Compare commits
	
		
			1 Commits
		
	
	
		
			twinge
			...
			tourier_sp
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
| 45ce0c995b | 
| @@ -12407,233 +12407,3 @@ | |||||||
| 12406	Carry out roadside bombing[65] | 12406	Carry out roadside bombing[65] | ||||||
| 12407	Appeal for target to allow international involvement (non-mediation)[1] | 12407	Appeal for target to allow international involvement (non-mediation)[1] | ||||||
| 12408	Reject request for change in leadership[179] | 12408	Reject request for change in leadership[179] | ||||||
| 12409	Criticize or denounce |  | ||||||
| 12410	Express intent to meet or negotiate |  | ||||||
| 12411	Consult |  | ||||||
| 12412	Make an appeal or request |  | ||||||
| 12413	Abduct, hijack, or take hostage |  | ||||||
| 12414	Praise or endorse |  | ||||||
| 12415	Engage in negotiation |  | ||||||
| 12416	Use unconventional violence |  | ||||||
| 12417	Make statement |  | ||||||
| 12418	Arrest, detain, or charge with legal action |  | ||||||
| 12419	Use conventional military force |  | ||||||
| 12420	Complain officially |  | ||||||
| 12421	Impose administrative sanctions |  | ||||||
| 12422	Express intent to cooperate |  | ||||||
| 12423	Make a visit |  | ||||||
| 12424	Appeal for de-escalation of military engagement |  | ||||||
| 12425	Sign formal agreement |  | ||||||
| 12426	Attempt to assassinate |  | ||||||
| 12427	Host a visit |  | ||||||
| 12428	Increase military alert status |  | ||||||
| 12429	Impose embargo, boycott, or sanctions |  | ||||||
| 12430	Provide economic aid |  | ||||||
| 12431	Demonstrate or rally |  | ||||||
| 12432	Express intent to engage in diplomatic cooperation (such as policy support) |  | ||||||
| 12433	Appeal for intelligence |  | ||||||
| 12434	Demand |  | ||||||
| 12435	Carry out suicide bombing |  | ||||||
| 12436	Threaten |  | ||||||
| 12437	Express intent to provide material aid |  | ||||||
| 12438	Grant diplomatic recognition |  | ||||||
| 12439	Meet at a 'third' location |  | ||||||
| 12440	Accuse |  | ||||||
| 12441	Investigate |  | ||||||
| 12442	Reject |  | ||||||
| 12443	Appeal for diplomatic cooperation (such as policy support) |  | ||||||
| 12444	Engage in symbolic act |  | ||||||
| 12445	Defy norms, law |  | ||||||
| 12446	Consider policy option |  | ||||||
| 12447	Provide aid |  | ||||||
| 12448	Sexually assault |  | ||||||
| 12449	Make empathetic comment |  | ||||||
| 12450	Bring lawsuit against |  | ||||||
| 12451	Impose blockade, restrict movement |  | ||||||
| 12452	Make pessimistic comment |  | ||||||
| 12453	Protest violently, riot |  | ||||||
| 12454	Reduce or break diplomatic relations |  | ||||||
| 12455	Grant asylum |  | ||||||
| 12456	Engage in diplomatic cooperation |  | ||||||
| 12457	Make optimistic comment |  | ||||||
| 12458	Torture |  | ||||||
| 12459	Refuse to yield |  | ||||||
| 12460	Appeal for change in leadership |  | ||||||
| 12461	Cooperate militarily |  | ||||||
| 12462	Mobilize or increase armed forces |  | ||||||
| 12463	fight with small arms and light weapons |  | ||||||
| 12464	Ease administrative sanctions |  | ||||||
| 12465	Appeal for political reform |  | ||||||
| 12466	Return, release person(s) |  | ||||||
| 12467	Discuss by telephone |  | ||||||
| 12468	Demonstrate for leadership change |  | ||||||
| 12469	Impose restrictions on political freedoms |  | ||||||
| 12470	Reduce relations |  | ||||||
| 12471	Investigate crime, corruption |  | ||||||
| 12472	Engage in material cooperation |  | ||||||
| 12473	Appeal to others to meet or negotiate |  | ||||||
| 12474	Provide humanitarian aid |  | ||||||
| 12475	Use tactics of violent repression |  | ||||||
| 12476	Occupy territory |  | ||||||
| 12477	Demand humanitarian aid |  | ||||||
| 12478	Threaten non-force |  | ||||||
| 12479	Express intent to cooperate economically |  | ||||||
| 12480	Conduct suicide, car, or other non-military bombing |  | ||||||
| 12481	Demand diplomatic cooperation (such as policy support) |  | ||||||
| 12482	Demand meeting, negotiation |  | ||||||
| 12483	Deny responsibility |  | ||||||
| 12484	Express intent to change institutions, regime |  | ||||||
| 12485	Give ultimatum |  | ||||||
| 12486	Appeal for judicial cooperation |  | ||||||
| 12487	Rally support on behalf of |  | ||||||
| 12488	Obstruct passage, block |  | ||||||
| 12489	Share intelligence or information |  | ||||||
| 12490	Expel or deport individuals |  | ||||||
| 12491	Confiscate property |  | ||||||
| 12492	Accuse of aggression |  | ||||||
| 12493	Physically assault |  | ||||||
| 12494	Retreat or surrender militarily |  | ||||||
| 12495	Veto |  | ||||||
| 12496	Kill by physical assault |  | ||||||
| 12497	Assassinate |  | ||||||
| 12498	Appeal for change in institutions, regime |  | ||||||
| 12499	Forgive |  | ||||||
| 12500	Reject proposal to meet, discuss, or negotiate |  | ||||||
| 12501	Express intent to provide humanitarian aid |  | ||||||
| 12502	Appeal for release of persons or property |  | ||||||
| 12503	Acknowledge or claim responsibility |  | ||||||
| 12504	Ease economic sanctions, boycott, embargo |  | ||||||
| 12505	Express intent to cooperate militarily |  | ||||||
| 12506	Cooperate economically |  | ||||||
| 12507	Express intent to provide economic aid |  | ||||||
| 12508	Mobilize or increase police power |  | ||||||
| 12509	Employ aerial weapons |  | ||||||
| 12510	Accuse of human rights abuses |  | ||||||
| 12511	Conduct strike or boycott |  | ||||||
| 12512	Appeal for policy change |  | ||||||
| 12513	Demonstrate military or police power |  | ||||||
| 12514	Provide military aid |  | ||||||
| 12515	Reject plan, agreement to settle dispute |  | ||||||
| 12516	Yield |  | ||||||
| 12517	Appeal for easing of administrative sanctions |  | ||||||
| 12518	Mediate |  | ||||||
| 12519	Apologize |  | ||||||
| 12520	Express intent to release persons or property |  | ||||||
| 12521	Express intent to de-escalate military engagement |  | ||||||
| 12522	Accede to demands for rights |  | ||||||
| 12523	Demand economic aid |  | ||||||
| 12524	Impose state of emergency or martial law |  | ||||||
| 12525	Receive deployment of peacekeepers |  | ||||||
| 12526	Demand de-escalation of military engagement |  | ||||||
| 12527	Declare truce, ceasefire |  | ||||||
| 12528	Reduce or stop humanitarian assistance |  | ||||||
| 12529	Appeal to others to settle dispute |  | ||||||
| 12530	Reject request for military aid |  | ||||||
| 12531	Threaten with political dissent, protest |  | ||||||
| 12532	Appeal to engage in or accept mediation |  | ||||||
| 12533	Express intent to ease economic sanctions, boycott, or embargo |  | ||||||
| 12534	Coerce |  | ||||||
| 12535	fight with artillery and tanks |  | ||||||
| 12536	Express intent to cooperate on intelligence |  | ||||||
| 12537	Express intent to settle dispute |  | ||||||
| 12538	Express accord |  | ||||||
| 12539	Decline comment |  | ||||||
| 12540	Rally opposition against |  | ||||||
| 12541	Halt negotiations |  | ||||||
| 12542	Demand that target yields |  | ||||||
| 12543	Appeal for military aid |  | ||||||
| 12544	Threaten with military force |  | ||||||
| 12545	Express intent to provide military protection or peacekeeping |  | ||||||
| 12546	Threaten with sanctions, boycott, embargo |  | ||||||
| 12547	Express intent to provide military aid |  | ||||||
| 12548	Demand change in leadership |  | ||||||
| 12549	Appeal for economic aid |  | ||||||
| 12550	Refuse to de-escalate military engagement |  | ||||||
| 12551	Refuse to release persons or property |  | ||||||
| 12552	Increase police alert status |  | ||||||
| 12553	Return, release property |  | ||||||
| 12554	Ease military blockade |  | ||||||
| 12555	Appeal for material cooperation |  | ||||||
| 12556	Express intent to cooperate on judicial matters |  | ||||||
| 12557	Appeal for economic cooperation |  | ||||||
| 12558	Demand settling of dispute |  | ||||||
| 12559	Accuse of crime, corruption |  | ||||||
| 12560	Defend verbally |  | ||||||
| 12561	Provide military protection or peacekeeping |  | ||||||
| 12562	Accuse of espionage, treason |  | ||||||
| 12563	Seize or damage property |  | ||||||
| 12564	Accede to requests or demands for political reform |  | ||||||
| 12565	Appeal for easing of economic sanctions, boycott, or embargo |  | ||||||
| 12566	Threaten to reduce or stop aid |  | ||||||
| 12567	Engage in judicial cooperation |  | ||||||
| 12568	Appeal to yield |  | ||||||
| 12569	Demand military aid |  | ||||||
| 12570	Refuse to ease administrative sanctions |  | ||||||
| 12571	Demand release of persons or property |  | ||||||
| 12572	Accede to demands for change in leadership |  | ||||||
| 12573	Appeal for humanitarian aid |  | ||||||
| 12574	Threaten with repression |  | ||||||
| 12575	Demand change in institutions, regime |  | ||||||
| 12576	Demonstrate for policy change |  | ||||||
| 12577	Appeal for aid |  | ||||||
| 12578	Appeal for rights |  | ||||||
| 12579	Engage in violent protest for rights |  | ||||||
| 12580	Express intent to mediate |  | ||||||
| 12581	Expel or withdraw peacekeepers |  | ||||||
| 12582	Appeal for military protection or peacekeeping |  | ||||||
| 12583	Engage in mass killings |  | ||||||
| 12584	Accuse of war crimes |  | ||||||
| 12585	Reject military cooperation |  | ||||||
| 12586	Threaten to halt negotiations |  | ||||||
| 12587	Ban political parties or politicians |  | ||||||
| 12588	Express intent to change leadership |  | ||||||
| 12589	Demand material cooperation |  | ||||||
| 12590	Express intent to institute political reform |  | ||||||
| 12591	Demand easing of administrative sanctions |  | ||||||
| 12592	Express intent to engage in material cooperation |  | ||||||
| 12593	Reduce or stop economic assistance |  | ||||||
| 12594	Express intent to ease administrative sanctions |  | ||||||
| 12595	Demand intelligence cooperation |  | ||||||
| 12596	Ease curfew |  | ||||||
| 12597	Receive inspectors |  | ||||||
| 12598	Demand rights |  | ||||||
| 12599	Demand political reform |  | ||||||
| 12600	Demand judicial cooperation |  | ||||||
| 12601	Engage in political dissent |  | ||||||
| 12602	Detonate nuclear weapons |  | ||||||
| 12603	Violate ceasefire |  | ||||||
| 12604	Express intent to accept mediation |  | ||||||
| 12605	Refuse to ease economic sanctions, boycott, or embargo |  | ||||||
| 12606	Demand mediation |  | ||||||
| 12607	Obstruct passage to demand leadership change |  | ||||||
| 12608	Express intent to yield |  | ||||||
| 12609	Conduct hunger strike |  | ||||||
| 12610	Threaten to halt mediation |  | ||||||
| 12611	Reject judicial cooperation |  | ||||||
| 12612	Reduce or stop military assistance |  | ||||||
| 12613	Ease political dissent |  | ||||||
| 12614	Threaten to reduce or break relations |  | ||||||
| 12615	Demobilize armed forces |  | ||||||
| 12616	Use as human shield |  | ||||||
| 12617	Demand policy change |  | ||||||
| 12618	Accede to demands for change in institutions, regime |  | ||||||
| 12619	Reject economic cooperation |  | ||||||
| 12620	Reject material cooperation |  | ||||||
| 12621	Halt mediation |  | ||||||
| 12622	Accede to demands for change in policy |  | ||||||
| 12623	Investigate war crimes |  | ||||||
| 12624	Threaten with administrative sanctions |  | ||||||
| 12625	Reduce or stop material aid |  | ||||||
| 12626	Destroy property |  | ||||||
| 12627	Express intent to change policy |  | ||||||
| 12628	Use chemical, biological, or radiological weapons |  | ||||||
| 12629	Reject request for military protection or peacekeeping |  | ||||||
| 12630	Demand material aid |  | ||||||
| 12631	Engage in mass expulsion |  | ||||||
| 12632	Investigate human rights abuses |  | ||||||
| 12633	Carry out car bombing |  | ||||||
| 12634	Expel or withdraw |  | ||||||
| 12635	Ease state of emergency or martial law |  | ||||||
| 12636	Carry out roadside bombing |  | ||||||
| 12637	Appeal for target to allow international involvement (non-mediation) |  | ||||||
| 12638	Reject request for change in leadership |  | ||||||
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										504678
									
								
								data/wikidata12k/train.txt
									
									
									
									
									
								
							
							
						
						
									
										504678
									
								
								data/wikidata12k/train.txt
									
									
									
									
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							| @@ -421,27 +421,3 @@ | |||||||
| 420	P551[36-69] | 420	P551[36-69] | ||||||
| 421	P579[0-15] | 421	P579[0-15] | ||||||
| 422	P102[54-62] | 422	P102[54-62] | ||||||
| 423	P131 |  | ||||||
| 424	P1435 |  | ||||||
| 425	P39 |  | ||||||
| 426	P54 |  | ||||||
| 427	P31 |  | ||||||
| 428	P463 |  | ||||||
| 429	P512 |  | ||||||
| 430	P190 |  | ||||||
| 431	P150 |  | ||||||
| 432	P1376 |  | ||||||
| 433	P166 |  | ||||||
| 434	P2962 |  | ||||||
| 435	P108 |  | ||||||
| 436	P17 |  | ||||||
| 437	P793 |  | ||||||
| 438	P69 |  | ||||||
| 439	P26 |  | ||||||
| 440	P579 |  | ||||||
| 441	P1411 |  | ||||||
| 442	P6 |  | ||||||
| 443	P1346 |  | ||||||
| 444	P102 |  | ||||||
| 445	P27 |  | ||||||
| 446	P551 |  | ||||||
|   | |||||||
							
								
								
									
										15
									
								
								data/wikidata12k_old/about.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										15
									
								
								data/wikidata12k_old/about.txt
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,15 @@ | |||||||
|  | # triples: 291818  | ||||||
|  | # entities: 12554  | ||||||
|  | # relations: 423  | ||||||
|  | # timesteps: 70  | ||||||
|  | # test triples: 19271  | ||||||
|  | # valid triples: 20208  | ||||||
|  | # train triples: 252339  | ||||||
|  | Measure method:  N/A   | ||||||
|  | Target Size :  423   | ||||||
|  | Grow Factor:  0   | ||||||
|  | Shrink Factor:  4.0   | ||||||
|  | Epsilon Factor: 0   | ||||||
|  | Search method: N/A   | ||||||
|  | filter_dupes: inter | ||||||
|  | nonames: False | ||||||
							
								
								
									
										12554
									
								
								data/wikidata12k_old/entities.dict
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										12554
									
								
								data/wikidata12k_old/entities.dict
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										1820
									
								
								data/wikidata12k_old/indices_test.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										1820
									
								
								data/wikidata12k_old/indices_test.txt
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										13036
									
								
								data/wikidata12k_old/indices_train.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										13036
									
								
								data/wikidata12k_old/indices_train.txt
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										1796
									
								
								data/wikidata12k_old/indices_valid.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										1796
									
								
								data/wikidata12k_old/indices_valid.txt
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										12554
									
								
								data/wikidata12k_old/raw_entity2id.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										12554
									
								
								data/wikidata12k_old/raw_entity2id.txt
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										24
									
								
								data/wikidata12k_old/raw_rel2id.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										24
									
								
								data/wikidata12k_old/raw_rel2id.txt
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,24 @@ | |||||||
|  | P1376	0 | ||||||
|  | P512	4 | ||||||
|  | P579	3 | ||||||
|  | P150	18 | ||||||
|  | P190	5 | ||||||
|  | P551	19 | ||||||
|  | P131	1 | ||||||
|  | P793	21 | ||||||
|  | P1435	13 | ||||||
|  | P39	14 | ||||||
|  | P17	6 | ||||||
|  | P54	22 | ||||||
|  | P31	15 | ||||||
|  | P6	7 | ||||||
|  | P1411	20 | ||||||
|  | P2962	2 | ||||||
|  | P463	9 | ||||||
|  | P1346	16 | ||||||
|  | P108	10 | ||||||
|  | P69	23 | ||||||
|  | P166	17 | ||||||
|  | P102	11 | ||||||
|  | P27	12 | ||||||
|  | P26	8 | ||||||
							
								
								
									
										4062
									
								
								data/wikidata12k_old/raw_test.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										4062
									
								
								data/wikidata12k_old/raw_test.txt
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										423
									
								
								data/wikidata12k_old/relations.dict
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										423
									
								
								data/wikidata12k_old/relations.dict
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,423 @@ | |||||||
|  | 0	P131[0-0] | ||||||
|  | 1	P131[1-1] | ||||||
|  | 2	P131[2-2] | ||||||
|  | 3	P131[3-3] | ||||||
|  | 4	P131[4-4] | ||||||
|  | 5	P131[5-5] | ||||||
|  | 6	P131[6-6] | ||||||
|  | 7	P131[7-7] | ||||||
|  | 8	P131[8-8] | ||||||
|  | 9	P131[9-9] | ||||||
|  | 10	P131[10-10] | ||||||
|  | 11	P131[11-11] | ||||||
|  | 12	P131[12-12] | ||||||
|  | 13	P131[13-13] | ||||||
|  | 14	P131[14-14] | ||||||
|  | 15	P131[15-15] | ||||||
|  | 16	P131[16-16] | ||||||
|  | 17	P131[17-17] | ||||||
|  | 18	P131[18-18] | ||||||
|  | 19	P131[19-19] | ||||||
|  | 20	P131[20-20] | ||||||
|  | 21	P131[21-21] | ||||||
|  | 22	P131[22-22] | ||||||
|  | 23	P131[23-23] | ||||||
|  | 24	P131[24-24] | ||||||
|  | 25	P131[25-25] | ||||||
|  | 26	P131[26-26] | ||||||
|  | 27	P131[27-27] | ||||||
|  | 28	P131[28-28] | ||||||
|  | 29	P131[29-29] | ||||||
|  | 30	P131[30-30] | ||||||
|  | 31	P131[31-31] | ||||||
|  | 32	P131[32-32] | ||||||
|  | 33	P131[33-33] | ||||||
|  | 34	P131[34-34] | ||||||
|  | 35	P131[35-35] | ||||||
|  | 36	P131[36-36] | ||||||
|  | 37	P131[37-37] | ||||||
|  | 38	P131[38-38] | ||||||
|  | 39	P131[39-39] | ||||||
|  | 40	P131[40-40] | ||||||
|  | 41	P131[41-41] | ||||||
|  | 42	P131[42-42] | ||||||
|  | 43	P131[43-43] | ||||||
|  | 44	P131[44-44] | ||||||
|  | 45	P131[45-45] | ||||||
|  | 46	P131[46-46] | ||||||
|  | 47	P131[47-47] | ||||||
|  | 48	P131[48-48] | ||||||
|  | 49	P131[49-49] | ||||||
|  | 50	P131[50-50] | ||||||
|  | 51	P131[51-51] | ||||||
|  | 52	P131[52-52] | ||||||
|  | 53	P131[53-53] | ||||||
|  | 54	P131[54-54] | ||||||
|  | 55	P131[55-55] | ||||||
|  | 56	P131[56-56] | ||||||
|  | 57	P131[57-57] | ||||||
|  | 58	P131[58-58] | ||||||
|  | 59	P131[59-59] | ||||||
|  | 60	P131[60-60] | ||||||
|  | 61	P131[61-61] | ||||||
|  | 62	P131[62-62] | ||||||
|  | 63	P131[63-63] | ||||||
|  | 64	P131[64-64] | ||||||
|  | 65	P131[65-65] | ||||||
|  | 66	P131[66-66] | ||||||
|  | 67	P131[67-67] | ||||||
|  | 68	P131[68-68] | ||||||
|  | 69	P131[69-69] | ||||||
|  | 70	P1435[65-65] | ||||||
|  | 71	P39[49-49] | ||||||
|  | 72	P39[50-50] | ||||||
|  | 73	P39[51-51] | ||||||
|  | 74	P39[52-52] | ||||||
|  | 75	P39[53-53] | ||||||
|  | 76	P39[54-54] | ||||||
|  | 77	P39[55-55] | ||||||
|  | 78	P39[56-56] | ||||||
|  | 79	P39[57-57] | ||||||
|  | 80	P39[58-58] | ||||||
|  | 81	P39[59-59] | ||||||
|  | 82	P39[60-60] | ||||||
|  | 83	P39[61-61] | ||||||
|  | 84	P39[62-62] | ||||||
|  | 85	P39[63-63] | ||||||
|  | 86	P39[64-64] | ||||||
|  | 87	P39[65-65] | ||||||
|  | 88	P39[66-66] | ||||||
|  | 89	P39[67-67] | ||||||
|  | 90	P39[68-68] | ||||||
|  | 91	P39[69-69] | ||||||
|  | 92	P54[40-40] | ||||||
|  | 93	P54[41-41] | ||||||
|  | 94	P54[42-42] | ||||||
|  | 95	P54[43-43] | ||||||
|  | 96	P54[44-44] | ||||||
|  | 97	P54[45-45] | ||||||
|  | 98	P54[46-46] | ||||||
|  | 99	P54[47-47] | ||||||
|  | 100	P54[48-48] | ||||||
|  | 101	P54[49-49] | ||||||
|  | 102	P54[50-50] | ||||||
|  | 103	P54[51-51] | ||||||
|  | 104	P54[52-52] | ||||||
|  | 105	P54[53-53] | ||||||
|  | 106	P54[54-54] | ||||||
|  | 107	P54[55-55] | ||||||
|  | 108	P54[56-56] | ||||||
|  | 109	P54[57-57] | ||||||
|  | 110	P54[58-58] | ||||||
|  | 111	P54[59-59] | ||||||
|  | 112	P54[60-60] | ||||||
|  | 113	P54[61-61] | ||||||
|  | 114	P54[62-62] | ||||||
|  | 115	P54[63-63] | ||||||
|  | 116	P54[64-64] | ||||||
|  | 117	P54[65-65] | ||||||
|  | 118	P54[66-66] | ||||||
|  | 119	P54[67-67] | ||||||
|  | 120	P54[68-68] | ||||||
|  | 121	P54[69-69] | ||||||
|  | 122	P31[0-0] | ||||||
|  | 123	P31[1-1] | ||||||
|  | 124	P31[2-2] | ||||||
|  | 125	P31[3-3] | ||||||
|  | 126	P31[4-4] | ||||||
|  | 127	P31[5-5] | ||||||
|  | 128	P31[6-6] | ||||||
|  | 129	P31[7-7] | ||||||
|  | 130	P31[8-8] | ||||||
|  | 131	P31[9-9] | ||||||
|  | 132	P31[10-10] | ||||||
|  | 133	P31[11-11] | ||||||
|  | 134	P31[12-12] | ||||||
|  | 135	P31[13-13] | ||||||
|  | 136	P31[14-14] | ||||||
|  | 137	P31[15-15] | ||||||
|  | 138	P31[16-16] | ||||||
|  | 139	P31[17-17] | ||||||
|  | 140	P31[18-18] | ||||||
|  | 141	P31[19-19] | ||||||
|  | 142	P31[20-20] | ||||||
|  | 143	P31[21-21] | ||||||
|  | 144	P31[22-22] | ||||||
|  | 145	P31[23-23] | ||||||
|  | 146	P31[24-24] | ||||||
|  | 147	P31[25-25] | ||||||
|  | 148	P31[26-26] | ||||||
|  | 149	P31[27-27] | ||||||
|  | 150	P31[28-28] | ||||||
|  | 151	P31[29-29] | ||||||
|  | 152	P31[30-30] | ||||||
|  | 153	P31[31-31] | ||||||
|  | 154	P31[32-32] | ||||||
|  | 155	P31[33-33] | ||||||
|  | 156	P31[34-34] | ||||||
|  | 157	P31[35-35] | ||||||
|  | 158	P31[36-36] | ||||||
|  | 159	P31[37-37] | ||||||
|  | 160	P31[38-38] | ||||||
|  | 161	P31[39-39] | ||||||
|  | 162	P31[40-40] | ||||||
|  | 163	P31[41-41] | ||||||
|  | 164	P31[42-42] | ||||||
|  | 165	P31[43-43] | ||||||
|  | 166	P31[44-44] | ||||||
|  | 167	P31[45-45] | ||||||
|  | 168	P31[46-46] | ||||||
|  | 169	P31[47-47] | ||||||
|  | 170	P31[48-48] | ||||||
|  | 171	P31[49-49] | ||||||
|  | 172	P31[50-50] | ||||||
|  | 173	P31[51-51] | ||||||
|  | 174	P31[52-52] | ||||||
|  | 175	P31[53-53] | ||||||
|  | 176	P31[54-54] | ||||||
|  | 177	P31[55-55] | ||||||
|  | 178	P31[56-56] | ||||||
|  | 179	P31[57-57] | ||||||
|  | 180	P31[58-58] | ||||||
|  | 181	P31[59-59] | ||||||
|  | 182	P31[60-60] | ||||||
|  | 183	P31[61-61] | ||||||
|  | 184	P31[62-62] | ||||||
|  | 185	P31[63-63] | ||||||
|  | 186	P31[64-64] | ||||||
|  | 187	P31[65-65] | ||||||
|  | 188	P31[66-66] | ||||||
|  | 189	P31[67-67] | ||||||
|  | 190	P31[68-68] | ||||||
|  | 191	P31[69-69] | ||||||
|  | 192	P463[26-26] | ||||||
|  | 193	P463[27-27] | ||||||
|  | 194	P463[28-28] | ||||||
|  | 195	P463[29-29] | ||||||
|  | 196	P463[30-30] | ||||||
|  | 197	P463[31-31] | ||||||
|  | 198	P463[32-32] | ||||||
|  | 199	P463[33-33] | ||||||
|  | 200	P463[34-34] | ||||||
|  | 201	P463[35-35] | ||||||
|  | 202	P463[36-36] | ||||||
|  | 203	P463[37-37] | ||||||
|  | 204	P463[38-38] | ||||||
|  | 205	P463[39-39] | ||||||
|  | 206	P463[40-40] | ||||||
|  | 207	P463[41-41] | ||||||
|  | 208	P463[42-42] | ||||||
|  | 209	P463[43-43] | ||||||
|  | 210	P463[44-44] | ||||||
|  | 211	P463[45-45] | ||||||
|  | 212	P463[46-46] | ||||||
|  | 213	P463[47-47] | ||||||
|  | 214	P463[48-48] | ||||||
|  | 215	P463[49-49] | ||||||
|  | 216	P463[50-50] | ||||||
|  | 217	P463[51-51] | ||||||
|  | 218	P463[52-52] | ||||||
|  | 219	P463[53-53] | ||||||
|  | 220	P463[54-54] | ||||||
|  | 221	P463[55-55] | ||||||
|  | 222	P463[56-56] | ||||||
|  | 223	P463[57-57] | ||||||
|  | 224	P463[58-58] | ||||||
|  | 225	P463[59-59] | ||||||
|  | 226	P463[60-60] | ||||||
|  | 227	P463[61-61] | ||||||
|  | 228	P463[62-62] | ||||||
|  | 229	P463[63-63] | ||||||
|  | 230	P463[64-64] | ||||||
|  | 231	P463[65-65] | ||||||
|  | 232	P463[66-66] | ||||||
|  | 233	P463[67-67] | ||||||
|  | 234	P463[68-68] | ||||||
|  | 235	P463[69-69] | ||||||
|  | 236	P512[4-69] | ||||||
|  | 237	P190[0-29] | ||||||
|  | 238	P150[0-3] | ||||||
|  | 239	P1376[39-47] | ||||||
|  | 240	P463[0-7] | ||||||
|  | 241	P166[0-7] | ||||||
|  | 242	P2962[18-30] | ||||||
|  | 243	P108[29-36] | ||||||
|  | 244	P39[0-3] | ||||||
|  | 245	P17[47-48] | ||||||
|  | 246	P166[21-23] | ||||||
|  | 247	P793[46-69] | ||||||
|  | 248	P69[32-41] | ||||||
|  | 249	P17[57-58] | ||||||
|  | 250	P190[42-45] | ||||||
|  | 251	P2962[39-42] | ||||||
|  | 252	P54[0-18] | ||||||
|  | 253	P26[56-61] | ||||||
|  | 254	P150[14-17] | ||||||
|  | 255	P463[16-17] | ||||||
|  | 256	P26[39-46] | ||||||
|  | 257	P579[36-43] | ||||||
|  | 258	P579[16-23] | ||||||
|  | 259	P2962[59-60] | ||||||
|  | 260	P1411[59-61] | ||||||
|  | 261	P26[20-27] | ||||||
|  | 262	P6[4-69] | ||||||
|  | 263	P1435[33-34] | ||||||
|  | 264	P166[52-53] | ||||||
|  | 265	P108[49-57] | ||||||
|  | 266	P150[10-13] | ||||||
|  | 267	P1346[47-68] | ||||||
|  | 268	P150[18-21] | ||||||
|  | 269	P1346[13-46] | ||||||
|  | 270	P69[20-23] | ||||||
|  | 271	P39[31-32] | ||||||
|  | 272	P1411[32-37] | ||||||
|  | 273	P166[62-63] | ||||||
|  | 274	P150[44-47] | ||||||
|  | 275	P2962[61-62] | ||||||
|  | 276	P150[48-51] | ||||||
|  | 277	P150[52-55] | ||||||
|  | 278	P1411[62-67] | ||||||
|  | 279	P1435[35-36] | ||||||
|  | 280	P1411[48-51] | ||||||
|  | 281	P150[22-25] | ||||||
|  | 282	P2962[63-64] | ||||||
|  | 283	P2962[65-66] | ||||||
|  | 284	P166[58-59] | ||||||
|  | 285	P190[46-49] | ||||||
|  | 286	P54[34-35] | ||||||
|  | 287	P1435[4-16] | ||||||
|  | 288	P463[18-19] | ||||||
|  | 289	P150[31-34] | ||||||
|  | 290	P150[35-38] | ||||||
|  | 291	P39[35-36] | ||||||
|  | 292	P26[62-69] | ||||||
|  | 293	P1411[56-58] | ||||||
|  | 294	P1435[37-38] | ||||||
|  | 295	P166[60-61] | ||||||
|  | 296	P39[33-34] | ||||||
|  | 297	P102[24-31] | ||||||
|  | 298	P2962[43-46] | ||||||
|  | 299	P108[37-48] | ||||||
|  | 300	P190[50-53] | ||||||
|  | 301	P39[4-6] | ||||||
|  | 302	P1435[39-40] | ||||||
|  | 303	P793[0-45] | ||||||
|  | 304	P150[64-69] | ||||||
|  | 305	P39[19-22] | ||||||
|  | 306	P27[30-38] | ||||||
|  | 307	P2962[31-38] | ||||||
|  | 308	P1411[24-31] | ||||||
|  | 309	P102[40-45] | ||||||
|  | 310	P39[37-38] | ||||||
|  | 311	P463[8-11] | ||||||
|  | 312	P1435[41-42] | ||||||
|  | 313	P27[52-59] | ||||||
|  | 314	P69[16-19] | ||||||
|  | 315	P17[16-18] | ||||||
|  | 316	P190[54-57] | ||||||
|  | 317	P1435[43-44] | ||||||
|  | 318	P166[8-15] | ||||||
|  | 319	P166[45-47] | ||||||
|  | 320	P2962[47-50] | ||||||
|  | 321	P39[39-40] | ||||||
|  | 322	P1411[52-55] | ||||||
|  | 323	P108[58-69] | ||||||
|  | 324	P463[20-21] | ||||||
|  | 325	P39[41-42] | ||||||
|  | 326	P150[26-30] | ||||||
|  | 327	P150[39-43] | ||||||
|  | 328	P1435[45-46] | ||||||
|  | 329	P26[28-38] | ||||||
|  | 330	P54[27-30] | ||||||
|  | 331	P190[58-61] | ||||||
|  | 332	P17[59-61] | ||||||
|  | 333	P54[36-37] | ||||||
|  | 334	P166[16-20] | ||||||
|  | 335	P166[37-40] | ||||||
|  | 336	P1435[47-48] | ||||||
|  | 337	P17[0-3] | ||||||
|  | 338	P26[47-55] | ||||||
|  | 339	P1435[49-50] | ||||||
|  | 340	P1435[25-28] | ||||||
|  | 341	P150[4-9] | ||||||
|  | 342	P102[63-69] | ||||||
|  | 343	P26[0-19] | ||||||
|  | 344	P1435[17-24] | ||||||
|  | 345	P39[23-26] | ||||||
|  | 346	P1435[51-52] | ||||||
|  | 347	P39[7-11] | ||||||
|  | 348	P69[12-15] | ||||||
|  | 349	P69[24-31] | ||||||
|  | 350	P102[0-23] | ||||||
|  | 351	P39[43-44] | ||||||
|  | 352	P579[24-35] | ||||||
|  | 353	P190[62-65] | ||||||
|  | 354	P1435[53-54] | ||||||
|  | 355	P1376[0-18] | ||||||
|  | 356	P27[0-14] | ||||||
|  | 357	P463[12-15] | ||||||
|  | 358	P166[33-36] | ||||||
|  | 359	P102[32-39] | ||||||
|  | 360	P17[4-7] | ||||||
|  | 361	P190[30-41] | ||||||
|  | 362	P166[24-28] | ||||||
|  | 363	P190[66-69] | ||||||
|  | 364	P69[42-69] | ||||||
|  | 365	P1435[55-56] | ||||||
|  | 366	P54[31-33] | ||||||
|  | 367	P39[45-46] | ||||||
|  | 368	P17[12-15] | ||||||
|  | 369	P1435[57-58] | ||||||
|  | 370	P54[19-26] | ||||||
|  | 371	P2962[51-54] | ||||||
|  | 372	P2962[67-69] | ||||||
|  | 373	P1435[59-60] | ||||||
|  | 374	P579[44-56] | ||||||
|  | 375	P1435[61-62] | ||||||
|  | 376	P166[41-44] | ||||||
|  | 377	P17[19-22] | ||||||
|  | 378	P1376[19-38] | ||||||
|  | 379	P17[23-26] | ||||||
|  | 380	P1376[48-69] | ||||||
|  | 381	P463[22-23] | ||||||
|  | 382	P17[27-30] | ||||||
|  | 383	P1435[63-64] | ||||||
|  | 384	P69[0-3] | ||||||
|  | 385	P1435[66-67] | ||||||
|  | 386	P17[35-38] | ||||||
|  | 387	P69[8-11] | ||||||
|  | 388	P1435[68-69] | ||||||
|  | 389	P17[31-34] | ||||||
|  | 390	P102[46-53] | ||||||
|  | 391	P27[60-69] | ||||||
|  | 392	P579[57-69] | ||||||
|  | 393	P69[4-7] | ||||||
|  | 394	P1411[7-14] | ||||||
|  | 395	P551[0-35] | ||||||
|  | 396	P108[0-28] | ||||||
|  | 397	P17[8-11] | ||||||
|  | 398	P1411[38-47] | ||||||
|  | 399	P17[43-46] | ||||||
|  | 400	P17[49-52] | ||||||
|  | 401	P166[64-69] | ||||||
|  | 402	P1435[29-32] | ||||||
|  | 403	P54[38-39] | ||||||
|  | 404	P39[27-30] | ||||||
|  | 405	P2962[55-58] | ||||||
|  | 406	P463[24-25] | ||||||
|  | 407	P17[39-42] | ||||||
|  | 408	P17[53-56] | ||||||
|  | 409	P17[66-69] | ||||||
|  | 410	P17[62-65] | ||||||
|  | 411	P1411[15-23] | ||||||
|  | 412	P166[48-51] | ||||||
|  | 413	P27[15-29] | ||||||
|  | 414	P150[56-63] | ||||||
|  | 415	P27[39-51] | ||||||
|  | 416	P39[47-48] | ||||||
|  | 417	P166[29-32] | ||||||
|  | 418	P39[12-18] | ||||||
|  | 419	P166[54-57] | ||||||
|  | 420	P551[36-69] | ||||||
|  | 421	P579[0-15] | ||||||
|  | 422	P102[54-62] | ||||||
							
								
								
									
										19271
									
								
								data/wikidata12k_old/test.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										19271
									
								
								data/wikidata12k_old/test.txt
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										71
									
								
								data/wikidata12k_old/time_map.dict
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										71
									
								
								data/wikidata12k_old/time_map.dict
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,71 @@ | |||||||
|  | 0	19	19 | ||||||
|  | 1	20	1643 | ||||||
|  | 2	1644	1790 | ||||||
|  | 3	1791	1816 | ||||||
|  | 4	1817	1855 | ||||||
|  | 5	1856	1871 | ||||||
|  | 6	1872	1893 | ||||||
|  | 7	1894	1905 | ||||||
|  | 8	1906	1913 | ||||||
|  | 9	1914	1918 | ||||||
|  | 10	1919	1920 | ||||||
|  | 11	1921	1924 | ||||||
|  | 12	1925	1929 | ||||||
|  | 13	1930	1933 | ||||||
|  | 14	1934	1937 | ||||||
|  | 15	1938	1941 | ||||||
|  | 16	1942	1945 | ||||||
|  | 17	1946	1948 | ||||||
|  | 18	1949	1950 | ||||||
|  | 19	1951	1953 | ||||||
|  | 20	1954	1956 | ||||||
|  | 21	1957	1959 | ||||||
|  | 22	1960	1961 | ||||||
|  | 23	1962	1963 | ||||||
|  | 24	1964	1965 | ||||||
|  | 25	1966	1967 | ||||||
|  | 26	1968	1968 | ||||||
|  | 27	1969	1970 | ||||||
|  | 28	1971	1972 | ||||||
|  | 29	1973	1974 | ||||||
|  | 30	1975	1976 | ||||||
|  | 31	1977	1978 | ||||||
|  | 32	1979	1980 | ||||||
|  | 33	1981	1982 | ||||||
|  | 34	1983	1983 | ||||||
|  | 35	1984	1984 | ||||||
|  | 36	1985	1985 | ||||||
|  | 37	1986	1986 | ||||||
|  | 38	1987	1987 | ||||||
|  | 39	1988	1988 | ||||||
|  | 40	1989	1989 | ||||||
|  | 41	1990	1990 | ||||||
|  | 42	1991	1991 | ||||||
|  | 43	1992	1992 | ||||||
|  | 44	1993	1993 | ||||||
|  | 45	1994	1994 | ||||||
|  | 46	1995	1995 | ||||||
|  | 47	1996	1996 | ||||||
|  | 48	1997	1997 | ||||||
|  | 49	1998	1998 | ||||||
|  | 50	1999	1999 | ||||||
|  | 51	2000	2000 | ||||||
|  | 52	2001	2001 | ||||||
|  | 53	2002	2002 | ||||||
|  | 54	2003	2003 | ||||||
|  | 55	2004	2004 | ||||||
|  | 56	2005	2005 | ||||||
|  | 57	2006	2006 | ||||||
|  | 58	2007	2007 | ||||||
|  | 59	2008	2008 | ||||||
|  | 60	2009	2009 | ||||||
|  | 61	2010	2010 | ||||||
|  | 62	2011	2011 | ||||||
|  | 63	2012	2012 | ||||||
|  | 64	2013	2013 | ||||||
|  | 65	2014	2014 | ||||||
|  | 66	2015	2015 | ||||||
|  | 67	2016	2016 | ||||||
|  | 68	2017	2017 | ||||||
|  | 69	2018	2020 | ||||||
|  | 70	2021	2021 | ||||||
							
								
								
									
										252339
									
								
								data/wikidata12k_old/train.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										252339
									
								
								data/wikidata12k_old/train.txt
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										20208
									
								
								data/wikidata12k_old/valid.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										20208
									
								
								data/wikidata12k_old/valid.txt
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										15
									
								
								data/yago/about.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										15
									
								
								data/yago/about.txt
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,15 @@ | |||||||
|  | # triples: 78032  | ||||||
|  | # entities: 10526  | ||||||
|  | # relations: 177  | ||||||
|  | # timesteps: 46  | ||||||
|  | # test triples: 6909  | ||||||
|  | # valid triples: 7198  | ||||||
|  | # train triples: 63925  | ||||||
|  | Measure method:  N/A   | ||||||
|  | Target Size :  0   | ||||||
|  | Grow Factor:  0   | ||||||
|  | Shrink Factor:  0   | ||||||
|  | Epsilon Factor: 5.0   | ||||||
|  | Search method: N/A   | ||||||
|  | filter_dupes: inter | ||||||
|  | nonames: False | ||||||
							
								
								
									
										10526
									
								
								data/yago/entities.dict
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										10526
									
								
								data/yago/entities.dict
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										177
									
								
								data/yago/relations.dict
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										177
									
								
								data/yago/relations.dict
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,177 @@ | |||||||
|  | 0	<wasBornIn>[0-2] | ||||||
|  | 1	<wasBornIn>[2-5] | ||||||
|  | 2	<wasBornIn>[5-7] | ||||||
|  | 3	<wasBornIn>[7-10] | ||||||
|  | 4	<wasBornIn>[10-12] | ||||||
|  | 5	<wasBornIn>[12-15] | ||||||
|  | 6	<wasBornIn>[15-17] | ||||||
|  | 7	<wasBornIn>[17-20] | ||||||
|  | 8	<wasBornIn>[20-22] | ||||||
|  | 9	<wasBornIn>[22-25] | ||||||
|  | 10	<wasBornIn>[25-27] | ||||||
|  | 11	<wasBornIn>[27-30] | ||||||
|  | 12	<wasBornIn>[30-32] | ||||||
|  | 13	<wasBornIn>[32-35] | ||||||
|  | 14	<wasBornIn>[35-45] | ||||||
|  | 15	<wasBornIn>[52-52] | ||||||
|  | 16	<diedIn>[0-3] | ||||||
|  | 17	<diedIn>[3-5] | ||||||
|  | 18	<diedIn>[5-7] | ||||||
|  | 19	<diedIn>[7-10] | ||||||
|  | 20	<diedIn>[10-12] | ||||||
|  | 21	<diedIn>[12-14] | ||||||
|  | 22	<diedIn>[14-17] | ||||||
|  | 23	<diedIn>[17-19] | ||||||
|  | 24	<diedIn>[19-21] | ||||||
|  | 25	<diedIn>[21-23] | ||||||
|  | 26	<diedIn>[23-25] | ||||||
|  | 27	<diedIn>[25-27] | ||||||
|  | 28	<diedIn>[27-29] | ||||||
|  | 29	<diedIn>[29-32] | ||||||
|  | 30	<diedIn>[32-34] | ||||||
|  | 31	<diedIn>[34-36] | ||||||
|  | 32	<diedIn>[36-38] | ||||||
|  | 33	<diedIn>[38-40] | ||||||
|  | 34	<diedIn>[40-42] | ||||||
|  | 35	<diedIn>[42-44] | ||||||
|  | 36	<diedIn>[44-47] | ||||||
|  | 37	<diedIn>[47-49] | ||||||
|  | 38	<diedIn>[49-51] | ||||||
|  | 39	<diedIn>[51-53] | ||||||
|  | 40	<diedIn>[53-55] | ||||||
|  | 41	<diedIn>[55-57] | ||||||
|  | 42	<diedIn>[59-59] | ||||||
|  | 43	<worksAt>[0-3] | ||||||
|  | 44	<worksAt>[3-5] | ||||||
|  | 45	<worksAt>[5-7] | ||||||
|  | 46	<worksAt>[7-10] | ||||||
|  | 47	<worksAt>[10-12] | ||||||
|  | 48	<worksAt>[12-14] | ||||||
|  | 49	<worksAt>[14-17] | ||||||
|  | 50	<worksAt>[17-19] | ||||||
|  | 51	<worksAt>[19-21] | ||||||
|  | 52	<worksAt>[21-23] | ||||||
|  | 53	<worksAt>[23-25] | ||||||
|  | 54	<worksAt>[25-27] | ||||||
|  | 55	<worksAt>[27-29] | ||||||
|  | 56	<worksAt>[29-32] | ||||||
|  | 57	<worksAt>[32-34] | ||||||
|  | 58	<worksAt>[34-36] | ||||||
|  | 59	<worksAt>[36-40] | ||||||
|  | 60	<worksAt>[40-42] | ||||||
|  | 61	<worksAt>[42-47] | ||||||
|  | 62	<worksAt>[47-53] | ||||||
|  | 63	<worksAt>[59-59] | ||||||
|  | 64	<playsFor>[0-3] | ||||||
|  | 65	<playsFor>[3-5] | ||||||
|  | 66	<playsFor>[5-23] | ||||||
|  | 67	<playsFor>[23-25] | ||||||
|  | 68	<playsFor>[25-27] | ||||||
|  | 69	<playsFor>[27-29] | ||||||
|  | 70	<playsFor>[29-32] | ||||||
|  | 71	<playsFor>[32-34] | ||||||
|  | 72	<playsFor>[34-36] | ||||||
|  | 73	<playsFor>[36-38] | ||||||
|  | 74	<playsFor>[38-40] | ||||||
|  | 75	<playsFor>[40-42] | ||||||
|  | 76	<playsFor>[42-44] | ||||||
|  | 77	<playsFor>[44-47] | ||||||
|  | 78	<playsFor>[47-51] | ||||||
|  | 79	<playsFor>[59-59] | ||||||
|  | 80	<hasWonPrize>[1-4] | ||||||
|  | 81	<hasWonPrize>[4-6] | ||||||
|  | 82	<hasWonPrize>[6-8] | ||||||
|  | 83	<hasWonPrize>[8-11] | ||||||
|  | 84	<hasWonPrize>[11-15] | ||||||
|  | 85	<hasWonPrize>[15-18] | ||||||
|  | 86	<hasWonPrize>[18-22] | ||||||
|  | 87	<hasWonPrize>[22-26] | ||||||
|  | 88	<hasWonPrize>[26-30] | ||||||
|  | 89	<hasWonPrize>[30-33] | ||||||
|  | 90	<hasWonPrize>[33-37] | ||||||
|  | 91	<hasWonPrize>[37-47] | ||||||
|  | 92	<hasWonPrize>[47-53] | ||||||
|  | 93	<hasWonPrize>[59-59] | ||||||
|  | 94	<isMarriedTo>[0-3] | ||||||
|  | 95	<isMarriedTo>[3-5] | ||||||
|  | 96	<isMarriedTo>[5-7] | ||||||
|  | 97	<isMarriedTo>[7-10] | ||||||
|  | 98	<isMarriedTo>[10-12] | ||||||
|  | 99	<isMarriedTo>[12-14] | ||||||
|  | 100	<isMarriedTo>[14-17] | ||||||
|  | 101	<isMarriedTo>[17-19] | ||||||
|  | 102	<isMarriedTo>[19-21] | ||||||
|  | 103	<isMarriedTo>[21-23] | ||||||
|  | 104	<isMarriedTo>[23-25] | ||||||
|  | 105	<isMarriedTo>[25-27] | ||||||
|  | 106	<isMarriedTo>[27-29] | ||||||
|  | 107	<isMarriedTo>[29-32] | ||||||
|  | 108	<isMarriedTo>[32-34] | ||||||
|  | 109	<isMarriedTo>[34-38] | ||||||
|  | 110	<isMarriedTo>[38-42] | ||||||
|  | 111	<isMarriedTo>[42-47] | ||||||
|  | 112	<isMarriedTo>[47-51] | ||||||
|  | 113	<isMarriedTo>[51-55] | ||||||
|  | 114	<isMarriedTo>[59-59] | ||||||
|  | 115	<owns>[0-10] | ||||||
|  | 116	<owns>[10-17] | ||||||
|  | 117	<owns>[17-19] | ||||||
|  | 118	<owns>[19-23] | ||||||
|  | 119	<owns>[23-36] | ||||||
|  | 120	<owns>[36-38] | ||||||
|  | 121	<owns>[59-59] | ||||||
|  | 122	<graduatedFrom>[0-3] | ||||||
|  | 123	<graduatedFrom>[3-5] | ||||||
|  | 124	<graduatedFrom>[5-7] | ||||||
|  | 125	<graduatedFrom>[7-10] | ||||||
|  | 126	<graduatedFrom>[10-14] | ||||||
|  | 127	<graduatedFrom>[14-17] | ||||||
|  | 128	<graduatedFrom>[17-19] | ||||||
|  | 129	<graduatedFrom>[19-21] | ||||||
|  | 130	<graduatedFrom>[21-23] | ||||||
|  | 131	<graduatedFrom>[23-27] | ||||||
|  | 132	<graduatedFrom>[27-32] | ||||||
|  | 133	<graduatedFrom>[32-34] | ||||||
|  | 134	<graduatedFrom>[34-38] | ||||||
|  | 135	<graduatedFrom>[38-42] | ||||||
|  | 136	<graduatedFrom>[59-59] | ||||||
|  | 137	<isAffiliatedTo>[1-4] | ||||||
|  | 138	<isAffiliatedTo>[4-6] | ||||||
|  | 139	<isAffiliatedTo>[6-8] | ||||||
|  | 140	<isAffiliatedTo>[8-11] | ||||||
|  | 141	<isAffiliatedTo>[11-13] | ||||||
|  | 142	<isAffiliatedTo>[13-15] | ||||||
|  | 143	<isAffiliatedTo>[15-18] | ||||||
|  | 144	<isAffiliatedTo>[18-20] | ||||||
|  | 145	<isAffiliatedTo>[20-22] | ||||||
|  | 146	<isAffiliatedTo>[22-24] | ||||||
|  | 147	<isAffiliatedTo>[24-26] | ||||||
|  | 148	<isAffiliatedTo>[26-28] | ||||||
|  | 149	<isAffiliatedTo>[28-30] | ||||||
|  | 150	<isAffiliatedTo>[30-33] | ||||||
|  | 151	<isAffiliatedTo>[33-35] | ||||||
|  | 152	<isAffiliatedTo>[35-37] | ||||||
|  | 153	<isAffiliatedTo>[37-40] | ||||||
|  | 154	<isAffiliatedTo>[40-42] | ||||||
|  | 155	<isAffiliatedTo>[42-44] | ||||||
|  | 156	<isAffiliatedTo>[44-47] | ||||||
|  | 157	<isAffiliatedTo>[47-49] | ||||||
|  | 158	<isAffiliatedTo>[49-51] | ||||||
|  | 159	<isAffiliatedTo>[51-53] | ||||||
|  | 160	<isAffiliatedTo>[53-55] | ||||||
|  | 161	<isAffiliatedTo>[55-57] | ||||||
|  | 162	<isAffiliatedTo>[59-59] | ||||||
|  | 163	<created>[0-3] | ||||||
|  | 164	<created>[3-5] | ||||||
|  | 165	<created>[5-10] | ||||||
|  | 166	<created>[10-12] | ||||||
|  | 167	<created>[12-17] | ||||||
|  | 168	<created>[17-19] | ||||||
|  | 169	<created>[19-25] | ||||||
|  | 170	<created>[25-29] | ||||||
|  | 171	<created>[29-32] | ||||||
|  | 172	<created>[32-36] | ||||||
|  | 173	<created>[36-42] | ||||||
|  | 174	<created>[42-47] | ||||||
|  | 175	<created>[47-53] | ||||||
|  | 176	<created>[59-59] | ||||||
							
								
								
									
										6909
									
								
								data/yago/test.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										6909
									
								
								data/yago/test.txt
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										60
									
								
								data/yago/time_map.dict
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										60
									
								
								data/yago/time_map.dict
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,60 @@ | |||||||
|  | 0	-431	1782 | ||||||
|  | 1	1783	1848 | ||||||
|  | 2	1849	1870 | ||||||
|  | 3	1871	1888 | ||||||
|  | 4	1889	1899 | ||||||
|  | 5	1900	1906 | ||||||
|  | 6	1907	1912 | ||||||
|  | 7	1913	1917 | ||||||
|  | 8	1918	1922 | ||||||
|  | 9	1923	1926 | ||||||
|  | 10	1927	1930 | ||||||
|  | 11	1931	1934 | ||||||
|  | 12	1935	1938 | ||||||
|  | 13	1939	1941 | ||||||
|  | 14	1942	1944 | ||||||
|  | 15	1945	1947 | ||||||
|  | 16	1948	1950 | ||||||
|  | 17	1951	1953 | ||||||
|  | 18	1954	1956 | ||||||
|  | 19	1957	1959 | ||||||
|  | 20	1960	1962 | ||||||
|  | 21	1963	1965 | ||||||
|  | 22	1966	1967 | ||||||
|  | 23	1968	1969 | ||||||
|  | 24	1970	1971 | ||||||
|  | 25	1972	1973 | ||||||
|  | 26	1974	1975 | ||||||
|  | 27	1976	1977 | ||||||
|  | 28	1978	1979 | ||||||
|  | 29	1980	1981 | ||||||
|  | 30	1982	1983 | ||||||
|  | 31	1984	1985 | ||||||
|  | 32	1986	1987 | ||||||
|  | 33	1988	1989 | ||||||
|  | 34	1990	1991 | ||||||
|  | 35	1992	1993 | ||||||
|  | 36	1994	1994 | ||||||
|  | 37	1995	1996 | ||||||
|  | 38	1997	1997 | ||||||
|  | 39	1998	1998 | ||||||
|  | 40	1999	1999 | ||||||
|  | 41	2000	2000 | ||||||
|  | 42	2001	2001 | ||||||
|  | 43	2002	2002 | ||||||
|  | 44	2003	2003 | ||||||
|  | 45	2004	2004 | ||||||
|  | 46	2005	2005 | ||||||
|  | 47	2006	2006 | ||||||
|  | 48	2007	2007 | ||||||
|  | 49	2008	2008 | ||||||
|  | 50	2009	2009 | ||||||
|  | 51	2010	2010 | ||||||
|  | 52	2011	2011 | ||||||
|  | 53	2012	2012 | ||||||
|  | 54	2013	2013 | ||||||
|  | 55	2014	2014 | ||||||
|  | 56	2015	2015 | ||||||
|  | 57	2016	2016 | ||||||
|  | 58	2017	2017 | ||||||
|  | 59	2018	2018 | ||||||
							
								
								
									
										63925
									
								
								data/yago/train.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										63925
									
								
								data/yago/train.txt
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										7198
									
								
								data/yago/valid.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										7198
									
								
								data/yago/valid.txt
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										793
									
								
								data/yago11k/indices_test.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										793
									
								
								data/yago11k/indices_test.txt
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,793 @@ | |||||||
|  | 0 | ||||||
|  | 2 | ||||||
|  | 4 | ||||||
|  | 9 | ||||||
|  | 11 | ||||||
|  | 12 | ||||||
|  | 16 | ||||||
|  | 17 | ||||||
|  | 19 | ||||||
|  | 27 | ||||||
|  | 29 | ||||||
|  | 34 | ||||||
|  | 35 | ||||||
|  | 37 | ||||||
|  | 38 | ||||||
|  | 41 | ||||||
|  | 42 | ||||||
|  | 45 | ||||||
|  | 49 | ||||||
|  | 51 | ||||||
|  | 52 | ||||||
|  | 54 | ||||||
|  | 56 | ||||||
|  | 57 | ||||||
|  | 61 | ||||||
|  | 64 | ||||||
|  | 65 | ||||||
|  | 67 | ||||||
|  | 69 | ||||||
|  | 70 | ||||||
|  | 72 | ||||||
|  | 76 | ||||||
|  | 78 | ||||||
|  | 79 | ||||||
|  | 83 | ||||||
|  | 86 | ||||||
|  | 87 | ||||||
|  | 89 | ||||||
|  | 101 | ||||||
|  | 102 | ||||||
|  | 103 | ||||||
|  | 108 | ||||||
|  | 111 | ||||||
|  | 112 | ||||||
|  | 119 | ||||||
|  | 121 | ||||||
|  | 122 | ||||||
|  | 126 | ||||||
|  | 128 | ||||||
|  | 129 | ||||||
|  | 132 | ||||||
|  | 134 | ||||||
|  | 138 | ||||||
|  | 141 | ||||||
|  | 144 | ||||||
|  | 146 | ||||||
|  | 153 | ||||||
|  | 154 | ||||||
|  | 155 | ||||||
|  | 156 | ||||||
|  | 158 | ||||||
|  | 159 | ||||||
|  | 160 | ||||||
|  | 161 | ||||||
|  | 162 | ||||||
|  | 164 | ||||||
|  | 165 | ||||||
|  | 166 | ||||||
|  | 168 | ||||||
|  | 173 | ||||||
|  | 175 | ||||||
|  | 176 | ||||||
|  | 177 | ||||||
|  | 182 | ||||||
|  | 184 | ||||||
|  | 185 | ||||||
|  | 186 | ||||||
|  | 187 | ||||||
|  | 188 | ||||||
|  | 190 | ||||||
|  | 192 | ||||||
|  | 193 | ||||||
|  | 201 | ||||||
|  | 202 | ||||||
|  | 208 | ||||||
|  | 209 | ||||||
|  | 211 | ||||||
|  | 213 | ||||||
|  | 215 | ||||||
|  | 216 | ||||||
|  | 217 | ||||||
|  | 222 | ||||||
|  | 227 | ||||||
|  | 229 | ||||||
|  | 235 | ||||||
|  | 239 | ||||||
|  | 240 | ||||||
|  | 242 | ||||||
|  | 243 | ||||||
|  | 245 | ||||||
|  | 246 | ||||||
|  | 247 | ||||||
|  | 251 | ||||||
|  | 252 | ||||||
|  | 254 | ||||||
|  | 257 | ||||||
|  | 261 | ||||||
|  | 263 | ||||||
|  | 266 | ||||||
|  | 268 | ||||||
|  | 271 | ||||||
|  | 279 | ||||||
|  | 282 | ||||||
|  | 292 | ||||||
|  | 300 | ||||||
|  | 303 | ||||||
|  | 305 | ||||||
|  | 308 | ||||||
|  | 309 | ||||||
|  | 311 | ||||||
|  | 313 | ||||||
|  | 316 | ||||||
|  | 319 | ||||||
|  | 322 | ||||||
|  | 324 | ||||||
|  | 325 | ||||||
|  | 329 | ||||||
|  | 331 | ||||||
|  | 332 | ||||||
|  | 333 | ||||||
|  | 334 | ||||||
|  | 337 | ||||||
|  | 339 | ||||||
|  | 342 | ||||||
|  | 343 | ||||||
|  | 346 | ||||||
|  | 347 | ||||||
|  | 348 | ||||||
|  | 349 | ||||||
|  | 350 | ||||||
|  | 352 | ||||||
|  | 353 | ||||||
|  | 355 | ||||||
|  | 357 | ||||||
|  | 361 | ||||||
|  | 362 | ||||||
|  | 363 | ||||||
|  | 367 | ||||||
|  | 371 | ||||||
|  | 373 | ||||||
|  | 378 | ||||||
|  | 379 | ||||||
|  | 383 | ||||||
|  | 384 | ||||||
|  | 385 | ||||||
|  | 389 | ||||||
|  | 392 | ||||||
|  | 394 | ||||||
|  | 395 | ||||||
|  | 396 | ||||||
|  | 397 | ||||||
|  | 399 | ||||||
|  | 400 | ||||||
|  | 402 | ||||||
|  | 403 | ||||||
|  | 407 | ||||||
|  | 409 | ||||||
|  | 415 | ||||||
|  | 416 | ||||||
|  | 420 | ||||||
|  | 421 | ||||||
|  | 422 | ||||||
|  | 428 | ||||||
|  | 429 | ||||||
|  | 432 | ||||||
|  | 433 | ||||||
|  | 440 | ||||||
|  | 442 | ||||||
|  | 443 | ||||||
|  | 450 | ||||||
|  | 452 | ||||||
|  | 459 | ||||||
|  | 463 | ||||||
|  | 464 | ||||||
|  | 466 | ||||||
|  | 471 | ||||||
|  | 472 | ||||||
|  | 476 | ||||||
|  | 480 | ||||||
|  | 484 | ||||||
|  | 489 | ||||||
|  | 490 | ||||||
|  | 493 | ||||||
|  | 494 | ||||||
|  | 495 | ||||||
|  | 500 | ||||||
|  | 503 | ||||||
|  | 507 | ||||||
|  | 509 | ||||||
|  | 515 | ||||||
|  | 519 | ||||||
|  | 520 | ||||||
|  | 521 | ||||||
|  | 525 | ||||||
|  | 528 | ||||||
|  | 529 | ||||||
|  | 533 | ||||||
|  | 534 | ||||||
|  | 539 | ||||||
|  | 541 | ||||||
|  | 542 | ||||||
|  | 548 | ||||||
|  | 550 | ||||||
|  | 556 | ||||||
|  | 559 | ||||||
|  | 563 | ||||||
|  | 566 | ||||||
|  | 567 | ||||||
|  | 569 | ||||||
|  | 573 | ||||||
|  | 575 | ||||||
|  | 576 | ||||||
|  | 579 | ||||||
|  | 582 | ||||||
|  | 585 | ||||||
|  | 588 | ||||||
|  | 592 | ||||||
|  | 593 | ||||||
|  | 594 | ||||||
|  | 596 | ||||||
|  | 597 | ||||||
|  | 598 | ||||||
|  | 599 | ||||||
|  | 603 | ||||||
|  | 604 | ||||||
|  | 605 | ||||||
|  | 606 | ||||||
|  | 607 | ||||||
|  | 613 | ||||||
|  | 614 | ||||||
|  | 616 | ||||||
|  | 617 | ||||||
|  | 618 | ||||||
|  | 619 | ||||||
|  | 621 | ||||||
|  | 623 | ||||||
|  | 624 | ||||||
|  | 625 | ||||||
|  | 628 | ||||||
|  | 638 | ||||||
|  | 641 | ||||||
|  | 642 | ||||||
|  | 648 | ||||||
|  | 651 | ||||||
|  | 659 | ||||||
|  | 660 | ||||||
|  | 661 | ||||||
|  | 663 | ||||||
|  | 664 | ||||||
|  | 676 | ||||||
|  | 677 | ||||||
|  | 678 | ||||||
|  | 680 | ||||||
|  | 682 | ||||||
|  | 686 | ||||||
|  | 688 | ||||||
|  | 689 | ||||||
|  | 691 | ||||||
|  | 694 | ||||||
|  | 698 | ||||||
|  | 704 | ||||||
|  | 707 | ||||||
|  | 708 | ||||||
|  | 712 | ||||||
|  | 713 | ||||||
|  | 716 | ||||||
|  | 719 | ||||||
|  | 723 | ||||||
|  | 724 | ||||||
|  | 726 | ||||||
|  | 728 | ||||||
|  | 732 | ||||||
|  | 741 | ||||||
|  | 742 | ||||||
|  | 743 | ||||||
|  | 744 | ||||||
|  | 745 | ||||||
|  | 746 | ||||||
|  | 750 | ||||||
|  | 752 | ||||||
|  | 755 | ||||||
|  | 759 | ||||||
|  | 762 | ||||||
|  | 764 | ||||||
|  | 767 | ||||||
|  | 768 | ||||||
|  | 770 | ||||||
|  | 772 | ||||||
|  | 775 | ||||||
|  | 777 | ||||||
|  | 780 | ||||||
|  | 782 | ||||||
|  | 785 | ||||||
|  | 789 | ||||||
|  | 799 | ||||||
|  | 800 | ||||||
|  | 801 | ||||||
|  | 802 | ||||||
|  | 804 | ||||||
|  | 805 | ||||||
|  | 810 | ||||||
|  | 811 | ||||||
|  | 816 | ||||||
|  | 822 | ||||||
|  | 823 | ||||||
|  | 826 | ||||||
|  | 829 | ||||||
|  | 832 | ||||||
|  | 834 | ||||||
|  | 835 | ||||||
|  | 838 | ||||||
|  | 839 | ||||||
|  | 842 | ||||||
|  | 847 | ||||||
|  | 848 | ||||||
|  | 850 | ||||||
|  | 851 | ||||||
|  | 852 | ||||||
|  | 856 | ||||||
|  | 861 | ||||||
|  | 862 | ||||||
|  | 865 | ||||||
|  | 867 | ||||||
|  | 868 | ||||||
|  | 869 | ||||||
|  | 874 | ||||||
|  | 876 | ||||||
|  | 882 | ||||||
|  | 883 | ||||||
|  | 884 | ||||||
|  | 885 | ||||||
|  | 891 | ||||||
|  | 893 | ||||||
|  | 898 | ||||||
|  | 899 | ||||||
|  | 906 | ||||||
|  | 909 | ||||||
|  | 910 | ||||||
|  | 911 | ||||||
|  | 912 | ||||||
|  | 920 | ||||||
|  | 923 | ||||||
|  | 924 | ||||||
|  | 926 | ||||||
|  | 928 | ||||||
|  | 934 | ||||||
|  | 938 | ||||||
|  | 941 | ||||||
|  | 942 | ||||||
|  | 943 | ||||||
|  | 944 | ||||||
|  | 945 | ||||||
|  | 951 | ||||||
|  | 954 | ||||||
|  | 956 | ||||||
|  | 957 | ||||||
|  | 958 | ||||||
|  | 960 | ||||||
|  | 961 | ||||||
|  | 963 | ||||||
|  | 964 | ||||||
|  | 968 | ||||||
|  | 970 | ||||||
|  | 975 | ||||||
|  | 976 | ||||||
|  | 977 | ||||||
|  | 979 | ||||||
|  | 981 | ||||||
|  | 988 | ||||||
|  | 989 | ||||||
|  | 992 | ||||||
|  | 993 | ||||||
|  | 995 | ||||||
|  | 997 | ||||||
|  | 1005 | ||||||
|  | 1008 | ||||||
|  | 1009 | ||||||
|  | 1012 | ||||||
|  | 1013 | ||||||
|  | 1014 | ||||||
|  | 1015 | ||||||
|  | 1023 | ||||||
|  | 1029 | ||||||
|  | 1032 | ||||||
|  | 1038 | ||||||
|  | 1044 | ||||||
|  | 1045 | ||||||
|  | 1052 | ||||||
|  | 1053 | ||||||
|  | 1055 | ||||||
|  | 1057 | ||||||
|  | 1060 | ||||||
|  | 1061 | ||||||
|  | 1065 | ||||||
|  | 1066 | ||||||
|  | 1074 | ||||||
|  | 1077 | ||||||
|  | 1079 | ||||||
|  | 1080 | ||||||
|  | 1082 | ||||||
|  | 1083 | ||||||
|  | 1085 | ||||||
|  | 1086 | ||||||
|  | 1089 | ||||||
|  | 1090 | ||||||
|  | 1091 | ||||||
|  | 1095 | ||||||
|  | 1104 | ||||||
|  | 1107 | ||||||
|  | 1111 | ||||||
|  | 1114 | ||||||
|  | 1121 | ||||||
|  | 1124 | ||||||
|  | 1126 | ||||||
|  | 1127 | ||||||
|  | 1128 | ||||||
|  | 1131 | ||||||
|  | 1132 | ||||||
|  | 1139 | ||||||
|  | 1140 | ||||||
|  | 1142 | ||||||
|  | 1143 | ||||||
|  | 1145 | ||||||
|  | 1148 | ||||||
|  | 1150 | ||||||
|  | 1157 | ||||||
|  | 1163 | ||||||
|  | 1164 | ||||||
|  | 1168 | ||||||
|  | 1170 | ||||||
|  | 1171 | ||||||
|  | 1172 | ||||||
|  | 1173 | ||||||
|  | 1179 | ||||||
|  | 1182 | ||||||
|  | 1186 | ||||||
|  | 1189 | ||||||
|  | 1190 | ||||||
|  | 1191 | ||||||
|  | 1194 | ||||||
|  | 1196 | ||||||
|  | 1198 | ||||||
|  | 1201 | ||||||
|  | 1204 | ||||||
|  | 1206 | ||||||
|  | 1208 | ||||||
|  | 1217 | ||||||
|  | 1220 | ||||||
|  | 1223 | ||||||
|  | 1228 | ||||||
|  | 1231 | ||||||
|  | 1232 | ||||||
|  | 1235 | ||||||
|  | 1236 | ||||||
|  | 1237 | ||||||
|  | 1238 | ||||||
|  | 1240 | ||||||
|  | 1246 | ||||||
|  | 1247 | ||||||
|  | 1249 | ||||||
|  | 1252 | ||||||
|  | 1258 | ||||||
|  | 1260 | ||||||
|  | 1265 | ||||||
|  | 1266 | ||||||
|  | 1273 | ||||||
|  | 1274 | ||||||
|  | 1278 | ||||||
|  | 1279 | ||||||
|  | 1280 | ||||||
|  | 1284 | ||||||
|  | 1286 | ||||||
|  | 1287 | ||||||
|  | 1288 | ||||||
|  | 1289 | ||||||
|  | 1290 | ||||||
|  | 1293 | ||||||
|  | 1294 | ||||||
|  | 1295 | ||||||
|  | 1297 | ||||||
|  | 1298 | ||||||
|  | 1301 | ||||||
|  | 1303 | ||||||
|  | 1304 | ||||||
|  | 1305 | ||||||
|  | 1307 | ||||||
|  | 1308 | ||||||
|  | 1309 | ||||||
|  | 1314 | ||||||
|  | 1318 | ||||||
|  | 1319 | ||||||
|  | 1323 | ||||||
|  | 1325 | ||||||
|  | 1327 | ||||||
|  | 1328 | ||||||
|  | 1333 | ||||||
|  | 1337 | ||||||
|  | 1340 | ||||||
|  | 1341 | ||||||
|  | 1343 | ||||||
|  | 1345 | ||||||
|  | 1346 | ||||||
|  | 1347 | ||||||
|  | 1349 | ||||||
|  | 1350 | ||||||
|  | 1351 | ||||||
|  | 1358 | ||||||
|  | 1364 | ||||||
|  | 1365 | ||||||
|  | 1367 | ||||||
|  | 1368 | ||||||
|  | 1369 | ||||||
|  | 1370 | ||||||
|  | 1373 | ||||||
|  | 1375 | ||||||
|  | 1376 | ||||||
|  | 1378 | ||||||
|  | 1380 | ||||||
|  | 1381 | ||||||
|  | 1382 | ||||||
|  | 1385 | ||||||
|  | 1387 | ||||||
|  | 1390 | ||||||
|  | 1391 | ||||||
|  | 1394 | ||||||
|  | 1396 | ||||||
|  | 1397 | ||||||
|  | 1399 | ||||||
|  | 1400 | ||||||
|  | 1406 | ||||||
|  | 1409 | ||||||
|  | 1412 | ||||||
|  | 1416 | ||||||
|  | 1417 | ||||||
|  | 1418 | ||||||
|  | 1420 | ||||||
|  | 1423 | ||||||
|  | 1425 | ||||||
|  | 1428 | ||||||
|  | 1430 | ||||||
|  | 1431 | ||||||
|  | 1432 | ||||||
|  | 1437 | ||||||
|  | 1438 | ||||||
|  | 1439 | ||||||
|  | 1444 | ||||||
|  | 1447 | ||||||
|  | 1450 | ||||||
|  | 1454 | ||||||
|  | 1456 | ||||||
|  | 1457 | ||||||
|  | 1460 | ||||||
|  | 1464 | ||||||
|  | 1465 | ||||||
|  | 1469 | ||||||
|  | 1473 | ||||||
|  | 1474 | ||||||
|  | 1475 | ||||||
|  | 1477 | ||||||
|  | 1479 | ||||||
|  | 1488 | ||||||
|  | 1490 | ||||||
|  | 1493 | ||||||
|  | 1494 | ||||||
|  | 1497 | ||||||
|  | 1500 | ||||||
|  | 1502 | ||||||
|  | 1503 | ||||||
|  | 1504 | ||||||
|  | 1505 | ||||||
|  | 1507 | ||||||
|  | 1508 | ||||||
|  | 1510 | ||||||
|  | 1514 | ||||||
|  | 1515 | ||||||
|  | 1520 | ||||||
|  | 1522 | ||||||
|  | 1523 | ||||||
|  | 1526 | ||||||
|  | 1547 | ||||||
|  | 1549 | ||||||
|  | 1553 | ||||||
|  | 1556 | ||||||
|  | 1557 | ||||||
|  | 1558 | ||||||
|  | 1562 | ||||||
|  | 1563 | ||||||
|  | 1564 | ||||||
|  | 1565 | ||||||
|  | 1570 | ||||||
|  | 1571 | ||||||
|  | 1574 | ||||||
|  | 1575 | ||||||
|  | 1579 | ||||||
|  | 1591 | ||||||
|  | 1592 | ||||||
|  | 1594 | ||||||
|  | 1601 | ||||||
|  | 1604 | ||||||
|  | 1605 | ||||||
|  | 1606 | ||||||
|  | 1608 | ||||||
|  | 1609 | ||||||
|  | 1613 | ||||||
|  | 1618 | ||||||
|  | 1619 | ||||||
|  | 1620 | ||||||
|  | 1621 | ||||||
|  | 1632 | ||||||
|  | 1634 | ||||||
|  | 1635 | ||||||
|  | 1636 | ||||||
|  | 1642 | ||||||
|  | 1643 | ||||||
|  | 1648 | ||||||
|  | 1650 | ||||||
|  | 1652 | ||||||
|  | 1653 | ||||||
|  | 1660 | ||||||
|  | 1661 | ||||||
|  | 1662 | ||||||
|  | 1666 | ||||||
|  | 1669 | ||||||
|  | 1670 | ||||||
|  | 1676 | ||||||
|  | 1677 | ||||||
|  | 1682 | ||||||
|  | 1683 | ||||||
|  | 1690 | ||||||
|  | 1692 | ||||||
|  | 1693 | ||||||
|  | 1697 | ||||||
|  | 1698 | ||||||
|  | 1702 | ||||||
|  | 1703 | ||||||
|  | 1706 | ||||||
|  | 1709 | ||||||
|  | 1711 | ||||||
|  | 1713 | ||||||
|  | 1715 | ||||||
|  | 1717 | ||||||
|  | 1721 | ||||||
|  | 1724 | ||||||
|  | 1725 | ||||||
|  | 1729 | ||||||
|  | 1730 | ||||||
|  | 1733 | ||||||
|  | 1734 | ||||||
|  | 1735 | ||||||
|  | 1736 | ||||||
|  | 1741 | ||||||
|  | 1745 | ||||||
|  | 1746 | ||||||
|  | 1748 | ||||||
|  | 1749 | ||||||
|  | 1751 | ||||||
|  | 1755 | ||||||
|  | 1761 | ||||||
|  | 1763 | ||||||
|  | 1766 | ||||||
|  | 1767 | ||||||
|  | 1768 | ||||||
|  | 1769 | ||||||
|  | 1773 | ||||||
|  | 1775 | ||||||
|  | 1777 | ||||||
|  | 1778 | ||||||
|  | 1783 | ||||||
|  | 1789 | ||||||
|  | 1790 | ||||||
|  | 1792 | ||||||
|  | 1793 | ||||||
|  | 1795 | ||||||
|  | 1800 | ||||||
|  | 1803 | ||||||
|  | 1805 | ||||||
|  | 1809 | ||||||
|  | 1812 | ||||||
|  | 1815 | ||||||
|  | 1816 | ||||||
|  | 1819 | ||||||
|  | 1820 | ||||||
|  | 1822 | ||||||
|  | 1823 | ||||||
|  | 1824 | ||||||
|  | 1825 | ||||||
|  | 1828 | ||||||
|  | 1831 | ||||||
|  | 1833 | ||||||
|  | 1834 | ||||||
|  | 1835 | ||||||
|  | 1836 | ||||||
|  | 1837 | ||||||
|  | 1842 | ||||||
|  | 1848 | ||||||
|  | 1849 | ||||||
|  | 1852 | ||||||
|  | 1853 | ||||||
|  | 1854 | ||||||
|  | 1856 | ||||||
|  | 1857 | ||||||
|  | 1858 | ||||||
|  | 1859 | ||||||
|  | 1861 | ||||||
|  | 1864 | ||||||
|  | 1865 | ||||||
|  | 1869 | ||||||
|  | 1873 | ||||||
|  | 1874 | ||||||
|  | 1876 | ||||||
|  | 1877 | ||||||
|  | 1882 | ||||||
|  | 1883 | ||||||
|  | 1884 | ||||||
|  | 1885 | ||||||
|  | 1888 | ||||||
|  | 1889 | ||||||
|  | 1890 | ||||||
|  | 1892 | ||||||
|  | 1894 | ||||||
|  | 1896 | ||||||
|  | 1899 | ||||||
|  | 1902 | ||||||
|  | 1903 | ||||||
|  | 1905 | ||||||
|  | 1908 | ||||||
|  | 1910 | ||||||
|  | 1913 | ||||||
|  | 1914 | ||||||
|  | 1915 | ||||||
|  | 1920 | ||||||
|  | 1928 | ||||||
|  | 1931 | ||||||
|  | 1936 | ||||||
|  | 1938 | ||||||
|  | 1941 | ||||||
|  | 1942 | ||||||
|  | 1944 | ||||||
|  | 1946 | ||||||
|  | 1947 | ||||||
|  | 1948 | ||||||
|  | 1954 | ||||||
|  | 1956 | ||||||
|  | 1958 | ||||||
|  | 1961 | ||||||
|  | 1966 | ||||||
|  | 1968 | ||||||
|  | 1969 | ||||||
|  | 1971 | ||||||
|  | 1972 | ||||||
|  | 1977 | ||||||
|  | 1979 | ||||||
|  | 1985 | ||||||
|  | 1986 | ||||||
|  | 1987 | ||||||
|  | 1988 | ||||||
|  | 1989 | ||||||
|  | 1990 | ||||||
|  | 1999 | ||||||
|  | 2001 | ||||||
|  | 2005 | ||||||
|  | 2009 | ||||||
|  | 2010 | ||||||
|  | 2012 | ||||||
|  | 2013 | ||||||
|  | 2014 | ||||||
|  | 2015 | ||||||
|  | 2017 | ||||||
|  | 2018 | ||||||
|  | 2022 | ||||||
|  | 2023 | ||||||
|  | 2028 | ||||||
|  | 2032 | ||||||
|  | 2036 | ||||||
|  | 2037 | ||||||
|  | 2038 | ||||||
|  | 2041 | ||||||
|  | 2042 | ||||||
|  | 2043 | ||||||
|  | 2044 | ||||||
|  | 2045 | ||||||
|  | 2046 | ||||||
|  | 2048 | ||||||
							
								
								
									
										7395
									
								
								data/yago11k/indices_train.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										7395
									
								
								data/yago11k/indices_train.txt
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										809
									
								
								data/yago11k/indices_valid.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										809
									
								
								data/yago11k/indices_valid.txt
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,809 @@ | |||||||
|  | 7 | ||||||
|  | 9 | ||||||
|  | 12 | ||||||
|  | 15 | ||||||
|  | 17 | ||||||
|  | 22 | ||||||
|  | 24 | ||||||
|  | 25 | ||||||
|  | 28 | ||||||
|  | 29 | ||||||
|  | 32 | ||||||
|  | 37 | ||||||
|  | 38 | ||||||
|  | 41 | ||||||
|  | 43 | ||||||
|  | 49 | ||||||
|  | 52 | ||||||
|  | 54 | ||||||
|  | 57 | ||||||
|  | 58 | ||||||
|  | 59 | ||||||
|  | 60 | ||||||
|  | 66 | ||||||
|  | 69 | ||||||
|  | 72 | ||||||
|  | 76 | ||||||
|  | 78 | ||||||
|  | 81 | ||||||
|  | 83 | ||||||
|  | 84 | ||||||
|  | 85 | ||||||
|  | 88 | ||||||
|  | 89 | ||||||
|  | 94 | ||||||
|  | 100 | ||||||
|  | 102 | ||||||
|  | 105 | ||||||
|  | 106 | ||||||
|  | 107 | ||||||
|  | 108 | ||||||
|  | 109 | ||||||
|  | 115 | ||||||
|  | 116 | ||||||
|  | 121 | ||||||
|  | 123 | ||||||
|  | 124 | ||||||
|  | 127 | ||||||
|  | 128 | ||||||
|  | 133 | ||||||
|  | 135 | ||||||
|  | 137 | ||||||
|  | 138 | ||||||
|  | 141 | ||||||
|  | 144 | ||||||
|  | 156 | ||||||
|  | 157 | ||||||
|  | 159 | ||||||
|  | 161 | ||||||
|  | 168 | ||||||
|  | 171 | ||||||
|  | 172 | ||||||
|  | 174 | ||||||
|  | 175 | ||||||
|  | 176 | ||||||
|  | 181 | ||||||
|  | 182 | ||||||
|  | 186 | ||||||
|  | 188 | ||||||
|  | 189 | ||||||
|  | 190 | ||||||
|  | 191 | ||||||
|  | 195 | ||||||
|  | 197 | ||||||
|  | 198 | ||||||
|  | 200 | ||||||
|  | 201 | ||||||
|  | 204 | ||||||
|  | 208 | ||||||
|  | 212 | ||||||
|  | 215 | ||||||
|  | 216 | ||||||
|  | 217 | ||||||
|  | 218 | ||||||
|  | 219 | ||||||
|  | 220 | ||||||
|  | 222 | ||||||
|  | 224 | ||||||
|  | 225 | ||||||
|  | 227 | ||||||
|  | 229 | ||||||
|  | 230 | ||||||
|  | 233 | ||||||
|  | 236 | ||||||
|  | 239 | ||||||
|  | 240 | ||||||
|  | 242 | ||||||
|  | 243 | ||||||
|  | 244 | ||||||
|  | 246 | ||||||
|  | 247 | ||||||
|  | 250 | ||||||
|  | 251 | ||||||
|  | 253 | ||||||
|  | 254 | ||||||
|  | 255 | ||||||
|  | 256 | ||||||
|  | 257 | ||||||
|  | 261 | ||||||
|  | 265 | ||||||
|  | 266 | ||||||
|  | 271 | ||||||
|  | 273 | ||||||
|  | 274 | ||||||
|  | 275 | ||||||
|  | 276 | ||||||
|  | 279 | ||||||
|  | 280 | ||||||
|  | 282 | ||||||
|  | 284 | ||||||
|  | 287 | ||||||
|  | 289 | ||||||
|  | 292 | ||||||
|  | 296 | ||||||
|  | 297 | ||||||
|  | 299 | ||||||
|  | 300 | ||||||
|  | 302 | ||||||
|  | 308 | ||||||
|  | 311 | ||||||
|  | 312 | ||||||
|  | 315 | ||||||
|  | 316 | ||||||
|  | 317 | ||||||
|  | 320 | ||||||
|  | 321 | ||||||
|  | 322 | ||||||
|  | 326 | ||||||
|  | 331 | ||||||
|  | 333 | ||||||
|  | 335 | ||||||
|  | 336 | ||||||
|  | 337 | ||||||
|  | 339 | ||||||
|  | 344 | ||||||
|  | 345 | ||||||
|  | 346 | ||||||
|  | 347 | ||||||
|  | 351 | ||||||
|  | 352 | ||||||
|  | 353 | ||||||
|  | 354 | ||||||
|  | 355 | ||||||
|  | 358 | ||||||
|  | 359 | ||||||
|  | 362 | ||||||
|  | 364 | ||||||
|  | 366 | ||||||
|  | 368 | ||||||
|  | 373 | ||||||
|  | 376 | ||||||
|  | 388 | ||||||
|  | 390 | ||||||
|  | 392 | ||||||
|  | 393 | ||||||
|  | 394 | ||||||
|  | 395 | ||||||
|  | 397 | ||||||
|  | 398 | ||||||
|  | 401 | ||||||
|  | 403 | ||||||
|  | 406 | ||||||
|  | 407 | ||||||
|  | 409 | ||||||
|  | 410 | ||||||
|  | 412 | ||||||
|  | 413 | ||||||
|  | 415 | ||||||
|  | 416 | ||||||
|  | 418 | ||||||
|  | 420 | ||||||
|  | 421 | ||||||
|  | 425 | ||||||
|  | 435 | ||||||
|  | 437 | ||||||
|  | 443 | ||||||
|  | 444 | ||||||
|  | 445 | ||||||
|  | 446 | ||||||
|  | 448 | ||||||
|  | 453 | ||||||
|  | 455 | ||||||
|  | 456 | ||||||
|  | 462 | ||||||
|  | 463 | ||||||
|  | 468 | ||||||
|  | 470 | ||||||
|  | 471 | ||||||
|  | 477 | ||||||
|  | 478 | ||||||
|  | 481 | ||||||
|  | 485 | ||||||
|  | 490 | ||||||
|  | 491 | ||||||
|  | 493 | ||||||
|  | 498 | ||||||
|  | 505 | ||||||
|  | 510 | ||||||
|  | 513 | ||||||
|  | 514 | ||||||
|  | 515 | ||||||
|  | 516 | ||||||
|  | 521 | ||||||
|  | 523 | ||||||
|  | 527 | ||||||
|  | 529 | ||||||
|  | 531 | ||||||
|  | 534 | ||||||
|  | 535 | ||||||
|  | 536 | ||||||
|  | 537 | ||||||
|  | 538 | ||||||
|  | 543 | ||||||
|  | 547 | ||||||
|  | 550 | ||||||
|  | 555 | ||||||
|  | 557 | ||||||
|  | 558 | ||||||
|  | 559 | ||||||
|  | 560 | ||||||
|  | 561 | ||||||
|  | 565 | ||||||
|  | 566 | ||||||
|  | 567 | ||||||
|  | 570 | ||||||
|  | 575 | ||||||
|  | 577 | ||||||
|  | 580 | ||||||
|  | 581 | ||||||
|  | 582 | ||||||
|  | 593 | ||||||
|  | 594 | ||||||
|  | 595 | ||||||
|  | 597 | ||||||
|  | 599 | ||||||
|  | 602 | ||||||
|  | 605 | ||||||
|  | 609 | ||||||
|  | 612 | ||||||
|  | 614 | ||||||
|  | 616 | ||||||
|  | 618 | ||||||
|  | 620 | ||||||
|  | 625 | ||||||
|  | 628 | ||||||
|  | 632 | ||||||
|  | 633 | ||||||
|  | 635 | ||||||
|  | 636 | ||||||
|  | 643 | ||||||
|  | 644 | ||||||
|  | 645 | ||||||
|  | 646 | ||||||
|  | 647 | ||||||
|  | 648 | ||||||
|  | 652 | ||||||
|  | 662 | ||||||
|  | 663 | ||||||
|  | 669 | ||||||
|  | 670 | ||||||
|  | 672 | ||||||
|  | 673 | ||||||
|  | 681 | ||||||
|  | 682 | ||||||
|  | 685 | ||||||
|  | 687 | ||||||
|  | 689 | ||||||
|  | 693 | ||||||
|  | 697 | ||||||
|  | 700 | ||||||
|  | 702 | ||||||
|  | 707 | ||||||
|  | 711 | ||||||
|  | 716 | ||||||
|  | 717 | ||||||
|  | 719 | ||||||
|  | 727 | ||||||
|  | 728 | ||||||
|  | 729 | ||||||
|  | 730 | ||||||
|  | 732 | ||||||
|  | 733 | ||||||
|  | 734 | ||||||
|  | 738 | ||||||
|  | 740 | ||||||
|  | 744 | ||||||
|  | 751 | ||||||
|  | 754 | ||||||
|  | 755 | ||||||
|  | 756 | ||||||
|  | 760 | ||||||
|  | 761 | ||||||
|  | 762 | ||||||
|  | 763 | ||||||
|  | 766 | ||||||
|  | 768 | ||||||
|  | 770 | ||||||
|  | 771 | ||||||
|  | 772 | ||||||
|  | 773 | ||||||
|  | 774 | ||||||
|  | 775 | ||||||
|  | 776 | ||||||
|  | 777 | ||||||
|  | 779 | ||||||
|  | 781 | ||||||
|  | 782 | ||||||
|  | 784 | ||||||
|  | 786 | ||||||
|  | 788 | ||||||
|  | 789 | ||||||
|  | 792 | ||||||
|  | 795 | ||||||
|  | 799 | ||||||
|  | 800 | ||||||
|  | 805 | ||||||
|  | 808 | ||||||
|  | 810 | ||||||
|  | 812 | ||||||
|  | 815 | ||||||
|  | 817 | ||||||
|  | 820 | ||||||
|  | 821 | ||||||
|  | 825 | ||||||
|  | 827 | ||||||
|  | 829 | ||||||
|  | 831 | ||||||
|  | 832 | ||||||
|  | 833 | ||||||
|  | 834 | ||||||
|  | 836 | ||||||
|  | 837 | ||||||
|  | 840 | ||||||
|  | 841 | ||||||
|  | 842 | ||||||
|  | 848 | ||||||
|  | 849 | ||||||
|  | 850 | ||||||
|  | 851 | ||||||
|  | 852 | ||||||
|  | 855 | ||||||
|  | 858 | ||||||
|  | 860 | ||||||
|  | 861 | ||||||
|  | 866 | ||||||
|  | 869 | ||||||
|  | 871 | ||||||
|  | 872 | ||||||
|  | 877 | ||||||
|  | 878 | ||||||
|  | 880 | ||||||
|  | 881 | ||||||
|  | 882 | ||||||
|  | 884 | ||||||
|  | 885 | ||||||
|  | 886 | ||||||
|  | 891 | ||||||
|  | 893 | ||||||
|  | 897 | ||||||
|  | 899 | ||||||
|  | 901 | ||||||
|  | 908 | ||||||
|  | 911 | ||||||
|  | 913 | ||||||
|  | 919 | ||||||
|  | 921 | ||||||
|  | 925 | ||||||
|  | 927 | ||||||
|  | 929 | ||||||
|  | 934 | ||||||
|  | 937 | ||||||
|  | 938 | ||||||
|  | 945 | ||||||
|  | 947 | ||||||
|  | 948 | ||||||
|  | 950 | ||||||
|  | 957 | ||||||
|  | 962 | ||||||
|  | 963 | ||||||
|  | 965 | ||||||
|  | 969 | ||||||
|  | 971 | ||||||
|  | 976 | ||||||
|  | 977 | ||||||
|  | 978 | ||||||
|  | 985 | ||||||
|  | 986 | ||||||
|  | 989 | ||||||
|  | 990 | ||||||
|  | 991 | ||||||
|  | 993 | ||||||
|  | 996 | ||||||
|  | 997 | ||||||
|  | 998 | ||||||
|  | 1003 | ||||||
|  | 1005 | ||||||
|  | 1006 | ||||||
|  | 1007 | ||||||
|  | 1010 | ||||||
|  | 1011 | ||||||
|  | 1013 | ||||||
|  | 1014 | ||||||
|  | 1019 | ||||||
|  | 1022 | ||||||
|  | 1024 | ||||||
|  | 1025 | ||||||
|  | 1028 | ||||||
|  | 1031 | ||||||
|  | 1032 | ||||||
|  | 1034 | ||||||
|  | 1038 | ||||||
|  | 1040 | ||||||
|  | 1042 | ||||||
|  | 1043 | ||||||
|  | 1048 | ||||||
|  | 1049 | ||||||
|  | 1050 | ||||||
|  | 1051 | ||||||
|  | 1056 | ||||||
|  | 1057 | ||||||
|  | 1059 | ||||||
|  | 1062 | ||||||
|  | 1063 | ||||||
|  | 1065 | ||||||
|  | 1066 | ||||||
|  | 1071 | ||||||
|  | 1072 | ||||||
|  | 1074 | ||||||
|  | 1075 | ||||||
|  | 1076 | ||||||
|  | 1080 | ||||||
|  | 1081 | ||||||
|  | 1082 | ||||||
|  | 1085 | ||||||
|  | 1086 | ||||||
|  | 1087 | ||||||
|  | 1090 | ||||||
|  | 1095 | ||||||
|  | 1096 | ||||||
|  | 1098 | ||||||
|  | 1099 | ||||||
|  | 1101 | ||||||
|  | 1105 | ||||||
|  | 1108 | ||||||
|  | 1109 | ||||||
|  | 1110 | ||||||
|  | 1112 | ||||||
|  | 1117 | ||||||
|  | 1119 | ||||||
|  | 1121 | ||||||
|  | 1122 | ||||||
|  | 1123 | ||||||
|  | 1125 | ||||||
|  | 1129 | ||||||
|  | 1133 | ||||||
|  | 1139 | ||||||
|  | 1143 | ||||||
|  | 1145 | ||||||
|  | 1147 | ||||||
|  | 1151 | ||||||
|  | 1153 | ||||||
|  | 1154 | ||||||
|  | 1158 | ||||||
|  | 1159 | ||||||
|  | 1162 | ||||||
|  | 1165 | ||||||
|  | 1167 | ||||||
|  | 1169 | ||||||
|  | 1171 | ||||||
|  | 1175 | ||||||
|  | 1177 | ||||||
|  | 1178 | ||||||
|  | 1180 | ||||||
|  | 1181 | ||||||
|  | 1182 | ||||||
|  | 1185 | ||||||
|  | 1187 | ||||||
|  | 1188 | ||||||
|  | 1193 | ||||||
|  | 1197 | ||||||
|  | 1199 | ||||||
|  | 1217 | ||||||
|  | 1218 | ||||||
|  | 1220 | ||||||
|  | 1221 | ||||||
|  | 1225 | ||||||
|  | 1227 | ||||||
|  | 1230 | ||||||
|  | 1232 | ||||||
|  | 1233 | ||||||
|  | 1235 | ||||||
|  | 1236 | ||||||
|  | 1237 | ||||||
|  | 1238 | ||||||
|  | 1239 | ||||||
|  | 1244 | ||||||
|  | 1246 | ||||||
|  | 1247 | ||||||
|  | 1248 | ||||||
|  | 1262 | ||||||
|  | 1263 | ||||||
|  | 1264 | ||||||
|  | 1266 | ||||||
|  | 1267 | ||||||
|  | 1269 | ||||||
|  | 1271 | ||||||
|  | 1272 | ||||||
|  | 1273 | ||||||
|  | 1276 | ||||||
|  | 1277 | ||||||
|  | 1278 | ||||||
|  | 1280 | ||||||
|  | 1284 | ||||||
|  | 1291 | ||||||
|  | 1292 | ||||||
|  | 1293 | ||||||
|  | 1295 | ||||||
|  | 1296 | ||||||
|  | 1297 | ||||||
|  | 1299 | ||||||
|  | 1300 | ||||||
|  | 1301 | ||||||
|  | 1305 | ||||||
|  | 1307 | ||||||
|  | 1309 | ||||||
|  | 1312 | ||||||
|  | 1322 | ||||||
|  | 1325 | ||||||
|  | 1330 | ||||||
|  | 1334 | ||||||
|  | 1335 | ||||||
|  | 1337 | ||||||
|  | 1338 | ||||||
|  | 1340 | ||||||
|  | 1342 | ||||||
|  | 1346 | ||||||
|  | 1347 | ||||||
|  | 1350 | ||||||
|  | 1351 | ||||||
|  | 1356 | ||||||
|  | 1357 | ||||||
|  | 1358 | ||||||
|  | 1359 | ||||||
|  | 1366 | ||||||
|  | 1368 | ||||||
|  | 1370 | ||||||
|  | 1371 | ||||||
|  | 1373 | ||||||
|  | 1376 | ||||||
|  | 1379 | ||||||
|  | 1382 | ||||||
|  | 1383 | ||||||
|  | 1384 | ||||||
|  | 1385 | ||||||
|  | 1386 | ||||||
|  | 1387 | ||||||
|  | 1389 | ||||||
|  | 1393 | ||||||
|  | 1394 | ||||||
|  | 1398 | ||||||
|  | 1403 | ||||||
|  | 1404 | ||||||
|  | 1409 | ||||||
|  | 1411 | ||||||
|  | 1413 | ||||||
|  | 1415 | ||||||
|  | 1420 | ||||||
|  | 1421 | ||||||
|  | 1423 | ||||||
|  | 1426 | ||||||
|  | 1429 | ||||||
|  | 1431 | ||||||
|  | 1433 | ||||||
|  | 1434 | ||||||
|  | 1439 | ||||||
|  | 1444 | ||||||
|  | 1446 | ||||||
|  | 1447 | ||||||
|  | 1456 | ||||||
|  | 1457 | ||||||
|  | 1461 | ||||||
|  | 1467 | ||||||
|  | 1469 | ||||||
|  | 1472 | ||||||
|  | 1477 | ||||||
|  | 1481 | ||||||
|  | 1493 | ||||||
|  | 1494 | ||||||
|  | 1496 | ||||||
|  | 1498 | ||||||
|  | 1499 | ||||||
|  | 1501 | ||||||
|  | 1503 | ||||||
|  | 1506 | ||||||
|  | 1507 | ||||||
|  | 1508 | ||||||
|  | 1510 | ||||||
|  | 1511 | ||||||
|  | 1512 | ||||||
|  | 1516 | ||||||
|  | 1521 | ||||||
|  | 1523 | ||||||
|  | 1527 | ||||||
|  | 1528 | ||||||
|  | 1529 | ||||||
|  | 1530 | ||||||
|  | 1535 | ||||||
|  | 1537 | ||||||
|  | 1540 | ||||||
|  | 1541 | ||||||
|  | 1542 | ||||||
|  | 1546 | ||||||
|  | 1552 | ||||||
|  | 1559 | ||||||
|  | 1562 | ||||||
|  | 1563 | ||||||
|  | 1564 | ||||||
|  | 1567 | ||||||
|  | 1572 | ||||||
|  | 1574 | ||||||
|  | 1577 | ||||||
|  | 1581 | ||||||
|  | 1587 | ||||||
|  | 1589 | ||||||
|  | 1594 | ||||||
|  | 1601 | ||||||
|  | 1603 | ||||||
|  | 1613 | ||||||
|  | 1614 | ||||||
|  | 1616 | ||||||
|  | 1617 | ||||||
|  | 1618 | ||||||
|  | 1619 | ||||||
|  | 1620 | ||||||
|  | 1621 | ||||||
|  | 1623 | ||||||
|  | 1624 | ||||||
|  | 1625 | ||||||
|  | 1626 | ||||||
|  | 1631 | ||||||
|  | 1632 | ||||||
|  | 1634 | ||||||
|  | 1635 | ||||||
|  | 1636 | ||||||
|  | 1638 | ||||||
|  | 1640 | ||||||
|  | 1642 | ||||||
|  | 1643 | ||||||
|  | 1645 | ||||||
|  | 1647 | ||||||
|  | 1648 | ||||||
|  | 1650 | ||||||
|  | 1651 | ||||||
|  | 1652 | ||||||
|  | 1655 | ||||||
|  | 1656 | ||||||
|  | 1658 | ||||||
|  | 1661 | ||||||
|  | 1662 | ||||||
|  | 1663 | ||||||
|  | 1665 | ||||||
|  | 1666 | ||||||
|  | 1667 | ||||||
|  | 1668 | ||||||
|  | 1669 | ||||||
|  | 1674 | ||||||
|  | 1675 | ||||||
|  | 1685 | ||||||
|  | 1686 | ||||||
|  | 1695 | ||||||
|  | 1697 | ||||||
|  | 1698 | ||||||
|  | 1699 | ||||||
|  | 1706 | ||||||
|  | 1713 | ||||||
|  | 1716 | ||||||
|  | 1717 | ||||||
|  | 1718 | ||||||
|  | 1723 | ||||||
|  | 1724 | ||||||
|  | 1725 | ||||||
|  | 1729 | ||||||
|  | 1730 | ||||||
|  | 1731 | ||||||
|  | 1732 | ||||||
|  | 1733 | ||||||
|  | 1734 | ||||||
|  | 1738 | ||||||
|  | 1741 | ||||||
|  | 1744 | ||||||
|  | 1749 | ||||||
|  | 1761 | ||||||
|  | 1762 | ||||||
|  | 1769 | ||||||
|  | 1772 | ||||||
|  | 1774 | ||||||
|  | 1776 | ||||||
|  | 1777 | ||||||
|  | 1781 | ||||||
|  | 1784 | ||||||
|  | 1787 | ||||||
|  | 1789 | ||||||
|  | 1790 | ||||||
|  | 1791 | ||||||
|  | 1798 | ||||||
|  | 1804 | ||||||
|  | 1805 | ||||||
|  | 1807 | ||||||
|  | 1808 | ||||||
|  | 1811 | ||||||
|  | 1812 | ||||||
|  | 1816 | ||||||
|  | 1821 | ||||||
|  | 1824 | ||||||
|  | 1827 | ||||||
|  | 1831 | ||||||
|  | 1834 | ||||||
|  | 1835 | ||||||
|  | 1836 | ||||||
|  | 1842 | ||||||
|  | 1847 | ||||||
|  | 1852 | ||||||
|  | 1855 | ||||||
|  | 1856 | ||||||
|  | 1859 | ||||||
|  | 1861 | ||||||
|  | 1862 | ||||||
|  | 1865 | ||||||
|  | 1866 | ||||||
|  | 1871 | ||||||
|  | 1872 | ||||||
|  | 1874 | ||||||
|  | 1876 | ||||||
|  | 1877 | ||||||
|  | 1878 | ||||||
|  | 1879 | ||||||
|  | 1880 | ||||||
|  | 1881 | ||||||
|  | 1885 | ||||||
|  | 1887 | ||||||
|  | 1888 | ||||||
|  | 1889 | ||||||
|  | 1891 | ||||||
|  | 1892 | ||||||
|  | 1894 | ||||||
|  | 1895 | ||||||
|  | 1899 | ||||||
|  | 1900 | ||||||
|  | 1907 | ||||||
|  | 1911 | ||||||
|  | 1913 | ||||||
|  | 1914 | ||||||
|  | 1915 | ||||||
|  | 1917 | ||||||
|  | 1919 | ||||||
|  | 1920 | ||||||
|  | 1923 | ||||||
|  | 1924 | ||||||
|  | 1925 | ||||||
|  | 1927 | ||||||
|  | 1934 | ||||||
|  | 1939 | ||||||
|  | 1940 | ||||||
|  | 1941 | ||||||
|  | 1948 | ||||||
|  | 1951 | ||||||
|  | 1953 | ||||||
|  | 1957 | ||||||
|  | 1958 | ||||||
|  | 1959 | ||||||
|  | 1961 | ||||||
|  | 1962 | ||||||
|  | 1965 | ||||||
|  | 1966 | ||||||
|  | 1967 | ||||||
|  | 1971 | ||||||
|  | 1973 | ||||||
|  | 1975 | ||||||
|  | 1979 | ||||||
|  | 1981 | ||||||
|  | 1983 | ||||||
|  | 1989 | ||||||
|  | 1996 | ||||||
|  | 1997 | ||||||
|  | 2000 | ||||||
|  | 2004 | ||||||
|  | 2007 | ||||||
|  | 2009 | ||||||
|  | 2011 | ||||||
|  | 2012 | ||||||
|  | 2016 | ||||||
|  | 2017 | ||||||
|  | 2019 | ||||||
|  | 2021 | ||||||
|  | 2024 | ||||||
|  | 2029 | ||||||
|  | 2040 | ||||||
|  | 2042 | ||||||
|  | 2044 | ||||||
|  | 2048 | ||||||
| @@ -1,3 +0,0 @@ | |||||||
| nohup: ignoring input |  | ||||||
| 2023-06-20 09:22:51,618 - [INFO] - {'dataset': 'icews14_both', 'name': 'icews14_both', 'gpu': '2', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': False} |  | ||||||
| 2023-06-20 09:22:57,979 - [INFO] - [E:0| 0]: Train Loss:0.70005,  Val MRR:0.0, 	icews14_both |  | ||||||
							
								
								
									
										14945
									
								
								log/ice00001
									
									
									
									
									
								
							
							
						
						
									
										14945
									
								
								log/ice00001
									
									
									
									
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										4904
									
								
								log/ice0003
									
									
									
									
									
								
							
							
						
						
									
										4904
									
								
								log/ice0003
									
									
									
									
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										6607
									
								
								log/ice0003_2
									
									
									
									
									
								
							
							
						
						
									
										6607
									
								
								log/ice0003_2
									
									
									
									
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										6205
									
								
								log/ice001
									
									
									
									
									
								
							
							
						
						
									
										6205
									
								
								log/ice001
									
									
									
									
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										9541
									
								
								log/ice14ws_128
									
									
									
									
									
								
							
							
						
						
									
										9541
									
								
								log/ice14ws_128
									
									
									
									
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										4154
									
								
								log/iceboth
									
									
									
									
									
								
							
							
						
						
									
										4154
									
								
								log/iceboth
									
									
									
									
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										9482
									
								
								log/icews14
									
									
									
									
									
								
							
							
						
						
									
										9482
									
								
								log/icews14
									
									
									
									
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							| @@ -1 +0,0 @@ | |||||||
| 2023-05-13 03:52:44,141 - icews14_128 - [INFO] - {'dataset': 'icews14', 'name': 'icews14_128', 'gpu': '0', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': True, 'filtered': False} |  | ||||||
							
								
								
									
										10670
									
								
								log/icews14_both
									
									
									
									
									
								
							
							
						
						
									
										10670
									
								
								log/icews14_both
									
									
									
									
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							| @@ -1,2 +0,0 @@ | |||||||
| nohup: ignoring input |  | ||||||
| python: can't open file 'run.py': [Errno 2] No such file or directory |  | ||||||
| @@ -1 +0,0 @@ | |||||||
| 2023-05-17 06:54:57,988 - testrun_227cb2f9 - [INFO] - {'dataset': 'icews14', 'name': 'testrun_227cb2f9', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True} |  | ||||||
| @@ -1 +0,0 @@ | |||||||
| 2023-05-17 06:23:34,181 - testrun_30d70322 - [INFO] - {'dataset': 'icews14', 'name': 'testrun_30d70322', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True} |  | ||||||
| @@ -1 +0,0 @@ | |||||||
| 2023-05-17 06:53:01,668 - testrun_3212b281 - [INFO] - {'dataset': 'icews14', 'name': 'testrun_3212b281', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True} |  | ||||||
| @@ -1 +0,0 @@ | |||||||
| 2023-05-06 08:35:38,753 - testrun_3dbc9e89 - [INFO] - {'dataset': 'wikidata12k', 'name': 'testrun_3dbc9e89', 'gpu': '0', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False} |  | ||||||
| @@ -1 +0,0 @@ | |||||||
| 2023-05-17 06:38:00,469 - testrun_43389ddf - [INFO] - {'dataset': 'icews14', 'name': 'testrun_43389ddf', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True} |  | ||||||
| @@ -1 +0,0 @@ | |||||||
| 2023-05-17 06:13:02,952 - testrun_47ede3b9 - [INFO] - {'dataset': 'FB15k-237', 'name': 'testrun_47ede3b9', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True} |  | ||||||
| @@ -1 +0,0 @@ | |||||||
| 2023-05-06 08:37:18,939 - testrun_49495af8 - [INFO] - {'dataset': 'wikidata12k', 'name': 'testrun_49495af8', 'gpu': '3', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False} |  | ||||||
							
								
								
									
										7877
									
								
								log/testrun_4a235016
									
									
									
									
									
								
							
							
						
						
									
										7877
									
								
								log/testrun_4a235016
									
									
									
									
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							| @@ -1 +0,0 @@ | |||||||
| 2023-05-06 08:35:13,356 - testrun_4f5d8391 - [INFO] - {'dataset': 'wikidata12k', 'name': 'testrun_4f5d8391', 'gpu': '0', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False} |  | ||||||
| @@ -1 +0,0 @@ | |||||||
| 2023-05-06 08:34:55,992 - testrun_540f6a03 - [INFO] - {'dataset': 'wikidata12k', 'name': 'testrun_540f6a03', 'gpu': '0', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False} |  | ||||||
| @@ -1 +0,0 @@ | |||||||
| 2023-05-17 07:04:56,051 - testrun_5a901712 - [INFO] - {'dataset': 'icews14', 'name': 'testrun_5a901712', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True} |  | ||||||
| @@ -1,44 +0,0 @@ | |||||||
| 2023-05-17 06:48:57,396 - testrun_5cafe61a - [INFO] - {'dataset': 'icews14', 'name': 'testrun_5cafe61a', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True} |  | ||||||
| 2023-05-17 06:49:44,802 - concurrent.futures - [ERROR] - exception calling callback for <Future at 0x7efb51b74160 state=finished raised BrokenProcessPool> |  | ||||||
| joblib.externals.loky.process_executor._RemoteTraceback:  |  | ||||||
| """ |  | ||||||
| Traceback (most recent call last): |  | ||||||
|   File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/joblib/externals/loky/process_executor.py", line 391, in _process_worker |  | ||||||
|     call_item = call_queue.get(block=True, timeout=timeout) |  | ||||||
|   File "/opt/conda/envs/kgs2s/lib/python3.8/multiprocessing/queues.py", line 116, in get |  | ||||||
|     return _ForkingPickler.loads(res) |  | ||||||
|   File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/torch/storage.py", line 222, in _load_from_bytes |  | ||||||
|     return torch.load(io.BytesIO(b)) |  | ||||||
|   File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/torch/serialization.py", line 713, in load |  | ||||||
|     return _legacy_load(opened_file, map_location, pickle_module, **pickle_load_args) |  | ||||||
|   File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/torch/serialization.py", line 930, in _legacy_load |  | ||||||
|     result = unpickler.load() |  | ||||||
|   File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/torch/serialization.py", line 876, in persistent_load |  | ||||||
|     wrap_storage=restore_location(obj, location), |  | ||||||
|   File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/torch/serialization.py", line 175, in default_restore_location |  | ||||||
|     result = fn(storage, location) |  | ||||||
|   File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/torch/serialization.py", line 155, in _cuda_deserialize |  | ||||||
|     return torch._UntypedStorage(obj.nbytes(), device=torch.device(location)) |  | ||||||
| RuntimeError: CUDA out of memory. Tried to allocate 678.00 MiB (GPU 0; 31.72 GiB total capacity; 0 bytes already allocated; 593.94 MiB free; 0 bytes reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF |  | ||||||
| """ |  | ||||||
|  |  | ||||||
| The above exception was the direct cause of the following exception: |  | ||||||
|  |  | ||||||
| Traceback (most recent call last): |  | ||||||
|   File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/joblib/externals/loky/_base.py", line 26, in _invoke_callbacks |  | ||||||
|     callback(self) |  | ||||||
|   File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/joblib/parallel.py", line 385, in __call__ |  | ||||||
|     self.parallel.dispatch_next() |  | ||||||
|   File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/joblib/parallel.py", line 834, in dispatch_next |  | ||||||
|     if not self.dispatch_one_batch(self._original_iterator): |  | ||||||
|   File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/joblib/parallel.py", line 901, in dispatch_one_batch |  | ||||||
|     self._dispatch(tasks) |  | ||||||
|   File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/joblib/parallel.py", line 819, in _dispatch |  | ||||||
|     job = self._backend.apply_async(batch, callback=cb) |  | ||||||
|   File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/joblib/_parallel_backends.py", line 556, in apply_async |  | ||||||
|     future = self._workers.submit(SafeFunction(func)) |  | ||||||
|   File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/joblib/externals/loky/reusable_executor.py", line 176, in submit |  | ||||||
|     return super().submit(fn, *args, **kwargs) |  | ||||||
|   File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/joblib/externals/loky/process_executor.py", line 1129, in submit |  | ||||||
|     raise self._flags.broken |  | ||||||
| joblib.externals.loky.process_executor.BrokenProcessPool: A task has failed to un-serialize. Please ensure that the arguments of the function are all picklable. |  | ||||||
| @@ -1 +0,0 @@ | |||||||
| 2023-05-06 08:34:33,652 - testrun_6fd94d59 - [INFO] - {'dataset': 'wikidata12k', 'name': 'testrun_6fd94d59', 'gpu': '3', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False} |  | ||||||
| @@ -1 +0,0 @@ | |||||||
| 2023-05-17 06:56:35,124 - testrun_7c096a18 - [INFO] - {'dataset': 'icews14', 'name': 'testrun_7c096a18', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True} |  | ||||||
| @@ -1 +0,0 @@ | |||||||
| 2023-05-17 07:13:14,777 - testrun_7fb885ee - [INFO] - {'dataset': 'icews14', 'name': 'testrun_7fb885ee', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True} |  | ||||||
| @@ -1 +0,0 @@ | |||||||
| 2023-05-17 06:59:35,220 - testrun_8f32040f - [INFO] - {'dataset': 'icews14', 'name': 'testrun_8f32040f', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True} |  | ||||||
| @@ -1 +0,0 @@ | |||||||
| 2023-05-17 06:16:45,427 - testrun_958ef154 - [INFO] - {'dataset': 'icews14', 'name': 'testrun_958ef154', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True} |  | ||||||
| @@ -1,2 +0,0 @@ | |||||||
| 2023-05-06 08:36:46,668 - testrun_9acdfb58 - [INFO] - {'dataset': 'wikidata12k', 'name': 'testrun_9acdfb58', 'gpu': '3', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False} |  | ||||||
| 2023-05-06 08:36:57,409 - testrun_9acdfb58 - [INFO] - [E:0| 0]: Train Loss:0.69813,  Val MRR:0.0, 	testrun_9acdfb58 |  | ||||||
| @@ -1 +0,0 @@ | |||||||
| 2023-05-17 06:36:14,606 - testrun_a051cf32 - [INFO] - {'dataset': 'icews14', 'name': 'testrun_a051cf32', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True} |  | ||||||
| @@ -1 +0,0 @@ | |||||||
| 2023-05-17 06:13:16,274 - testrun_a06d39d0 - [INFO] - {'dataset': 'icews14', 'name': 'testrun_a06d39d0', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True} |  | ||||||
| @@ -1 +0,0 @@ | |||||||
| 2023-05-17 06:41:20,654 - testrun_aca2b734 - [INFO] - {'dataset': 'icews14', 'name': 'testrun_aca2b734', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True} |  | ||||||
| @@ -1 +0,0 @@ | |||||||
| 2023-05-17 06:45:54,332 - testrun_ad7a0edb - [INFO] - {'dataset': 'icews14', 'name': 'testrun_ad7a0edb', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True} |  | ||||||
							
								
								
									
										7958
									
								
								log/testrun_ae6f81ee
									
									
									
									
									
								
							
							
						
						
									
										7958
									
								
								log/testrun_ae6f81ee
									
									
									
									
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							| @@ -1 +0,0 @@ | |||||||
| 2023-05-30 17:54:20,857 - testrun_b381870f - [INFO] - {'dataset': 'wikidata12k', 'name': 'testrun_b381870f', 'gpu': '0', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0003, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': False} |  | ||||||
| @@ -1,2 +0,0 @@ | |||||||
| 2023-05-30 17:56:25,430 - testrun_b396dcde - [INFO] - {'dataset': 'wikidata12k', 'name': 'testrun_b396dcde', 'gpu': '0', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0003, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': False} |  | ||||||
| 2023-05-30 17:57:00,673 - testrun_b396dcde - [INFO] - {'dataset': 'wikidata12k', 'name': 'testrun_b396dcde', 'gpu': '0', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0003, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': False, 'num_ent': 12554, 'num_rel': 423} |  | ||||||
| @@ -1 +0,0 @@ | |||||||
| 2023-05-17 06:21:14,228 - testrun_bbf65ab5 - [INFO] - {'dataset': 'icews14', 'name': 'testrun_bbf65ab5', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True} |  | ||||||
| @@ -1 +0,0 @@ | |||||||
| 2023-05-17 06:50:58,251 - testrun_bfaa042b - [INFO] - {'dataset': 'icews14', 'name': 'testrun_bfaa042b', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True} |  | ||||||
| @@ -1 +0,0 @@ | |||||||
| 2023-05-17 06:37:11,288 - testrun_c77a8ec3 - [INFO] - {'dataset': 'icews14', 'name': 'testrun_c77a8ec3', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True} |  | ||||||
| @@ -1 +0,0 @@ | |||||||
| 2023-05-17 07:08:13,688 - testrun_cb3528f3 - [INFO] - {'dataset': 'icews14', 'name': 'testrun_cb3528f3', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True} |  | ||||||
| @@ -1 +0,0 @@ | |||||||
| 2023-05-17 06:25:12,047 - testrun_cd333c33 - [INFO] - {'dataset': 'icews14', 'name': 'testrun_cd333c33', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True} |  | ||||||
| @@ -1,2 +0,0 @@ | |||||||
| 2023-05-06 08:37:25,129 - testrun_d0367b19 - [INFO] - {'dataset': 'wikidata12k', 'name': 'testrun_d0367b19', 'gpu': '3', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False} |  | ||||||
| 2023-05-06 08:37:36,239 - testrun_d0367b19 - [INFO] - [E:0| 0]: Train Loss:0.69813,  Val MRR:0.0, 	testrun_d0367b19 |  | ||||||
							
								
								
									
										9001
									
								
								log/testrun_d2ab6391
									
									
									
									
									
								
							
							
						
						
									
										9001
									
								
								log/testrun_d2ab6391
									
									
									
									
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										11836
									
								
								log/testrun_e1726b98
									
									
									
									
									
								
							
							
						
						
									
										11836
									
								
								log/testrun_e1726b98
									
									
									
									
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							| @@ -1 +0,0 @@ | |||||||
| 2023-05-17 06:47:48,537 - testrun_f0394b3c - [INFO] - {'dataset': 'icews14', 'name': 'testrun_f0394b3c', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True} |  | ||||||
| @@ -1 +0,0 @@ | |||||||
| 2023-05-30 17:55:52,461 - testrun_f42f568c - [INFO] - {'dataset': 'wikidata12k', 'name': 'testrun_f42f568c', 'gpu': '0', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0003, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': False} |  | ||||||
| @@ -1 +0,0 @@ | |||||||
| 2023-05-17 06:39:01,301 - testrun_fdb0e82c - [INFO] - {'dataset': 'icews14', 'name': 'testrun_fdb0e82c', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True} |  | ||||||
							
								
								
									
										1116
									
								
								log/wikidata12k
									
									
									
									
									
								
							
							
						
						
									
										1116
									
								
								log/wikidata12k
									
									
									
									
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							| @@ -1,2 +0,0 @@ | |||||||
| 2023-06-04 17:05:45,012 - wikidata12k_0.00003 - [INFO] - {'dataset': 'wikidata12k', 'name': 'wikidata12k_0.00003', 'gpu': '2', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': False} |  | ||||||
| 2023-06-04 17:06:06,702 - wikidata12k_0.00003 - [INFO] - [E:0| 0]: Train Loss:0.69813,  Val MRR:0.0, 	wikidata12k_0.00003 |  | ||||||
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										15357
									
								
								log/wikidata12k_1n
									
									
									
									
									
								
							
							
						
						
									
										15357
									
								
								log/wikidata12k_1n
									
									
									
									
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										11565
									
								
								log/wikidata12k_both
									
									
									
									
									
								
							
							
						
						
									
										11565
									
								
								log/wikidata12k_both
									
									
									
									
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										9241
									
								
								log/yago11k
									
									
									
									
									
								
							
							
						
						
									
										9241
									
								
								log/yago11k
									
									
									
									
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										9654
									
								
								log/yago11k_0.00003
									
									
									
									
									
								
							
							
						
						
									
										9654
									
								
								log/yago11k_0.00003
									
									
									
									
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										9599
									
								
								log/yago11k_0.0003
									
									
									
									
									
								
							
							
						
						
									
										9599
									
								
								log/yago11k_0.0003
									
									
									
									
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										7233
									
								
								log/yago11k_0.001
									
									
									
									
									
								
							
							
						
						
									
										7233
									
								
								log/yago11k_0.001
									
									
									
									
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										18847
									
								
								log/yago11k_0.001.log
									
									
									
									
									
								
							
							
						
						
									
										18847
									
								
								log/yago11k_0.001.log
									
									
									
									
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										9169
									
								
								log/yago11k_both
									
									
									
									
									
								
							
							
						
						
									
										9169
									
								
								log/yago11k_both
									
									
									
									
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										133
									
								
								main.py
									
									
									
									
									
								
							
							
						
						
									
										133
									
								
								main.py
									
									
									
									
									
								
							| @@ -3,12 +3,10 @@ import uuid | |||||||
| import argparse | import argparse | ||||||
| import logging | import logging | ||||||
| import logging.config | import logging.config | ||||||
| import pandas as pd | import time | ||||||
| import sys |  | ||||||
|  |  | ||||||
| import torch | import torch | ||||||
| import numpy as np | import numpy as np | ||||||
| import time |  | ||||||
|  |  | ||||||
| from collections import defaultdict as ddict | from collections import defaultdict as ddict | ||||||
| from pprint import pprint | from pprint import pprint | ||||||
| @@ -20,12 +18,11 @@ from data_loader import TrainDataset, TestDataset | |||||||
| from utils import get_logger, get_combined_results, set_gpu, prepare_env, set_seed | from utils import get_logger, get_combined_results, set_gpu, prepare_env, set_seed | ||||||
|  |  | ||||||
| from models import ComplEx, ConvE, HypER, InteractE, FouriER, TuckER | from models import ComplEx, ConvE, HypER, InteractE, FouriER, TuckER | ||||||
| import traceback |  | ||||||
|  |  | ||||||
|  |  | ||||||
| class Main(object): | class Main(object): | ||||||
|  |  | ||||||
|     def __init__(self, params, logger): |     def __init__(self, params): | ||||||
|         """ |         """ | ||||||
|         Constructor of the runner class |         Constructor of the runner class | ||||||
|         Parameters |         Parameters | ||||||
| @@ -38,9 +35,11 @@ class Main(object): | |||||||
|  |  | ||||||
|         """ |         """ | ||||||
|         self.p = params |         self.p = params | ||||||
|         self.logger = logger |         self.logger = get_logger( | ||||||
|  |             self.p.name, self.p.log_dir, self.p.config_dir) | ||||||
|  |  | ||||||
|         self.logger.info(vars(self.p)) |         self.logger.info(vars(self.p)) | ||||||
|  |         pprint(vars(self.p)) | ||||||
|  |  | ||||||
|         if self.p.gpu != '-1' and torch.cuda.is_available(): |         if self.p.gpu != '-1' and torch.cuda.is_available(): | ||||||
|             self.device = torch.device('cuda') |             self.device = torch.device('cuda') | ||||||
| @@ -85,17 +84,15 @@ class Main(object): | |||||||
|          |          | ||||||
|         self.ent2id = {} |         self.ent2id = {} | ||||||
|         for line in open('./data/{}/{}'.format(self.p.dataset, "entities.dict")): |         for line in open('./data/{}/{}'.format(self.p.dataset, "entities.dict")): | ||||||
|             id, ent = map(str.lower, line.replace('\xa0', '').strip().split('\t')) |             id, ent = map(str.lower, line.strip().split('\t')) | ||||||
|             self.ent2id[ent] = int(id) |             self.ent2id[ent] = int(id) | ||||||
|         self.rel2id = {} |         self.rel2id = {} | ||||||
|         for line in open('./data/{}/{}'.format(self.p.dataset, "relations.dict")): |         for line in open('./data/{}/{}'.format(self.p.dataset, "relations.dict")): | ||||||
|             id, rel = map(str.lower, line.strip().split('\t')) |             id, rel = map(str.lower, line.strip().split('\t')) | ||||||
|             self.rel2id[rel] = int(id) |             self.rel2id[rel] = int(id) | ||||||
|             rel_set.add(rel) |  | ||||||
|  |  | ||||||
|         # self.ent2id = {ent: idx for idx, ent in enumerate(ent_set)} |         # self.ent2id = {ent: idx for idx, ent in enumerate(ent_set)} | ||||||
|         # self.rel2id = {rel: idx for idx, rel in enumerate(rel_set)} |         # self.rel2id = {rel: idx for idx, rel in enumerate(rel_set)} | ||||||
|          |  | ||||||
|         self.rel2id.update({rel+'_reverse': idx+len(self.rel2id) |         self.rel2id.update({rel+'_reverse': idx+len(self.rel2id) | ||||||
|                            for idx, rel in enumerate(rel_set)}) |                            for idx, rel in enumerate(rel_set)}) | ||||||
|  |  | ||||||
| @@ -111,52 +108,59 @@ class Main(object): | |||||||
|         sr2o = ddict(set) |         sr2o = ddict(set) | ||||||
|  |  | ||||||
|         for split in ['train', 'test', 'valid']: |         for split in ['train', 'test', 'valid']: | ||||||
|             for line in open('./data/{}/{}.txt'.format(self.p.dataset, split)): |             samples = 0 | ||||||
|                 sub, rel, obj, *_ = map(str.lower, line.replace('\xa0', '').strip().split('\t')) |             for i, line in enumerate(open('./data/{}/{}.txt'.format(self.p.dataset, split))): | ||||||
|                 nt_rel = rel.split('[')[0] |                 sub, rel, obj, rel_type, *_ = map(str.lower, line.strip().split('\t')) | ||||||
|                 sub, rel, obj, nt_rel = self.ent2id[sub], self.rel2id[rel], self.ent2id[obj], self.rel2id[nt_rel] |                 if (split == 'test' and self.p.rel_type is not None): | ||||||
|                 self.data[split].append((sub, rel, obj, nt_rel)) |                     if rel_type != self.p.rel_type: | ||||||
|  |                         continue | ||||||
|  |                 sub, rel, obj = self.ent2id[sub], self.rel2id[rel], self.ent2id[obj] | ||||||
|  |                 self.data[split].append((sub, rel, obj)) | ||||||
|  |  | ||||||
|                 if split == 'train': |                 if split == 'train': | ||||||
|                     sr2o[(sub, rel, nt_rel)].add(obj) |                     sr2o[(sub, rel)].add(obj) | ||||||
|                     sr2o[(obj, rel+self.p.num_rel, nt_rel + self.p.num_rel)].add(sub) |                     sr2o[(obj, rel+self.p.num_rel)].add(sub) | ||||||
|  |                 samples += 1 | ||||||
|  |             print(split.capitalize() + ': ' + str(samples) + ' samples') | ||||||
|         self.data = dict(self.data) |         self.data = dict(self.data) | ||||||
|  |  | ||||||
|         self.sr2o = {k: list(v) for k, v in sr2o.items()} |         self.sr2o = {k: list(v) for k, v in sr2o.items()} | ||||||
|         for split in ['test', 'valid']: |         for split in ['test', 'valid']: | ||||||
|             for sub, rel, obj, nt_rel in self.data[split]: |             for sub, rel, obj in self.data[split]: | ||||||
|                 sr2o[(sub, rel, nt_rel)].add(obj) |                 sr2o[(sub, rel)].add(obj) | ||||||
|                 sr2o[(obj, rel+self.p.num_rel, nt_rel + self.p.num_rel)].add(sub) |                 sr2o[(obj, rel+self.p.num_rel)].add(sub) | ||||||
|  |  | ||||||
|         self.sr2o_all = {k: list(v) for k, v in sr2o.items()} |         self.sr2o_all = {k: list(v) for k, v in sr2o.items()} | ||||||
|  |  | ||||||
|         self.triples = ddict(list) |         self.triples = ddict(list) | ||||||
|  |  | ||||||
|         if self.p.train_strategy == 'one_to_n': |         if self.p.train_strategy == 'one_to_n': | ||||||
|             for (sub, rel, nt_rel), obj in self.sr2o.items(): |             for (sub, rel), obj in self.sr2o.items(): | ||||||
|                 self.triples['train'].append( |                 self.triples['train'].append( | ||||||
|                     {'triple': (sub, rel, -1, nt_rel), 'label': self.sr2o[(sub, rel, nt_rel)], 'sub_samp': 1}) |                     {'triple': (sub, rel, -1), 'label': self.sr2o[(sub, rel)], 'sub_samp': 1}) | ||||||
|         else: |         else: | ||||||
|             for sub, rel, obj, nt_rel in self.data['train']: |             for sub, rel, obj in self.data['train']: | ||||||
|                 rel_inv = rel + self.p.num_rel |                 rel_inv = rel + self.p.num_rel | ||||||
|                 sub_samp = len(self.sr2o[(sub, rel, nt_rel)]) + \ |                 sub_samp = len(self.sr2o[(sub, rel)]) + \ | ||||||
|                     len(self.sr2o[(obj, rel_inv, nt_rel + self.p.num_rel)]) |                     len(self.sr2o[(obj, rel_inv)]) | ||||||
|                 sub_samp = np.sqrt(1/sub_samp) |                 sub_samp = np.sqrt(1/sub_samp) | ||||||
|  |  | ||||||
|                 self.triples['train'].append({'triple': ( |                 self.triples['train'].append({'triple': ( | ||||||
|                     sub, rel, obj, nt_rel),     'label': self.sr2o[(sub, rel, nt_rel)],     'sub_samp': sub_samp}) |                     sub, rel, obj),     'label': self.sr2o[(sub, rel)],     'sub_samp': sub_samp}) | ||||||
|                 self.triples['train'].append({'triple': ( |                 self.triples['train'].append({'triple': ( | ||||||
|                     obj, rel_inv, sub, nt_rel + self.p.num_rel), 'label': self.sr2o[(obj, rel_inv, nt_rel + self.p.num_rel)], 'sub_samp': sub_samp}) |                     obj, rel_inv, sub), 'label': self.sr2o[(obj, rel_inv)], 'sub_samp': sub_samp}) | ||||||
|  |  | ||||||
|         for split in ['test', 'valid']: |         for split in ['test', 'valid']: | ||||||
|             for sub, rel, obj, nt_rel in self.data[split]: |             for sub, rel, obj in self.data[split]: | ||||||
|                 rel_inv = rel + self.p.num_rel |                 rel_inv = rel + self.p.num_rel | ||||||
|                 self.triples['{}_{}'.format(split, 'tail')].append( |                 self.triples['{}_{}'.format(split, 'tail')].append( | ||||||
|                     {'triple': (sub, rel, obj, nt_rel), 	   'label': self.sr2o_all[(sub, rel, nt_rel)]}) |                     {'triple': (sub, rel, obj), 	   'label': self.sr2o_all[(sub, rel)]}) | ||||||
|                 self.triples['{}_{}'.format(split, 'head')].append( |                 self.triples['{}_{}'.format(split, 'head')].append( | ||||||
|                     {'triple': (obj, rel_inv, sub, nt_rel + self.p.num_rel), 'label': self.sr2o_all[(obj, rel_inv, nt_rel + self.p.num_rel)]}) |                     {'triple': (obj, rel_inv, sub), 'label': self.sr2o_all[(obj, rel_inv)]}) | ||||||
|  |  | ||||||
|         self.triples = dict(self.triples) |         self.triples = dict(self.triples) | ||||||
|  |         print(len(self.triples['test_head'])) | ||||||
|  |         print(len(self.triples['test_tail'])) | ||||||
|  |  | ||||||
|         def get_data_loader(dataset_class, split, batch_size, shuffle=True): |         def get_data_loader(dataset_class, split, batch_size, shuffle=True): | ||||||
|             return DataLoader( |             return DataLoader( | ||||||
| @@ -278,13 +282,13 @@ class Main(object): | |||||||
|             if self.p.train_strategy == 'one_to_x': |             if self.p.train_strategy == 'one_to_x': | ||||||
|                 triple, label, neg_ent, sub_samp = [ |                 triple, label, neg_ent, sub_samp = [ | ||||||
|                     _.to(self.device) for _ in batch] |                     _.to(self.device) for _ in batch] | ||||||
|                 return triple[:, 0], triple[:, 1], triple[:, 2], triple[:, 3], label, neg_ent, sub_samp |                 return triple[:, 0], triple[:, 1], triple[:, 2], label, neg_ent, sub_samp | ||||||
|             else: |             else: | ||||||
|                 triple, label = [_.to(self.device) for _ in batch] |                 triple, label = [_.to(self.device) for _ in batch] | ||||||
|                 return triple[:, 0], triple[:, 1], triple[:, 2], triple[:, 3], label, None, None |                 return triple[:, 0], triple[:, 1], triple[:, 2], label, None, None | ||||||
|         else: |         else: | ||||||
|             triple, label = [_.to(self.device) for _ in batch] |             triple, label = [_.to(self.device) for _ in batch] | ||||||
|             return triple[:, 0], triple[:, 1], triple[:, 2], triple[:, 3], label |             return triple[:, 0], triple[:, 1], triple[:, 2], label | ||||||
|  |  | ||||||
|     def save_model(self, save_path): |     def save_model(self, save_path): | ||||||
|         """ |         """ | ||||||
| @@ -411,35 +415,16 @@ class Main(object): | |||||||
|             train_iter = iter( |             train_iter = iter( | ||||||
|                 self.data_iter['{}_{}'.format(split, mode.split('_')[0])]) |                 self.data_iter['{}_{}'.format(split, mode.split('_')[0])]) | ||||||
|  |  | ||||||
|             sub_all = [] |  | ||||||
|             obj_all = [] |  | ||||||
|             rel_all = [] |  | ||||||
|             target_score = [] |  | ||||||
|             target_rank = [] |  | ||||||
|             obj_pred = [] |  | ||||||
|             obj_pred_score = [] |  | ||||||
|             for step, batch in enumerate(train_iter): |             for step, batch in enumerate(train_iter): | ||||||
|                 sub, rel, obj, nt_rel, label = self.read_batch(batch, split) |                 sub, rel, obj, label = self.read_batch(batch, split) | ||||||
|                 pred = self.model.forward(sub, rel, nt_rel, None, 'one_to_n') |                 pred = self.model.forward(sub, rel, None, 'one_to_n') | ||||||
|                 b_range = torch.arange(pred.size()[0], device=self.device) |                 b_range = torch.arange(pred.size()[0], device=self.device) | ||||||
|                 target_pred = pred[b_range, obj] |                 target_pred = pred[b_range, obj] | ||||||
|                 pred = torch.where(label.byte(), torch.zeros_like(pred), pred) |                 pred = torch.where(label.byte(), torch.zeros_like(pred), pred) | ||||||
|                 pred[b_range, obj] = target_pred |                 pred[b_range, obj] = target_pred | ||||||
|  |  | ||||||
|                 highest = torch.argsort(pred, dim=1, descending=True)[:,0] |  | ||||||
|                 highest_score = pred[b_range, highest] |  | ||||||
|  |  | ||||||
|                 ranks = 1 + torch.argsort(torch.argsort(pred, dim=1, |                 ranks = 1 + torch.argsort(torch.argsort(pred, dim=1, | ||||||
|                                           descending=True), dim=1, descending=False)[b_range, obj] |                                           descending=True), dim=1, descending=False)[b_range, obj] | ||||||
|  |  | ||||||
|                 sub_all.extend(sub.cpu().numpy()) |  | ||||||
|                 obj_all.extend(obj.cpu().numpy()) |  | ||||||
|                 rel_all.extend(rel.cpu().numpy()) |  | ||||||
|                 target_score.extend(target_pred.cpu().numpy()) |  | ||||||
|                 target_rank.extend(ranks.cpu().numpy()) |  | ||||||
|                 obj_pred.extend(highest.cpu().numpy()) |  | ||||||
|                 obj_pred_score.extend(highest_score.cpu().numpy()) |  | ||||||
|  |  | ||||||
|                 ranks = ranks.float() |                 ranks = ranks.float() | ||||||
|                 results['count'] = torch.numel( |                 results['count'] = torch.numel( | ||||||
|                     ranks) + results.get('count', 0.0) |                     ranks) + results.get('count', 0.0) | ||||||
| @@ -454,8 +439,7 @@ class Main(object): | |||||||
|                 if step % 100 == 0: |                 if step % 100 == 0: | ||||||
|                     self.logger.info('[{}, {} Step {}]\t{}'.format( |                     self.logger.info('[{}, {} Step {}]\t{}'.format( | ||||||
|                         split.title(), mode.title(), step, self.p.name)) |                         split.title(), mode.title(), step, self.p.name)) | ||||||
|         df = pd.DataFrame({"sub":sub_all,"rel":rel_all,"obj":obj_all, "rank": target_rank,"score":target_score, "pred":obj_pred,"pred_score":obj_pred_score}) |  | ||||||
|         df.to_csv(f"{self.p.name}_result.csv",header=True, index=False) |  | ||||||
|         return results |         return results | ||||||
|  |  | ||||||
|     def run_epoch(self, epoch): |     def run_epoch(self, epoch): | ||||||
| @@ -477,10 +461,10 @@ class Main(object): | |||||||
|         for step, batch in enumerate(train_iter): |         for step, batch in enumerate(train_iter): | ||||||
|             self.optimizer.zero_grad() |             self.optimizer.zero_grad() | ||||||
|  |  | ||||||
|             sub, rel, obj, nt_rel, label, neg_ent, sub_samp = self.read_batch( |             sub, rel, obj, label, neg_ent, sub_samp = self.read_batch( | ||||||
|                 batch, 'train') |                 batch, 'train') | ||||||
|  |  | ||||||
|             pred = self.model.forward(sub, rel, nt_rel, neg_ent, self.p.train_strategy) |             pred = self.model.forward(sub, rel, neg_ent, self.p.train_strategy) | ||||||
|             loss = self.model.loss(pred, label, sub_samp) |             loss = self.model.loss(pred, label, sub_samp) | ||||||
|  |  | ||||||
|             loss.backward() |             loss.backward() | ||||||
| @@ -651,6 +635,7 @@ if __name__ == "__main__": | |||||||
|      |      | ||||||
|     parser.add_argument('--test_only', action='store_true', default=False) |     parser.add_argument('--test_only', action='store_true', default=False) | ||||||
|     parser.add_argument('--grid_search', action='store_true', default=False) |     parser.add_argument('--grid_search', action='store_true', default=False) | ||||||
|  |     parser.add_argument('--rel_type', default=None, type=str) | ||||||
|  |  | ||||||
|     args = parser.parse_args() |     args = parser.parse_args() | ||||||
|  |  | ||||||
| @@ -659,10 +644,9 @@ if __name__ == "__main__": | |||||||
|     set_gpu(args.gpu) |     set_gpu(args.gpu) | ||||||
|     set_seed(args.seed) |     set_seed(args.seed) | ||||||
|  |  | ||||||
|  |     model = Main(args) | ||||||
|  |  | ||||||
|     if (args.grid_search): |     if (args.grid_search): | ||||||
|          |  | ||||||
|         model = Main(args) |  | ||||||
|         from sklearn.model_selection import GridSearchCV |         from sklearn.model_selection import GridSearchCV | ||||||
|         from skorch import NeuralNet |         from skorch import NeuralNet | ||||||
|  |  | ||||||
| @@ -693,7 +677,7 @@ if __name__ == "__main__": | |||||||
|                 collate_fn=TrainDataset.collate_fn |                 collate_fn=TrainDataset.collate_fn | ||||||
|             )) |             )) | ||||||
|         for step, batch in enumerate(dataloader): |         for step, batch in enumerate(dataloader): | ||||||
|             sub, rel, obj, nt_rel, label, neg_ent, sub_samp = model.read_batch( |             sub, rel, obj, label, neg_ent, sub_samp = model.read_batch( | ||||||
|                 batch, 'train') |                 batch, 'train') | ||||||
|              |              | ||||||
|             if (neg_ent is None): |             if (neg_ent is None): | ||||||
| @@ -711,27 +695,18 @@ if __name__ == "__main__": | |||||||
|             search = grid.fit(inputs, label) |             search = grid.fit(inputs, label) | ||||||
|             print("BEST SCORE: ", search.best_score_) |             print("BEST SCORE: ", search.best_score_) | ||||||
|             print("BEST PARAMS: ", search.best_params_) |             print("BEST PARAMS: ", search.best_params_) | ||||||
|     logger = get_logger( |  | ||||||
|             args.name, args.log_dir, args.config_dir) |  | ||||||
|     if (args.test_only): |     if (args.test_only): | ||||||
|         model = Main(args, logger) |  | ||||||
|         save_path = os.path.join('./torch_saved', args.name) |         save_path = os.path.join('./torch_saved', args.name) | ||||||
|         model.load_model(save_path) |         model.load_model(save_path) | ||||||
|         model.evaluate('test') |         model.evaluate('test') | ||||||
|     else: |     else: | ||||||
|         model = Main(args, logger) |         while True: | ||||||
|         model.fit() |             try: | ||||||
|         # while True: |                 model.fit() | ||||||
|         #     try: |             except Exception as e: | ||||||
|         #         model = Main(args, logger) |                 print(e) | ||||||
|         #         model.fit() |                 time.sleep(30) | ||||||
|         #     except Exception as e: |                 del model | ||||||
|         #         print(e) |                 model = Main(args) | ||||||
|         #         traceback.print_exc() |                 continue | ||||||
|         #         try: |             break | ||||||
|         #             del model |  | ||||||
|         #         except Exception: |  | ||||||
|         #             pass |  | ||||||
|         #         time.sleep(30) |  | ||||||
|         #         continue |  | ||||||
|         #     break |  | ||||||
|   | |||||||
							
								
								
									
										201
									
								
								models.py
									
									
									
									
									
								
							
							
						
						
									
										201
									
								
								models.py
									
									
									
									
									
								
							| @@ -9,7 +9,7 @@ from layers import * | |||||||
| from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | ||||||
| from timm.models.layers import DropPath, trunc_normal_ | from timm.models.layers import DropPath, trunc_normal_ | ||||||
| from timm.models.registry import register_model | from timm.models.registry import register_model | ||||||
| from timm.layers.helpers import to_2tuple | from timm.models.layers.helpers import to_2tuple | ||||||
|  |  | ||||||
|  |  | ||||||
| class ConvE(torch.nn.Module): | class ConvE(torch.nn.Module): | ||||||
| @@ -466,10 +466,6 @@ class FouriER(torch.nn.Module): | |||||||
|             self.p.ent_vec_dim, image_h*image_w) |             self.p.ent_vec_dim, image_h*image_w) | ||||||
|         torch.nn.init.xavier_normal_(self.ent_fusion.weight) |         torch.nn.init.xavier_normal_(self.ent_fusion.weight) | ||||||
|  |  | ||||||
|         self.ent_attn = torch.nn.Linear( |  | ||||||
|             128, 128) |  | ||||||
|         torch.nn.init.xavier_normal_(self.ent_attn.weight) |  | ||||||
|  |  | ||||||
|         self.rel_fusion = torch.nn.Linear( |         self.rel_fusion = torch.nn.Linear( | ||||||
|             self.p.rel_vec_dim, image_h*image_w) |             self.p.rel_vec_dim, image_h*image_w) | ||||||
|         torch.nn.init.xavier_normal_(self.rel_fusion.weight) |         torch.nn.init.xavier_normal_(self.rel_fusion.weight) | ||||||
| @@ -552,14 +548,7 @@ class FouriER(torch.nn.Module): | |||||||
|         # output only the features of last layer for image classification |         # output only the features of last layer for image classification | ||||||
|         return x |         return x | ||||||
|  |  | ||||||
|     def fuse_attention(self, s_embedding, l_embedding): |     def forward(self, sub, rel, neg_ents, strategy='one_to_x'): | ||||||
|         w1 = self.ent_attn(torch.tanh(s_embedding)) |  | ||||||
|         w2 = self.ent_attn(torch.tanh(l_embedding)) |  | ||||||
|         aff = F.softmax(torch.cat((w1,w2),1), 1) |  | ||||||
|         en_embedding = aff[:,0].unsqueeze(1) * s_embedding + aff[:, 1].unsqueeze(1) * l_embedding |  | ||||||
|         return en_embedding |  | ||||||
|  |  | ||||||
|     def forward(self, sub, rel, nt_rel, neg_ents, strategy='one_to_x'): |  | ||||||
|         sub_emb = self.ent_fusion(self.ent_embed(sub)) |         sub_emb = self.ent_fusion(self.ent_embed(sub)) | ||||||
|         rel_emb = self.rel_fusion(self.rel_embed(rel)) |         rel_emb = self.rel_fusion(self.rel_embed(rel)) | ||||||
|         comb_emb = torch.stack([sub_emb.view(-1, self.p.image_h, self.p.image_w), rel_emb.view(-1, self.p.image_h, self.p.image_w)], dim=1) |         comb_emb = torch.stack([sub_emb.view(-1, self.p.image_h, self.p.image_w), rel_emb.view(-1, self.p.image_h, self.p.image_w)], dim=1) | ||||||
| @@ -568,17 +557,6 @@ class FouriER(torch.nn.Module): | |||||||
|         z = self.forward_embeddings(y) |         z = self.forward_embeddings(y) | ||||||
|         z = self.forward_tokens(z) |         z = self.forward_tokens(z) | ||||||
|         z = z.mean([-2, -1]) |         z = z.mean([-2, -1]) | ||||||
|  |  | ||||||
|         nt_rel_emb = self.rel_fusion(self.rel_embed(nt_rel)) |  | ||||||
|         comb_emb_1 = torch.stack([sub_emb.view(-1, self.p.image_h, self.p.image_w), nt_rel_emb.view(-1, self.p.image_h, self.p.image_w)], dim=1) |  | ||||||
|         y_1 = comb_emb_1.view(-1, 2, self.p.image_h, self.p.image_w) |  | ||||||
|         y_1 = self.bn0(y_1) |  | ||||||
|         z_1 = self.forward_embeddings(y_1) |  | ||||||
|         z_1 = self.forward_tokens(z_1) |  | ||||||
|         z_1 = z_1.mean([-2, -1]) |  | ||||||
|  |  | ||||||
|         z = self.fuse_attention(z, z_1) |  | ||||||
|  |  | ||||||
|         z = self.norm(z) |         z = self.norm(z) | ||||||
|         x = self.head(z) |         x = self.head(z) | ||||||
|         x = self.hidden_drop(x) |         x = self.hidden_drop(x) | ||||||
| @@ -729,166 +707,6 @@ def basic_blocks(dim, index, layers, | |||||||
|  |  | ||||||
|     return blocks |     return blocks | ||||||
|  |  | ||||||
| def window_partition(x, window_size): |  | ||||||
|     """ |  | ||||||
|     Args: |  | ||||||
|         x: (B, H, W, C) |  | ||||||
|         window_size (int): window size |  | ||||||
|  |  | ||||||
|     Returns: |  | ||||||
|         windows: (num_windows*B, window_size, window_size, C) |  | ||||||
|     """ |  | ||||||
|     B, C, H, W = x.shape |  | ||||||
|     x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) |  | ||||||
|     windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) |  | ||||||
|     return windows |  | ||||||
|  |  | ||||||
| class WindowAttention(nn.Module): |  | ||||||
|     r""" Window based multi-head self attention (W-MSA) module with relative position bias. |  | ||||||
|     It supports both of shifted and non-shifted window. |  | ||||||
|  |  | ||||||
|     Args: |  | ||||||
|         dim (int): Number of input channels. |  | ||||||
|         window_size (tuple[int]): The height and width of the window. |  | ||||||
|         num_heads (int): Number of attention heads. |  | ||||||
|         qkv_bias (bool, optional):  If True, add a learnable bias to query, key, value. Default: True |  | ||||||
|         attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 |  | ||||||
|         proj_drop (float, optional): Dropout ratio of output. Default: 0.0 |  | ||||||
|         pretrained_window_size (tuple[int]): The height and width of the window in pre-training. |  | ||||||
|     """ |  | ||||||
|  |  | ||||||
|     def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0., |  | ||||||
|                  pretrained_window_size=[0, 0]): |  | ||||||
|  |  | ||||||
|         super().__init__() |  | ||||||
|         self.dim = dim |  | ||||||
|         self.window_size = window_size  # Wh, Ww |  | ||||||
|         self.pretrained_window_size = pretrained_window_size |  | ||||||
|         self.num_heads = num_heads |  | ||||||
|  |  | ||||||
|         self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True) |  | ||||||
|  |  | ||||||
|         # mlp to generate continuous relative position bias |  | ||||||
|         self.cpb_mlp = nn.Sequential(nn.Linear(2, 512, bias=True), |  | ||||||
|                                      nn.ReLU(inplace=True), |  | ||||||
|                                      nn.Linear(512, num_heads, bias=False)) |  | ||||||
|  |  | ||||||
|         # get relative_coords_table |  | ||||||
|         relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0], dtype=torch.float32) |  | ||||||
|         relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1], dtype=torch.float32) |  | ||||||
|         relative_coords_table = torch.stack( |  | ||||||
|             torch.meshgrid([relative_coords_h, |  | ||||||
|                             relative_coords_w])).permute(1, 2, 0).contiguous().unsqueeze(0)  # 1, 2*Wh-1, 2*Ww-1, 2 |  | ||||||
|         if pretrained_window_size[0] > 0: |  | ||||||
|             relative_coords_table[:, :, :, 0] /= (pretrained_window_size[0] - 1) |  | ||||||
|             relative_coords_table[:, :, :, 1] /= (pretrained_window_size[1] - 1) |  | ||||||
|         else: |  | ||||||
|             relative_coords_table[:, :, :, 0] /= (self.window_size[0] - 1) |  | ||||||
|             relative_coords_table[:, :, :, 1] /= (self.window_size[1] - 1) |  | ||||||
|         relative_coords_table *= 8  # normalize to -8, 8 |  | ||||||
|         relative_coords_table = torch.sign(relative_coords_table) * torch.log2( |  | ||||||
|             torch.abs(relative_coords_table) + 1.0) / np.log2(8) |  | ||||||
|  |  | ||||||
|         self.register_buffer("relative_coords_table", relative_coords_table) |  | ||||||
|  |  | ||||||
|         # get pair-wise relative position index for each token inside the window |  | ||||||
|         coords_h = torch.arange(self.window_size[0]) |  | ||||||
|         coords_w = torch.arange(self.window_size[1]) |  | ||||||
|         coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, Wh, Ww |  | ||||||
|         coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww |  | ||||||
|         relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Ww |  | ||||||
|         relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2 |  | ||||||
|         relative_coords[:, :, 0] += self.window_size[0] - 1  # shift to start from 0 |  | ||||||
|         relative_coords[:, :, 1] += self.window_size[1] - 1 |  | ||||||
|         relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 |  | ||||||
|         relative_position_index = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww |  | ||||||
|         self.register_buffer("relative_position_index", relative_position_index) |  | ||||||
|  |  | ||||||
|         self.qkv = nn.Linear(dim, dim * 3, bias=False) |  | ||||||
|         if qkv_bias: |  | ||||||
|             self.q_bias = nn.Parameter(torch.zeros(dim)) |  | ||||||
|             self.v_bias = nn.Parameter(torch.zeros(dim)) |  | ||||||
|         else: |  | ||||||
|             self.q_bias = None |  | ||||||
|             self.v_bias = None |  | ||||||
|         self.attn_drop = nn.Dropout(attn_drop) |  | ||||||
|         self.proj = nn.Linear(dim, dim) |  | ||||||
|         self.proj_drop = nn.Dropout(proj_drop) |  | ||||||
|         self.softmax = nn.Softmax(dim=-1) |  | ||||||
|  |  | ||||||
|     def forward(self, x, mask=None): |  | ||||||
|         """ |  | ||||||
|         Args: |  | ||||||
|             x: input features with shape of (num_windows*B, N, C) |  | ||||||
|             mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None |  | ||||||
|         """ |  | ||||||
|         B_, N, C = x.shape |  | ||||||
|         qkv_bias = None |  | ||||||
|         if self.q_bias is not None: |  | ||||||
|             qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias)) |  | ||||||
|         qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) |  | ||||||
|         qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) |  | ||||||
|         q, k, v = qkv[0], qkv[1], qkv[2]  # make torchscript happy (cannot use tensor as tuple) |  | ||||||
|  |  | ||||||
|         # cosine attention |  | ||||||
|         attn = (F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1)) |  | ||||||
|         logit_scale = torch.clamp(self.logit_scale, max=torch.log(torch.tensor(1. / 0.01)).cuda()).exp() |  | ||||||
|         attn = attn * logit_scale |  | ||||||
|  |  | ||||||
|         relative_position_bias_table = self.cpb_mlp(self.relative_coords_table).view(-1, self.num_heads) |  | ||||||
|         relative_position_bias = relative_position_bias_table[self.relative_position_index.view(-1)].view( |  | ||||||
|             self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1)  # Wh*Ww,Wh*Ww,nH |  | ||||||
|         relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww |  | ||||||
|         relative_position_bias = 16 * torch.sigmoid(relative_position_bias) |  | ||||||
|         attn = attn + relative_position_bias.unsqueeze(0) |  | ||||||
|  |  | ||||||
|         if mask is not None: |  | ||||||
|             nW = mask.shape[0] |  | ||||||
|             attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) |  | ||||||
|             attn = attn.view(-1, self.num_heads, N, N) |  | ||||||
|             attn = self.softmax(attn) |  | ||||||
|         else: |  | ||||||
|             attn = self.softmax(attn) |  | ||||||
|  |  | ||||||
|         attn = self.attn_drop(attn) |  | ||||||
|  |  | ||||||
|         x = (attn @ v).transpose(1, 2).reshape(B_, N, C) |  | ||||||
|         x = self.proj(x) |  | ||||||
|         x = self.proj_drop(x) |  | ||||||
|         return x |  | ||||||
|  |  | ||||||
|     def extra_repr(self) -> str: |  | ||||||
|         return f'dim={self.dim}, window_size={self.window_size}, ' \ |  | ||||||
|                f'pretrained_window_size={self.pretrained_window_size}, num_heads={self.num_heads}' |  | ||||||
|  |  | ||||||
|     def flops(self, N): |  | ||||||
|         # calculate flops for 1 window with token length of N |  | ||||||
|         flops = 0 |  | ||||||
|         # qkv = self.qkv(x) |  | ||||||
|         flops += N * self.dim * 3 * self.dim |  | ||||||
|         # attn = (q @ k.transpose(-2, -1)) |  | ||||||
|         flops += self.num_heads * N * (self.dim // self.num_heads) * N |  | ||||||
|         #  x = (attn @ v) |  | ||||||
|         flops += self.num_heads * N * N * (self.dim // self.num_heads) |  | ||||||
|         # x = self.proj(x) |  | ||||||
|         flops += N * self.dim * self.dim |  | ||||||
|         return flops |  | ||||||
|      |  | ||||||
| def window_reverse(windows, window_size, H, W): |  | ||||||
|     """ |  | ||||||
|     Args: |  | ||||||
|         windows: (num_windows*B, window_size, window_size, C) |  | ||||||
|         window_size (int): Window size |  | ||||||
|         H (int): Height of image |  | ||||||
|         W (int): Width of image |  | ||||||
|  |  | ||||||
|     Returns: |  | ||||||
|         x: (B, H, W, C) |  | ||||||
|     """ |  | ||||||
|     B = int(windows.shape[0] / (H * W / window_size / window_size)) |  | ||||||
|     x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1) |  | ||||||
|     x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, -1, H, W) |  | ||||||
|     return x |  | ||||||
|  |  | ||||||
| class PoolFormerBlock(nn.Module): | class PoolFormerBlock(nn.Module): | ||||||
|     """ |     """ | ||||||
| @@ -913,10 +731,7 @@ class PoolFormerBlock(nn.Module): | |||||||
|  |  | ||||||
|         self.norm1 = norm_layer(dim) |         self.norm1 = norm_layer(dim) | ||||||
|         #self.token_mixer = Pooling(pool_size=pool_size) |         #self.token_mixer = Pooling(pool_size=pool_size) | ||||||
|         # self.token_mixer = FNetBlock() |         self.token_mixer = FNetBlock() | ||||||
|         self.window_size = 4 |  | ||||||
|         self.attn_mask = None |  | ||||||
|         self.token_mixer = WindowAttention(dim=dim, window_size=to_2tuple(self.window_size), num_heads=4) |  | ||||||
|         self.norm2 = norm_layer(dim) |         self.norm2 = norm_layer(dim) | ||||||
|         mlp_hidden_dim = int(dim * mlp_ratio) |         mlp_hidden_dim = int(dim * mlp_ratio) | ||||||
|         self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim,  |         self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim,  | ||||||
| @@ -933,21 +748,15 @@ class PoolFormerBlock(nn.Module): | |||||||
|                 layer_scale_init_value * torch.ones((dim)), requires_grad=True) |                 layer_scale_init_value * torch.ones((dim)), requires_grad=True) | ||||||
|  |  | ||||||
|     def forward(self, x): |     def forward(self, x): | ||||||
|         B, C, H, W = x.shape |  | ||||||
|         x_windows = window_partition(x, self.window_size) |  | ||||||
|         x_windows = x_windows.view(-1, self.window_size * self.window_size, C) |  | ||||||
|         attn_windows = self.token_mixer(x_windows, mask=self.attn_mask) |  | ||||||
|         attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) |  | ||||||
|         x_attn = window_reverse(attn_windows, self.window_size, H, W) |  | ||||||
|         if self.use_layer_scale: |         if self.use_layer_scale: | ||||||
|             x = x + self.drop_path( |             x = x + self.drop_path( | ||||||
|                 self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) |                 self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) | ||||||
|                 * x_attn) |                 * self.token_mixer(self.norm1(x))) | ||||||
|             x = x + self.drop_path( |             x = x + self.drop_path( | ||||||
|                 self.layer_scale_2.unsqueeze(-1).unsqueeze(-1) |                 self.layer_scale_2.unsqueeze(-1).unsqueeze(-1) | ||||||
|                 * self.mlp(self.norm2(x))) |                 * self.mlp(self.norm2(x))) | ||||||
|         else: |         else: | ||||||
|             x = x + self.drop_path(x_attn) |             x = x + self.drop_path(self.token_mixer(self.norm1(x))) | ||||||
|             x = x + self.drop_path(self.mlp(self.norm2(x))) |             x = x + self.drop_path(self.mlp(self.norm2(x))) | ||||||
|         return x |         return x | ||||||
| class PatchEmbed(nn.Module): | class PatchEmbed(nn.Module): | ||||||
|   | |||||||
| @@ -2,5 +2,3 @@ torch==1.12.1+cu116 | |||||||
| ordered-set==4.1.0 | ordered-set==4.1.0 | ||||||
| numpy==1.21.5 | numpy==1.21.5 | ||||||
| einops==0.4.1 | einops==0.4.1 | ||||||
| pandas |  | ||||||
| timm==0.9.16 |  | ||||||
							
								
								
									
										3
									
								
								run.sh
									
									
									
									
									
								
							
							
						
						
									
										3
									
								
								run.sh
									
									
									
									
									
								
							| @@ -38,6 +38,3 @@ PID: | |||||||
|  |  | ||||||
| ___ | ___ | ||||||
| nohup python main.py --name ice001 --lr 0.001 --data icews14 --gpu 3 >run_log/0.001.log 2>&1 & | nohup python main.py --name ice001 --lr 0.001 --data icews14 --gpu 3 >run_log/0.001.log 2>&1 & | ||||||
| ___ |  | ||||||
| nohup python main.py --name iceboth --data icews14_both --gpu 0 >run_log/iceboth.log 2>&1 & |  | ||||||
| PID: 21984 |  | ||||||
							
								
								
									
										10708
									
								
								run_log/icews14/0.00001.log
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										10708
									
								
								run_log/icews14/0.00001.log
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										6653
									
								
								run_log/icews14/0.00003.log
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										6653
									
								
								run_log/icews14/0.00003.log
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										9511
									
								
								run_log/icews14/0.0001.out
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										9511
									
								
								run_log/icews14/0.0001.out
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										4950
									
								
								run_log/icews14/0.0003.log
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										4950
									
								
								run_log/icews14/0.0003.log
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										6249
									
								
								run_log/icews14/0.001.log
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										6249
									
								
								run_log/icews14/0.001.log
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										425
									
								
								run_log/wikidata12k/0.001.log
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										425
									
								
								run_log/wikidata12k/0.001.log
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,425 @@ | |||||||
|  | nohup: ignoring input | ||||||
|  | 2023-05-27 04:41:18,497 - [INFO] - {'dataset': 'wikidata12k', 'name': 'wikidata12k_0.001', 'gpu': '3', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': False} | ||||||
|  | {'batch_size': 128, | ||||||
|  |  'bias': False, | ||||||
|  |  'config_dir': './config/', | ||||||
|  |  'dataset': 'wikidata12k', | ||||||
|  |  'drop': 0.0, | ||||||
|  |  'drop_path': 0.0, | ||||||
|  |  'embed_dim': 400, | ||||||
|  |  'ent_vec_dim': 400, | ||||||
|  |  'expansion_factor': 4, | ||||||
|  |  'expansion_factor_token': 0.5, | ||||||
|  |  'feat_drop': 0.2, | ||||||
|  |  'filt_h': 1, | ||||||
|  |  'filt_w': 9, | ||||||
|  |  'form': 'plain', | ||||||
|  |  'gpu': '3', | ||||||
|  |  'grid_search': False, | ||||||
|  |  'hid_drop': 0.5, | ||||||
|  |  'image_h': 128, | ||||||
|  |  'image_w': 128, | ||||||
|  |  'in_channels': 1, | ||||||
|  |  'inp_drop': 0.2, | ||||||
|  |  'k_h': 20, | ||||||
|  |  'k_w': 10, | ||||||
|  |  'ker_sz': 9, | ||||||
|  |  'l2': 0.0, | ||||||
|  |  'lbl_smooth': 0.1, | ||||||
|  |  'log_dir': './log/', | ||||||
|  |  'lr': 0.001, | ||||||
|  |  'max_epochs': 500, | ||||||
|  |  'mixer_depth': 16, | ||||||
|  |  'mixer_dim': 256, | ||||||
|  |  'mixer_dropout': 0.2, | ||||||
|  |  'name': 'wikidata12k_0.001', | ||||||
|  |  'neg_num': 1000, | ||||||
|  |  'num_filt': 96, | ||||||
|  |  'num_workers': 0, | ||||||
|  |  'opt': 'adam', | ||||||
|  |  'out_channels': 32, | ||||||
|  |  'patch_size': 8, | ||||||
|  |  'perm': 1, | ||||||
|  |  'rel_vec_dim': 400, | ||||||
|  |  'restore': False, | ||||||
|  |  'seed': 42, | ||||||
|  |  'test_only': False, | ||||||
|  |  'train_strategy': 'one_to_n'} | ||||||
|  | 2023-05-27 04:41:28,635 - [INFO] - [E:0| 0]: Train Loss:0.69813,  Val MRR:0.0, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 04:42:32,570 - [INFO] - [E:0| 100]: Train Loss:0.053587,  Val MRR:0.0, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 04:43:36,618 - [INFO] - [E:0| 200]: Train Loss:0.028724,  Val MRR:0.0, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 04:44:40,687 - [INFO] - [E:0| 300]: Train Loss:0.020033,  Val MRR:0.0, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 04:45:44,799 - [INFO] - [E:0| 400]: Train Loss:0.015589,  Val MRR:0.0, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 04:46:48,901 - [INFO] - [E:0| 500]: Train Loss:0.012878,  Val MRR:0.0, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 04:47:53,124 - [INFO] - [E:0| 600]: Train Loss:0.011054,  Val MRR:0.0, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 04:48:57,224 - [INFO] - [E:0| 700]: Train Loss:0.0097532,  Val MRR:0.0, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 04:50:01,352 - [INFO] - [E:0| 800]: Train Loss:0.008763,  Val MRR:0.0, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 04:51:05,445 - [INFO] - [E:0| 900]: Train Loss:0.0079929,  Val MRR:0.0, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 04:52:09,559 - [INFO] - [E:0| 1000]: Train Loss:0.0073745,  Val MRR:0.0, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 04:53:13,624 - [INFO] - [E:0| 1100]: Train Loss:0.0068693,  Val MRR:0.0, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 04:54:17,823 - [INFO] - [E:0| 1200]: Train Loss:0.0064497,  Val MRR:0.0, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 04:55:21,967 - [INFO] - [E:0| 1300]: Train Loss:0.0060945,  Val MRR:0.0, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 04:56:26,129 - [INFO] - [E:0| 1400]: Train Loss:0.0057879,  Val MRR:0.0, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 04:57:30,256 - [INFO] - [E:0| 1500]: Train Loss:0.0055195,  Val MRR:0.0, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 04:58:34,350 - [INFO] - [E:0| 1600]: Train Loss:0.0052845,  Val MRR:0.0, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 04:59:16,259 - [INFO] - [Epoch:0]:  Training Loss:0.005147 | ||||||
|  |  | ||||||
|  | 2023-05-27 04:59:16,481 - [INFO] - [Valid, Tail_Batch Step 0]	wikidata12k_0.001 | ||||||
|  | 2023-05-27 04:59:38,187 - [INFO] - [Valid, Tail_Batch Step 100]	wikidata12k_0.001 | ||||||
|  | 2023-05-27 04:59:50,745 - [INFO] - [Valid, Head_Batch Step 0]	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:00:12,609 - [INFO] - [Valid, Head_Batch Step 100]	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:00:25,062 - [INFO] - [Evaluating Epoch 0 valid]:  | ||||||
|  | 	MRR: Tail : 0.08049, Head : 0.01947, Avg : 0.04998 | ||||||
|  |  | ||||||
|  | 2023-05-27 05:00:26,469 - [INFO] - [Epoch 0]:  Training Loss: 0.0051469,  Valid MRR: 0.04998,  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  | 2023-05-27 05:00:27,127 - [INFO] - [E:1| 0]: Train Loss:0.0016275,  Val MRR:0.04998, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:01:31,277 - [INFO] - [E:1| 100]: Train Loss:0.0017991,  Val MRR:0.04998, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:02:35,390 - [INFO] - [E:1| 200]: Train Loss:0.0017846,  Val MRR:0.04998, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:03:39,590 - [INFO] - [E:1| 300]: Train Loss:0.0017789,  Val MRR:0.04998, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:04:43,748 - [INFO] - [E:1| 400]: Train Loss:0.001772,  Val MRR:0.04998, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:05:47,967 - [INFO] - [E:1| 500]: Train Loss:0.0017692,  Val MRR:0.04998, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:06:52,036 - [INFO] - [E:1| 600]: Train Loss:0.0017597,  Val MRR:0.04998, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:07:56,215 - [INFO] - [E:1| 700]: Train Loss:0.0017589,  Val MRR:0.04998, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:09:00,363 - [INFO] - [E:1| 800]: Train Loss:0.0017555,  Val MRR:0.04998, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:10:04,516 - [INFO] - [E:1| 900]: Train Loss:0.0017507,  Val MRR:0.04998, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:11:08,719 - [INFO] - [E:1| 1000]: Train Loss:0.0017476,  Val MRR:0.04998, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:12:12,940 - [INFO] - [E:1| 1100]: Train Loss:0.0017427,  Val MRR:0.04998, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:13:17,076 - [INFO] - [E:1| 1200]: Train Loss:0.0017384,  Val MRR:0.04998, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:14:21,295 - [INFO] - [E:1| 1300]: Train Loss:0.0017345,  Val MRR:0.04998, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:15:25,462 - [INFO] - [E:1| 1400]: Train Loss:0.0017307,  Val MRR:0.04998, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:16:29,614 - [INFO] - [E:1| 1500]: Train Loss:0.0017243,  Val MRR:0.04998, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:17:33,705 - [INFO] - [E:1| 1600]: Train Loss:0.001719,  Val MRR:0.04998, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:18:15,618 - [INFO] - [Epoch:1]:  Training Loss:0.001714 | ||||||
|  |  | ||||||
|  | 2023-05-27 05:18:15,839 - [INFO] - [Valid, Tail_Batch Step 0]	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:18:37,583 - [INFO] - [Valid, Tail_Batch Step 100]	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:18:50,191 - [INFO] - [Valid, Head_Batch Step 0]	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:19:12,067 - [INFO] - [Valid, Head_Batch Step 100]	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:19:24,503 - [INFO] - [Evaluating Epoch 1 valid]:  | ||||||
|  | 	MRR: Tail : 0.1748, Head : 0.04108, Avg : 0.10794 | ||||||
|  |  | ||||||
|  | 2023-05-27 05:19:25,566 - [INFO] - [Epoch 1]:  Training Loss: 0.0017143,  Valid MRR: 0.10794,  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  | 2023-05-27 05:19:26,219 - [INFO] - [E:2| 0]: Train Loss:0.0016961,  Val MRR:0.10794, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:20:30,344 - [INFO] - [E:2| 100]: Train Loss:0.0016227,  Val MRR:0.10794, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:21:34,535 - [INFO] - [E:2| 200]: Train Loss:0.0016161,  Val MRR:0.10794, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:22:38,770 - [INFO] - [E:2| 300]: Train Loss:0.0016161,  Val MRR:0.10794, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:23:43,004 - [INFO] - [E:2| 400]: Train Loss:0.0016106,  Val MRR:0.10794, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:24:47,137 - [INFO] - [E:2| 500]: Train Loss:0.0016058,  Val MRR:0.10794, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:25:51,362 - [INFO] - [E:2| 600]: Train Loss:0.0016067,  Val MRR:0.10794, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:26:55,499 - [INFO] - [E:2| 700]: Train Loss:0.0016013,  Val MRR:0.10794, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:27:59,761 - [INFO] - [E:2| 800]: Train Loss:0.0015978,  Val MRR:0.10794, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:29:03,935 - [INFO] - [E:2| 900]: Train Loss:0.0015935,  Val MRR:0.10794, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:30:08,210 - [INFO] - [E:2| 1000]: Train Loss:0.0015896,  Val MRR:0.10794, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:31:12,398 - [INFO] - [E:2| 1100]: Train Loss:0.0015856,  Val MRR:0.10794, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:32:16,608 - [INFO] - [E:2| 1200]: Train Loss:0.0015814,  Val MRR:0.10794, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:33:20,836 - [INFO] - [E:2| 1300]: Train Loss:0.0015758,  Val MRR:0.10794, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:34:25,014 - [INFO] - [E:2| 1400]: Train Loss:0.001571,  Val MRR:0.10794, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:35:29,265 - [INFO] - [E:2| 1500]: Train Loss:0.001565,  Val MRR:0.10794, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:36:33,450 - [INFO] - [E:2| 1600]: Train Loss:0.0015589,  Val MRR:0.10794, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:37:15,383 - [INFO] - [Epoch:2]:  Training Loss:0.001556 | ||||||
|  |  | ||||||
|  | 2023-05-27 05:37:15,603 - [INFO] - [Valid, Tail_Batch Step 0]	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:37:37,308 - [INFO] - [Valid, Tail_Batch Step 100]	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:37:49,874 - [INFO] - [Valid, Head_Batch Step 0]	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:38:11,738 - [INFO] - [Valid, Head_Batch Step 100]	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:38:24,173 - [INFO] - [Evaluating Epoch 2 valid]:  | ||||||
|  | 	MRR: Tail : 0.28305, Head : 0.07818, Avg : 0.18062 | ||||||
|  |  | ||||||
|  | 2023-05-27 05:38:25,157 - [INFO] - [Epoch 2]:  Training Loss: 0.001556,  Valid MRR: 0.18062,  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  | 2023-05-27 05:38:25,813 - [INFO] - [E:3| 0]: Train Loss:0.0013897,  Val MRR:0.18062, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:39:30,024 - [INFO] - [E:3| 100]: Train Loss:0.0014599,  Val MRR:0.18062, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:40:34,122 - [INFO] - [E:3| 200]: Train Loss:0.0014516,  Val MRR:0.18062, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:41:38,261 - [INFO] - [E:3| 300]: Train Loss:0.0014552,  Val MRR:0.18062, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:42:42,459 - [INFO] - [E:3| 400]: Train Loss:0.0014541,  Val MRR:0.18062, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:43:46,707 - [INFO] - [E:3| 500]: Train Loss:0.0014521,  Val MRR:0.18062, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:44:50,829 - [INFO] - [E:3| 600]: Train Loss:0.0014476,  Val MRR:0.18062, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:45:54,979 - [INFO] - [E:3| 700]: Train Loss:0.0014439,  Val MRR:0.18062, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:46:59,115 - [INFO] - [E:3| 800]: Train Loss:0.0014396,  Val MRR:0.18062, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:48:03,341 - [INFO] - [E:3| 900]: Train Loss:0.0014367,  Val MRR:0.18062, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:49:07,419 - [INFO] - [E:3| 1000]: Train Loss:0.0014329,  Val MRR:0.18062, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:50:11,647 - [INFO] - [E:3| 1100]: Train Loss:0.0014308,  Val MRR:0.18062, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:51:15,783 - [INFO] - [E:3| 1200]: Train Loss:0.0014276,  Val MRR:0.18062, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:52:19,915 - [INFO] - [E:3| 1300]: Train Loss:0.0014245,  Val MRR:0.18062, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:53:24,121 - [INFO] - [E:3| 1400]: Train Loss:0.0014212,  Val MRR:0.18062, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:54:28,236 - [INFO] - [E:3| 1500]: Train Loss:0.0014184,  Val MRR:0.18062, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:55:32,482 - [INFO] - [E:3| 1600]: Train Loss:0.0014147,  Val MRR:0.18062, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:56:14,438 - [INFO] - [Epoch:3]:  Training Loss:0.001413 | ||||||
|  |  | ||||||
|  | 2023-05-27 05:56:14,658 - [INFO] - [Valid, Tail_Batch Step 0]	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:56:36,372 - [INFO] - [Valid, Tail_Batch Step 100]	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:56:48,954 - [INFO] - [Valid, Head_Batch Step 0]	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:57:10,881 - [INFO] - [Valid, Head_Batch Step 100]	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:57:23,328 - [INFO] - [Evaluating Epoch 3 valid]:  | ||||||
|  | 	MRR: Tail : 0.31549, Head : 0.09979, Avg : 0.20764 | ||||||
|  |  | ||||||
|  | 2023-05-27 05:57:24,420 - [INFO] - [Epoch 3]:  Training Loss: 0.001413,  Valid MRR: 0.20764,  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  | 2023-05-27 05:57:25,077 - [INFO] - [E:4| 0]: Train Loss:0.0014323,  Val MRR:0.20764, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:58:29,238 - [INFO] - [E:4| 100]: Train Loss:0.0013524,  Val MRR:0.20764, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 05:59:33,410 - [INFO] - [E:4| 200]: Train Loss:0.0013439,  Val MRR:0.20764, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:00:37,566 - [INFO] - [E:4| 300]: Train Loss:0.0013507,  Val MRR:0.20764, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:01:41,692 - [INFO] - [E:4| 400]: Train Loss:0.0013525,  Val MRR:0.20764, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:02:45,877 - [INFO] - [E:4| 500]: Train Loss:0.0013497,  Val MRR:0.20764, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:03:50,088 - [INFO] - [E:4| 600]: Train Loss:0.0013468,  Val MRR:0.20764, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:04:54,238 - [INFO] - [E:4| 700]: Train Loss:0.0013447,  Val MRR:0.20764, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:05:58,490 - [INFO] - [E:4| 800]: Train Loss:0.0013417,  Val MRR:0.20764, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:07:02,645 - [INFO] - [E:4| 900]: Train Loss:0.001339,  Val MRR:0.20764, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:08:06,755 - [INFO] - [E:4| 1000]: Train Loss:0.0013377,  Val MRR:0.20764, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:09:10,902 - [INFO] - [E:4| 1100]: Train Loss:0.0013348,  Val MRR:0.20764, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:10:15,038 - [INFO] - [E:4| 1200]: Train Loss:0.0013326,  Val MRR:0.20764, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:11:19,143 - [INFO] - [E:4| 1300]: Train Loss:0.0013302,  Val MRR:0.20764, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:12:23,347 - [INFO] - [E:4| 1400]: Train Loss:0.0013283,  Val MRR:0.20764, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:13:27,477 - [INFO] - [E:4| 1500]: Train Loss:0.0013269,  Val MRR:0.20764, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:14:31,542 - [INFO] - [E:4| 1600]: Train Loss:0.0013247,  Val MRR:0.20764, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:15:13,457 - [INFO] - [Epoch:4]:  Training Loss:0.001323 | ||||||
|  |  | ||||||
|  | 2023-05-27 06:15:13,677 - [INFO] - [Valid, Tail_Batch Step 0]	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:15:35,362 - [INFO] - [Valid, Tail_Batch Step 100]	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:15:47,916 - [INFO] - [Valid, Head_Batch Step 0]	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:16:09,784 - [INFO] - [Valid, Head_Batch Step 100]	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:16:22,221 - [INFO] - [Evaluating Epoch 4 valid]:  | ||||||
|  | 	MRR: Tail : 0.36022, Head : 0.1037, Avg : 0.23196 | ||||||
|  |  | ||||||
|  | 2023-05-27 06:16:23,220 - [INFO] - [Epoch 4]:  Training Loss: 0.0013235,  Valid MRR: 0.23196,  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  | 2023-05-27 06:16:23,875 - [INFO] - [E:5| 0]: Train Loss:0.0013387,  Val MRR:0.23196, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:17:28,154 - [INFO] - [E:5| 100]: Train Loss:0.0012781,  Val MRR:0.23196, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:18:32,286 - [INFO] - [E:5| 200]: Train Loss:0.0012786,  Val MRR:0.23196, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:19:36,495 - [INFO] - [E:5| 300]: Train Loss:0.0012809,  Val MRR:0.23196, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:20:40,588 - [INFO] - [E:5| 400]: Train Loss:0.0012857,  Val MRR:0.23196, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:21:44,792 - [INFO] - [E:5| 500]: Train Loss:0.0012853,  Val MRR:0.23196, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:22:49,006 - [INFO] - [E:5| 600]: Train Loss:0.0012833,  Val MRR:0.23196, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:23:53,190 - [INFO] - [E:5| 700]: Train Loss:0.0012812,  Val MRR:0.23196, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:24:57,311 - [INFO] - [E:5| 800]: Train Loss:0.0012813,  Val MRR:0.23196, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:26:01,510 - [INFO] - [E:5| 900]: Train Loss:0.0012801,  Val MRR:0.23196, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:27:05,756 - [INFO] - [E:5| 1000]: Train Loss:0.0012789,  Val MRR:0.23196, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:28:09,936 - [INFO] - [E:5| 1100]: Train Loss:0.0012769,  Val MRR:0.23196, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:29:14,145 - [INFO] - [E:5| 1200]: Train Loss:0.0012746,  Val MRR:0.23196, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:30:18,293 - [INFO] - [E:5| 1300]: Train Loss:0.0012721,  Val MRR:0.23196, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:31:22,538 - [INFO] - [E:5| 1400]: Train Loss:0.0012703,  Val MRR:0.23196, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:32:26,694 - [INFO] - [E:5| 1500]: Train Loss:0.0012689,  Val MRR:0.23196, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:33:30,913 - [INFO] - [E:5| 1600]: Train Loss:0.0012677,  Val MRR:0.23196, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:34:12,771 - [INFO] - [Epoch:5]:  Training Loss:0.001267 | ||||||
|  |  | ||||||
|  | 2023-05-27 06:34:12,992 - [INFO] - [Valid, Tail_Batch Step 0]	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:34:34,725 - [INFO] - [Valid, Tail_Batch Step 100]	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:34:47,309 - [INFO] - [Valid, Head_Batch Step 0]	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:35:09,233 - [INFO] - [Valid, Head_Batch Step 100]	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:35:21,676 - [INFO] - [Evaluating Epoch 5 valid]:  | ||||||
|  | 	MRR: Tail : 0.39017, Head : 0.12832, Avg : 0.25924 | ||||||
|  |  | ||||||
|  | 2023-05-27 06:35:22,811 - [INFO] - [Epoch 5]:  Training Loss: 0.0012668,  Valid MRR: 0.25924,  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  | 2023-05-27 06:35:23,469 - [INFO] - [E:6| 0]: Train Loss:0.0011894,  Val MRR:0.25924, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:36:27,594 - [INFO] - [E:6| 100]: Train Loss:0.0012342,  Val MRR:0.25924, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:37:31,786 - [INFO] - [E:6| 200]: Train Loss:0.0012378,  Val MRR:0.25924, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:38:35,956 - [INFO] - [E:6| 300]: Train Loss:0.0012388,  Val MRR:0.25924, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:39:40,226 - [INFO] - [E:6| 400]: Train Loss:0.0012378,  Val MRR:0.25924, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:40:44,423 - [INFO] - [E:6| 500]: Train Loss:0.0012438,  Val MRR:0.25924, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:41:48,645 - [INFO] - [E:6| 600]: Train Loss:0.0012421,  Val MRR:0.25924, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:42:52,773 - [INFO] - [E:6| 700]: Train Loss:0.0012408,  Val MRR:0.25924, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:43:56,948 - [INFO] - [E:6| 800]: Train Loss:0.0012416,  Val MRR:0.25924, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:45:01,063 - [INFO] - [E:6| 900]: Train Loss:0.001242,  Val MRR:0.25924, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:46:05,216 - [INFO] - [E:6| 1000]: Train Loss:0.0012397,  Val MRR:0.25924, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:47:09,350 - [INFO] - [E:6| 1100]: Train Loss:0.0012386,  Val MRR:0.25924, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:48:13,445 - [INFO] - [E:6| 1200]: Train Loss:0.0012373,  Val MRR:0.25924, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:49:17,622 - [INFO] - [E:6| 1300]: Train Loss:0.0012363,  Val MRR:0.25924, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:50:21,832 - [INFO] - [E:6| 1400]: Train Loss:0.0012346,  Val MRR:0.25924, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:51:26,056 - [INFO] - [E:6| 1500]: Train Loss:0.0012342,  Val MRR:0.25924, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:52:30,214 - [INFO] - [E:6| 1600]: Train Loss:0.001233,  Val MRR:0.25924, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:53:12,160 - [INFO] - [Epoch:6]:  Training Loss:0.001232 | ||||||
|  |  | ||||||
|  | 2023-05-27 06:53:12,380 - [INFO] - [Valid, Tail_Batch Step 0]	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:53:34,088 - [INFO] - [Valid, Tail_Batch Step 100]	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:53:46,650 - [INFO] - [Valid, Head_Batch Step 0]	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:54:08,519 - [INFO] - [Valid, Head_Batch Step 100]	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:54:20,952 - [INFO] - [Evaluating Epoch 6 valid]:  | ||||||
|  | 	MRR: Tail : 0.37877, Head : 0.18554, Avg : 0.28215 | ||||||
|  |  | ||||||
|  | 2023-05-27 06:54:22,025 - [INFO] - [Epoch 6]:  Training Loss: 0.0012324,  Valid MRR: 0.28215,  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  | 2023-05-27 06:54:22,682 - [INFO] - [E:7| 0]: Train Loss:0.0011315,  Val MRR:0.28215, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:55:26,826 - [INFO] - [E:7| 100]: Train Loss:0.001205,  Val MRR:0.28215, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:56:30,996 - [INFO] - [E:7| 200]: Train Loss:0.0012037,  Val MRR:0.28215, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:57:35,173 - [INFO] - [E:7| 300]: Train Loss:0.0012034,  Val MRR:0.28215, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:58:39,365 - [INFO] - [E:7| 400]: Train Loss:0.0012073,  Val MRR:0.28215, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 06:59:43,659 - [INFO] - [E:7| 500]: Train Loss:0.0012094,  Val MRR:0.28215, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:00:47,839 - [INFO] - [E:7| 600]: Train Loss:0.0012093,  Val MRR:0.28215, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:01:51,994 - [INFO] - [E:7| 700]: Train Loss:0.0012077,  Val MRR:0.28215, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:02:56,159 - [INFO] - [E:7| 800]: Train Loss:0.0012085,  Val MRR:0.28215, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:04:00,272 - [INFO] - [E:7| 900]: Train Loss:0.0012086,  Val MRR:0.28215, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:05:04,432 - [INFO] - [E:7| 1000]: Train Loss:0.0012104,  Val MRR:0.28215, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:06:08,565 - [INFO] - [E:7| 1100]: Train Loss:0.00121,  Val MRR:0.28215, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:07:12,766 - [INFO] - [E:7| 1200]: Train Loss:0.0012097,  Val MRR:0.28215, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:08:16,920 - [INFO] - [E:7| 1300]: Train Loss:0.0012101,  Val MRR:0.28215, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:09:21,081 - [INFO] - [E:7| 1400]: Train Loss:0.0012095,  Val MRR:0.28215, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:10:25,247 - [INFO] - [E:7| 1500]: Train Loss:0.0012082,  Val MRR:0.28215, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:11:29,494 - [INFO] - [E:7| 1600]: Train Loss:0.0012075,  Val MRR:0.28215, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:12:11,381 - [INFO] - [Epoch:7]:  Training Loss:0.001208 | ||||||
|  |  | ||||||
|  | 2023-05-27 07:12:11,602 - [INFO] - [Valid, Tail_Batch Step 0]	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:12:33,359 - [INFO] - [Valid, Tail_Batch Step 100]	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:12:45,946 - [INFO] - [Valid, Head_Batch Step 0]	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:13:07,852 - [INFO] - [Valid, Head_Batch Step 100]	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:13:20,334 - [INFO] - [Evaluating Epoch 7 valid]:  | ||||||
|  | 	MRR: Tail : 0.40626, Head : 0.21375, Avg : 0.31001 | ||||||
|  |  | ||||||
|  | 2023-05-27 07:13:21,326 - [INFO] - [Epoch 7]:  Training Loss: 0.0012077,  Valid MRR: 0.31001,  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  | 2023-05-27 07:13:21,980 - [INFO] - [E:8| 0]: Train Loss:0.0012363,  Val MRR:0.31001, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:14:26,096 - [INFO] - [E:8| 100]: Train Loss:0.0011868,  Val MRR:0.31001, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:15:30,354 - [INFO] - [E:8| 200]: Train Loss:0.0011847,  Val MRR:0.31001, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:16:34,466 - [INFO] - [E:8| 300]: Train Loss:0.0011814,  Val MRR:0.31001, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:17:38,565 - [INFO] - [E:8| 400]: Train Loss:0.0011847,  Val MRR:0.31001, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:18:42,799 - [INFO] - [E:8| 500]: Train Loss:0.0011887,  Val MRR:0.31001, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:19:46,964 - [INFO] - [E:8| 600]: Train Loss:0.0011901,  Val MRR:0.31001, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:20:51,144 - [INFO] - [E:8| 700]: Train Loss:0.0011897,  Val MRR:0.31001, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:21:55,282 - [INFO] - [E:8| 800]: Train Loss:0.0011913,  Val MRR:0.31001, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:22:59,411 - [INFO] - [E:8| 900]: Train Loss:0.0011918,  Val MRR:0.31001, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:24:03,538 - [INFO] - [E:8| 1000]: Train Loss:0.0011908,  Val MRR:0.31001, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:25:07,761 - [INFO] - [E:8| 1100]: Train Loss:0.0011915,  Val MRR:0.31001, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:26:11,872 - [INFO] - [E:8| 1200]: Train Loss:0.0011925,  Val MRR:0.31001, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:27:16,041 - [INFO] - [E:8| 1300]: Train Loss:0.0011918,  Val MRR:0.31001, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:28:20,210 - [INFO] - [E:8| 1400]: Train Loss:0.0011905,  Val MRR:0.31001, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:29:24,336 - [INFO] - [E:8| 1500]: Train Loss:0.0011898,  Val MRR:0.31001, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:30:28,566 - [INFO] - [E:8| 1600]: Train Loss:0.0011888,  Val MRR:0.31001, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:31:10,538 - [INFO] - [Epoch:8]:  Training Loss:0.001189 | ||||||
|  |  | ||||||
|  | 2023-05-27 07:31:10,758 - [INFO] - [Valid, Tail_Batch Step 0]	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:31:32,478 - [INFO] - [Valid, Tail_Batch Step 100]	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:31:45,038 - [INFO] - [Valid, Head_Batch Step 0]	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:32:06,913 - [INFO] - [Valid, Head_Batch Step 100]	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:32:19,354 - [INFO] - [Evaluating Epoch 8 valid]:  | ||||||
|  | 	MRR: Tail : 0.41408, Head : 0.20141, Avg : 0.30774 | ||||||
|  |  | ||||||
|  | 2023-05-27 07:32:19,354 - [INFO] - [Epoch 8]:  Training Loss: 0.0011888,  Valid MRR: 0.31001,  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  | 2023-05-27 07:32:20,011 - [INFO] - [E:9| 0]: Train Loss:0.0011748,  Val MRR:0.31001, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:33:24,159 - [INFO] - [E:9| 100]: Train Loss:0.0011746,  Val MRR:0.31001, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:34:28,351 - [INFO] - [E:9| 200]: Train Loss:0.0011787,  Val MRR:0.31001, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:35:32,472 - [INFO] - [E:9| 300]: Train Loss:0.0011761,  Val MRR:0.31001, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:36:36,656 - [INFO] - [E:9| 400]: Train Loss:0.0011729,  Val MRR:0.31001, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:37:40,796 - [INFO] - [E:9| 500]: Train Loss:0.0011725,  Val MRR:0.31001, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:38:44,981 - [INFO] - [E:9| 600]: Train Loss:0.0011741,  Val MRR:0.31001, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:39:49,133 - [INFO] - [E:9| 700]: Train Loss:0.001173,  Val MRR:0.31001, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:40:53,329 - [INFO] - [E:9| 800]: Train Loss:0.0011736,  Val MRR:0.31001, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:41:57,558 - [INFO] - [E:9| 900]: Train Loss:0.0011731,  Val MRR:0.31001, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:43:01,737 - [INFO] - [E:9| 1000]: Train Loss:0.0011729,  Val MRR:0.31001, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:44:05,854 - [INFO] - [E:9| 1100]: Train Loss:0.001173,  Val MRR:0.31001, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:45:10,080 - [INFO] - [E:9| 1200]: Train Loss:0.0011727,  Val MRR:0.31001, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:46:14,191 - [INFO] - [E:9| 1300]: Train Loss:0.0011718,  Val MRR:0.31001, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:47:18,385 - [INFO] - [E:9| 1400]: Train Loss:0.001171,  Val MRR:0.31001, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:48:22,543 - [INFO] - [E:9| 1500]: Train Loss:0.0011709,  Val MRR:0.31001, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:49:26,748 - [INFO] - [E:9| 1600]: Train Loss:0.0011712,  Val MRR:0.31001, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:50:08,734 - [INFO] - [Epoch:9]:  Training Loss:0.001171 | ||||||
|  |  | ||||||
|  | 2023-05-27 07:50:08,954 - [INFO] - [Valid, Tail_Batch Step 0]	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:50:30,672 - [INFO] - [Valid, Tail_Batch Step 100]	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:50:43,251 - [INFO] - [Valid, Head_Batch Step 0]	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:51:05,138 - [INFO] - [Valid, Head_Batch Step 100]	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:51:17,628 - [INFO] - [Evaluating Epoch 9 valid]:  | ||||||
|  | 	MRR: Tail : 0.42849, Head : 0.23814, Avg : 0.33331 | ||||||
|  | 	MR: Tail : 655.47, Head : 840.42, Avg : 747.94 | ||||||
|  | 	Hit-1: Tail : 0.35832, Head : 0.15504, Avg : 0.25668 | ||||||
|  | 	Hit-3: Tail : 0.45838, Head : 0.2739, Avg : 0.36614 | ||||||
|  | 	Hit-10: Tail : 0.55785, Head : 0.39074, Avg : 0.47429 | ||||||
|  | 2023-05-27 07:51:18,545 - [INFO] - [Epoch 9]:  Training Loss: 0.0011709,  Valid MRR: 0.33331,  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  | 2023-05-27 07:51:19,204 - [INFO] - [E:10| 0]: Train Loss:0.00113,  Val MRR:0.33331, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:52:23,358 - [INFO] - [E:10| 100]: Train Loss:0.0011531,  Val MRR:0.33331, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:53:27,523 - [INFO] - [E:10| 200]: Train Loss:0.0011557,  Val MRR:0.33331, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:54:31,758 - [INFO] - [E:10| 300]: Train Loss:0.0011545,  Val MRR:0.33331, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:55:36,004 - [INFO] - [E:10| 400]: Train Loss:0.0011554,  Val MRR:0.33331, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:56:40,140 - [INFO] - [E:10| 500]: Train Loss:0.001154,  Val MRR:0.33331, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:57:44,301 - [INFO] - [E:10| 600]: Train Loss:0.0011525,  Val MRR:0.33331, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:58:48,517 - [INFO] - [E:10| 700]: Train Loss:0.0011538,  Val MRR:0.33331, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 07:59:52,698 - [INFO] - [E:10| 800]: Train Loss:0.0011536,  Val MRR:0.33331, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 08:00:56,912 - [INFO] - [E:10| 900]: Train Loss:0.0011541,  Val MRR:0.33331, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 08:02:01,143 - [INFO] - [E:10| 1000]: Train Loss:0.0011546,  Val MRR:0.33331, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 08:03:05,293 - [INFO] - [E:10| 1100]: Train Loss:0.0011542,  Val MRR:0.33331, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 08:04:09,471 - [INFO] - [E:10| 1200]: Train Loss:0.0011539,  Val MRR:0.33331, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 08:05:13,701 - [INFO] - [E:10| 1300]: Train Loss:0.0011531,  Val MRR:0.33331, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 08:06:17,887 - [INFO] - [E:10| 1400]: Train Loss:0.0011534,  Val MRR:0.33331, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 08:07:22,089 - [INFO] - [E:10| 1500]: Train Loss:0.0011546,  Val MRR:0.33331, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 08:08:26,239 - [INFO] - [E:10| 1600]: Train Loss:0.0011552,  Val MRR:0.33331, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 08:09:08,153 - [INFO] - [Epoch:10]:  Training Loss:0.001156 | ||||||
|  |  | ||||||
|  | 2023-05-27 08:09:08,373 - [INFO] - [Valid, Tail_Batch Step 0]	wikidata12k_0.001 | ||||||
|  | 2023-05-27 08:09:30,456 - [INFO] - [Valid, Tail_Batch Step 100]	wikidata12k_0.001 | ||||||
|  | 2023-05-27 08:09:43,084 - [INFO] - [Valid, Head_Batch Step 0]	wikidata12k_0.001 | ||||||
|  | 2023-05-27 08:10:05,005 - [INFO] - [Valid, Head_Batch Step 100]	wikidata12k_0.001 | ||||||
|  | 2023-05-27 08:10:17,448 - [INFO] - [Evaluating Epoch 10 valid]:  | ||||||
|  | 	MRR: Tail : 0.45191, Head : 0.21626, Avg : 0.33409 | ||||||
|  |  | ||||||
|  | 2023-05-27 08:10:18,436 - [INFO] - [Epoch 10]:  Training Loss: 0.0011556,  Valid MRR: 0.33409,  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  | 2023-05-27 08:10:19,090 - [INFO] - [E:11| 0]: Train Loss:0.0011363,  Val MRR:0.33409, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 08:11:23,530 - [INFO] - [E:11| 100]: Train Loss:0.0011426,  Val MRR:0.33409, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 08:12:27,950 - [INFO] - [E:11| 200]: Train Loss:0.0011483,  Val MRR:0.33409, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 08:13:32,143 - [INFO] - [E:11| 300]: Train Loss:0.0011472,  Val MRR:0.33409, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 08:14:36,469 - [INFO] - [E:11| 400]: Train Loss:0.0011477,  Val MRR:0.33409, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 08:15:40,641 - [INFO] - [E:11| 500]: Train Loss:0.0011474,  Val MRR:0.33409, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 08:16:44,731 - [INFO] - [E:11| 600]: Train Loss:0.0011465,  Val MRR:0.33409, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 08:17:48,900 - [INFO] - [E:11| 700]: Train Loss:0.0011469,  Val MRR:0.33409, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 08:18:53,113 - [INFO] - [E:11| 800]: Train Loss:0.0011469,  Val MRR:0.33409, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 08:19:57,285 - [INFO] - [E:11| 900]: Train Loss:0.0011457,  Val MRR:0.33409, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 08:21:01,406 - [INFO] - [E:11| 1000]: Train Loss:0.0011445,  Val MRR:0.33409, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 08:22:05,596 - [INFO] - [E:11| 1100]: Train Loss:0.0011434,  Val MRR:0.33409, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 08:23:09,693 - [INFO] - [E:11| 1200]: Train Loss:0.0011431,  Val MRR:0.33409, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 08:24:13,830 - [INFO] - [E:11| 1300]: Train Loss:0.001143,  Val MRR:0.33409, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 08:25:18,076 - [INFO] - [E:11| 1400]: Train Loss:0.0011426,  Val MRR:0.33409, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 08:26:22,160 - [INFO] - [E:11| 1500]: Train Loss:0.0011422,  Val MRR:0.33409, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 08:27:26,373 - [INFO] - [E:11| 1600]: Train Loss:0.0011418,  Val MRR:0.33409, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 08:28:08,368 - [INFO] - [Epoch:11]:  Training Loss:0.001142 | ||||||
|  |  | ||||||
|  | 2023-05-27 08:28:08,589 - [INFO] - [Valid, Tail_Batch Step 0]	wikidata12k_0.001 | ||||||
|  | 2023-05-27 08:28:30,301 - [INFO] - [Valid, Tail_Batch Step 100]	wikidata12k_0.001 | ||||||
|  | 2023-05-27 08:28:42,888 - [INFO] - [Valid, Head_Batch Step 0]	wikidata12k_0.001 | ||||||
|  | 2023-05-27 08:29:04,760 - [INFO] - [Valid, Head_Batch Step 100]	wikidata12k_0.001 | ||||||
|  | 2023-05-27 08:29:17,200 - [INFO] - [Evaluating Epoch 11 valid]:  | ||||||
|  | 	MRR: Tail : 0.4433, Head : 0.23916, Avg : 0.34123 | ||||||
|  |  | ||||||
|  | 2023-05-27 08:29:18,266 - [INFO] - [Epoch 11]:  Training Loss: 0.0011416,  Valid MRR: 0.34123,  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  | 2023-05-27 08:29:18,927 - [INFO] - [E:12| 0]: Train Loss:0.0010957,  Val MRR:0.34123, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 08:30:23,063 - [INFO] - [E:12| 100]: Train Loss:0.0011303,  Val MRR:0.34123, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 08:31:27,243 - [INFO] - [E:12| 200]: Train Loss:0.001132,  Val MRR:0.34123, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 08:32:31,360 - [INFO] - [E:12| 300]: Train Loss:0.0011321,  Val MRR:0.34123, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 08:33:35,484 - [INFO] - [E:12| 400]: Train Loss:0.0011313,  Val MRR:0.34123, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 08:34:39,656 - [INFO] - [E:12| 500]: Train Loss:0.0011302,  Val MRR:0.34123, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 08:35:43,783 - [INFO] - [E:12| 600]: Train Loss:0.0011318,  Val MRR:0.34123, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 08:36:47,900 - [INFO] - [E:12| 700]: Train Loss:0.0011316,  Val MRR:0.34123, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 08:37:52,082 - [INFO] - [E:12| 800]: Train Loss:0.0011323,  Val MRR:0.34123, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 08:38:56,174 - [INFO] - [E:12| 900]: Train Loss:0.001132,  Val MRR:0.34123, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 08:40:00,316 - [INFO] - [E:12| 1000]: Train Loss:0.0011317,  Val MRR:0.34123, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 08:41:04,530 - [INFO] - [E:12| 1100]: Train Loss:0.0011322,  Val MRR:0.34123, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 08:42:08,648 - [INFO] - [E:12| 1200]: Train Loss:0.0011318,  Val MRR:0.34123, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 08:43:12,819 - [INFO] - [E:12| 1300]: Train Loss:0.0011314,  Val MRR:0.34123, 	wikidata12k_0.001 | ||||||
|  | 2023-05-27 08:44:18,052 - [INFO] - [E:12| 1400]: Train Loss:0.0011312,  Val MRR:0.34123, 	wikidata12k_0.001 | ||||||
| @@ -10,36 +10,15 @@ def extract_learning_curves(args): | |||||||
|     if len(paths) == 1 and os.path.isdir(paths[0]): |     if len(paths) == 1 and os.path.isdir(paths[0]): | ||||||
|         paths = [os.path.join(paths[0], f) for f in os.listdir(paths[0]) if os.path.isfile(os.path.join(paths[0], f))] |         paths = [os.path.join(paths[0], f) for f in os.listdir(paths[0]) if os.path.isfile(os.path.join(paths[0], f))] | ||||||
|     learning_curves = {} |     learning_curves = {} | ||||||
|     print(paths) |  | ||||||
|     for path in paths: |     for path in paths: | ||||||
|         print(path) |  | ||||||
|         learning_curve = [] |         learning_curve = [] | ||||||
|         lines = open(path, 'r').readlines() |         lines = open(path, 'r').readlines() | ||||||
|         last_epoch = -1 |  | ||||||
|         stacked_epoch = -1 |  | ||||||
|         max_epoch = -1 |  | ||||||
|         for line in lines: |         for line in lines: | ||||||
|             matched = re.match(r'[0-9\- :,]*\[INFO\] - \[Epoch ([0-9]+)\].*Valid MRR: ([0-9\.]+).*', line) |             matched = re.match(r'[0-9\- :,]*\[INFO\] - \[Epoch ([0-9]+)\].*Valid MRR: ([0-9\.]+).*', line) | ||||||
|             # matched = re.match(r'\tMRR: Tail : [0-9\.]+, Head : [0-9\.]+, Avg : ([0-9\.]+)', line) |  | ||||||
|             if matched: |             if matched: | ||||||
|                 this_epoch = int(matched.group(1)) |                 learning_curve.append(float(matched.group(2))) | ||||||
|                 if (this_epoch > max_epoch): |                 if int(matched.group(1)) >= args.num_epochs: | ||||||
|                     learning_curve.append(float(matched.group(2))) |  | ||||||
|                     max_epoch = this_epoch |  | ||||||
|                     stacked_epoch = this_epoch |  | ||||||
|                 elif (this_epoch < max_epoch and this_epoch > last_epoch): |  | ||||||
|                     last_epoch = this_epoch |  | ||||||
|                     max_epoch = stacked_epoch + 1 + this_epoch |  | ||||||
|                     learning_curve.append(float(matched.group(2))) |  | ||||||
|                 if max_epoch >= args.num_epochs: |  | ||||||
|                     break |                     break | ||||||
|             # if matched: |  | ||||||
|             #     max_epoch += 1 |  | ||||||
|             #     learning_curve.append(float(matched.group(1))) |  | ||||||
|             #     if max_epoch >= args.num_epochs: |  | ||||||
|             #         break |  | ||||||
|         while len(learning_curve) < args.num_epochs: |  | ||||||
|             learning_curve.append(learning_curve[-1]) |  | ||||||
|         learning_curves[os.path.basename(path)] = learning_curve |         learning_curves[os.path.basename(path)] = learning_curve | ||||||
|     return learning_curves |     return learning_curves | ||||||
|  |  | ||||||
| @@ -53,7 +32,7 @@ def draw_learning_curves(args, learning_curves): | |||||||
|             label = name |             label = name | ||||||
|         plt.plot(epochs, learning_curves[name], label = label) |         plt.plot(epochs, learning_curves[name], label = label) | ||||||
|     plt.xlabel("Epochs") |     plt.xlabel("Epochs") | ||||||
|     plt.ylabel("Best Valid MRR") |     plt.ylabel("MRR") | ||||||
|     plt.legend(title=args.legend_title) |     plt.legend(title=args.legend_title) | ||||||
|     plt.savefig(os.path.join(args.out_path, str(round(datetime.utcnow().timestamp() * 1000)) + '.' + args.fig_filetype)) |     plt.savefig(os.path.join(args.out_path, str(round(datetime.utcnow().timestamp() * 1000)) + '.' + args.fig_filetype)) | ||||||
|  |  | ||||||
|   | |||||||
							
								
								
									
										75
									
								
								wikidata12k_at.out
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										75
									
								
								wikidata12k_at.out
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,75 @@ | |||||||
|  | nohup: ignoring input | ||||||
|  | 2023-05-27 08:51:48,116 - [INFO] - {'dataset': 'wikidata12k', 'name': 'wikidata12k_at', 'gpu': '3', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': False} | ||||||
|  | {'batch_size': 128, | ||||||
|  |  'bias': False, | ||||||
|  |  'config_dir': './config/', | ||||||
|  |  'dataset': 'wikidata12k', | ||||||
|  |  'drop': 0.0, | ||||||
|  |  'drop_path': 0.0, | ||||||
|  |  'embed_dim': 400, | ||||||
|  |  'ent_vec_dim': 400, | ||||||
|  |  'expansion_factor': 4, | ||||||
|  |  'expansion_factor_token': 0.5, | ||||||
|  |  'feat_drop': 0.2, | ||||||
|  |  'filt_h': 1, | ||||||
|  |  'filt_w': 9, | ||||||
|  |  'form': 'plain', | ||||||
|  |  'gpu': '3', | ||||||
|  |  'grid_search': False, | ||||||
|  |  'hid_drop': 0.5, | ||||||
|  |  'image_h': 128, | ||||||
|  |  'image_w': 128, | ||||||
|  |  'in_channels': 1, | ||||||
|  |  'inp_drop': 0.2, | ||||||
|  |  'k_h': 20, | ||||||
|  |  'k_w': 10, | ||||||
|  |  'ker_sz': 9, | ||||||
|  |  'l2': 0.0, | ||||||
|  |  'lbl_smooth': 0.1, | ||||||
|  |  'log_dir': './log/', | ||||||
|  |  'lr': 0.0001, | ||||||
|  |  'max_epochs': 500, | ||||||
|  |  'mixer_depth': 16, | ||||||
|  |  'mixer_dim': 256, | ||||||
|  |  'mixer_dropout': 0.2, | ||||||
|  |  'name': 'wikidata12k_at', | ||||||
|  |  'neg_num': 1000, | ||||||
|  |  'num_filt': 96, | ||||||
|  |  'num_workers': 0, | ||||||
|  |  'opt': 'adam', | ||||||
|  |  'out_channels': 32, | ||||||
|  |  'patch_size': 8, | ||||||
|  |  'perm': 1, | ||||||
|  |  'rel_vec_dim': 400, | ||||||
|  |  'restore': False, | ||||||
|  |  'seed': 42, | ||||||
|  |  'test_only': False, | ||||||
|  |  'train_strategy': 'one_to_n'} | ||||||
|  | Traceback (most recent call last): | ||||||
|  |   File "main.py", line 693, in <module> | ||||||
|  |     model.fit() | ||||||
|  |   File "main.py", line 492, in fit | ||||||
|  |     train_loss = self.run_epoch(epoch) | ||||||
|  |   File "main.py", line 458, in run_epoch | ||||||
|  |     pred = self.model.forward(sub, rel, neg_ent, self.p.train_strategy) | ||||||
|  |   File "/root/kg_374/Thesis_split/models.py", line 558, in forward | ||||||
|  |     z = self.forward_tokens(z) | ||||||
|  |   File "/root/kg_374/Thesis_split/models.py", line 547, in forward_tokens | ||||||
|  |     x = block(x) | ||||||
|  |   File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl | ||||||
|  |     return forward_call(*input, **kwargs) | ||||||
|  |   File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/torch/nn/modules/container.py", line 139, in forward | ||||||
|  |     input = module(input) | ||||||
|  |   File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl | ||||||
|  |     return forward_call(*input, **kwargs) | ||||||
|  |   File "/root/kg_374/Thesis_split/models.py", line 757, in forward | ||||||
|  |     * self.mlp(self.norm2(x))) | ||||||
|  |   File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl | ||||||
|  |     return forward_call(*input, **kwargs) | ||||||
|  |   File "/root/kg_374/Thesis_split/models.py", line 821, in forward | ||||||
|  |     x = self.act(x) | ||||||
|  |   File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl | ||||||
|  |     return forward_call(*input, **kwargs) | ||||||
|  |   File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/torch/nn/modules/activation.py", line 681, in forward | ||||||
|  |     return F.gelu(input, approximate=self.approximate) | ||||||
|  | RuntimeError: CUDA out of memory. Tried to allocate 800.00 MiB (GPU 0; 31.72 GiB total capacity; 10.92 GiB already allocated; 669.94 MiB free; 10.98 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF | ||||||
		Reference in New Issue
	
	Block a user