|             x = x + self.drop_path(x_attn) | ||||
|             x = x + self.drop_path(self.mlp(self.norm2(x))) | ||||
|  | ||||
|         if np.count_nonzero(np.isnan(x)) > 0: | ||||
|             print("PFBlock") | ||||
|         return x | ||||
| class PatchEmbed(nn.Module): | ||||
|     """ | ||||
| @@ -1096,7 +1221,7 @@ class LayerNormChannel(nn.Module): | ||||
|             + self.bias.unsqueeze(-1).unsqueeze(-1) | ||||
|         return x | ||||
|  | ||||
| class FeedForward(nn.Module): | ||||
| class FeedForwardFNet(nn.Module): | ||||
|     def __init__(self, dim, hidden_dim, dropout = 0.): | ||||
|         super().__init__() | ||||
|         self.net = nn.Sequential( | ||||
| @@ -1132,7 +1257,7 @@ class FNet(nn.Module): | ||||
|         for _ in range(depth): | ||||
|             self.layers.append(nn.ModuleList([ | ||||
|                 PreNorm(dim, FNetBlock()), | ||||
|                 PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout)) | ||||
|                 PreNorm(dim, FeedForwardFNet(dim, mlp_dim, dropout = dropout)) | ||||
|             ])) | ||||
|     def forward(self, x): | ||||
|         for attn, ff in self.layers: | ||||
|   | ||||
		Reference in New Issue
	
	Block a user