Thesis/main.py
2024-06-18 23:46:20 +07:00

736 lines
32 KiB
Python

import os
import uuid
import argparse
import logging
import logging.config
import pandas as pd
import sys
import torch
import numpy as np
import time
from collections import defaultdict as ddict
from pprint import pprint
from ordered_set import OrderedSet
from torch.utils.data import DataLoader
from data_loader import TrainDataset, TestDataset
from utils import get_logger, get_combined_results, set_gpu, prepare_env, set_seed
from models import ComplEx, ConvE, HypER, InteractE, FouriER, TuckER
import traceback
class Main(object):
def __init__(self, params, logger):
"""
Constructor of the runner class
Parameters
----------
params: List of hyper-parameters of the model
Returns
-------
Creates computational graph and optimizer
"""
self.p = params
self.logger = logger
self.logger.info(vars(self.p))
if self.p.gpu != '-1' and torch.cuda.is_available():
self.device = torch.device('cuda')
torch.cuda.set_rng_state(torch.cuda.get_rng_state())
torch.backends.cudnn.deterministic = True
else:
self.device = torch.device('cpu')
self.load_data()
self.model = self.add_model()
self.optimizer = self.add_optimizer(self.model.parameters())
def load_data(self):
"""
Reading in raw triples and converts it into a standard format.
Parameters
----------
self.p.dataset: Takes in the name of the dataset (FB15k-237, WN18RR, YAGO3-10)
Returns
-------
self.ent2id: Entity to unique identifier mapping
self.id2rel: Inverse mapping of self.ent2id
self.rel2id: Relation to unique identifier mapping
self.num_ent: Number of entities in the Knowledge graph
self.num_rel: Number of relations in the Knowledge graph
self.embed_dim: Embedding dimension used
self.data['train']: Stores the triples corresponding to training dataset
self.data['valid']: Stores the triples corresponding to validation dataset
self.data['test']: Stores the triples corresponding to test dataset
self.data_iter: The dataloader for different data splits
self.chequer_perm: Stores the Chequer reshaping arrangement
"""
ent_set, rel_set = OrderedSet(), OrderedSet()
for split in ['train', 'test', 'valid']:
for line in open('./data/{}/{}.txt'.format(self.p.dataset, split)):
sub, rel, obj, *_ = map(str.lower, line.strip().split('\t'))
ent_set.add(sub)
rel_set.add(rel)
ent_set.add(obj)
self.ent2id = {}
for line in open('./data/{}/{}'.format(self.p.dataset, "entities.dict")):
id, ent = map(str.lower, line.replace('\xa0', '').strip().split('\t'))
self.ent2id[ent] = int(id)
self.rel2id = {}
for line in open('./data/{}/{}'.format(self.p.dataset, "relations.dict")):
id, rel = map(str.lower, line.strip().split('\t'))
self.rel2id[rel] = int(id)
# self.ent2id = {ent: idx for idx, ent in enumerate(ent_set)}
# self.rel2id = {rel: idx for idx, rel in enumerate(rel_set)}
self.rel2id.update({rel+'_reverse': idx+len(self.rel2id)
for idx, rel in enumerate(rel_set)})
self.id2ent = {idx: ent for ent, idx in self.ent2id.items()}
self.id2rel = {idx: rel for rel, idx in self.rel2id.items()}
self.p.num_ent = len(self.ent2id)
self.p.num_rel = len(self.rel2id) // 2
self.p.embed_dim = self.p.k_w * \
self.p.k_h if self.p.embed_dim is None else self.p.embed_dim
self.data = ddict(list)
sr2o = ddict(set)
for split in ['train', 'test', 'valid']:
for line in open('./data/{}/{}.txt'.format(self.p.dataset, split)):
sub, rel, obj, *_ = map(str.lower, line.replace('\xa0', '').strip().split('\t'))
nt_rel = rel.split('[')[0]
sub, rel, obj, nt_rel = self.ent2id[sub], self.rel2id[rel], self.ent2id[obj], self.rel2id[nt_rel]
self.data[split].append((sub, rel, obj, nt_rel))
if split == 'train':
sr2o[(sub, rel, nt_rel)].add(obj)
sr2o[(obj, rel+self.p.num_rel, nt_rel + self.p.num_rel)].add(sub)
self.data = dict(self.data)
self.sr2o = {k: list(v) for k, v in sr2o.items()}
for split in ['test', 'valid']:
for sub, rel, obj, nt_rel in self.data[split]:
sr2o[(sub, rel, nt_rel)].add(obj)
sr2o[(obj, rel+self.p.num_rel, nt_rel + self.p.num_rel)].add(sub)
self.sr2o_all = {k: list(v) for k, v in sr2o.items()}
self.triples = ddict(list)
if self.p.train_strategy == 'one_to_n':
for (sub, rel, nt_rel), obj in self.sr2o.items():
self.triples['train'].append(
{'triple': (sub, rel, -1, nt_rel), 'label': self.sr2o[(sub, rel, nt_rel)], 'sub_samp': 1})
else:
for sub, rel, obj, nt_rel in self.data['train']:
rel_inv = rel + self.p.num_rel
sub_samp = len(self.sr2o[(sub, rel, nt_rel)]) + \
len(self.sr2o[(obj, rel_inv)])
sub_samp = np.sqrt(1/sub_samp)
self.triples['train'].append({'triple': (
sub, rel, obj, nt_rel), 'label': self.sr2o[(sub, rel, nt_rel)], 'sub_samp': sub_samp})
self.triples['train'].append({'triple': (
obj, rel_inv, sub, nt_rel + self.p.num_rel), 'label': self.sr2o[(obj, rel_inv, nt_rel)], 'sub_samp': sub_samp})
for split in ['test', 'valid']:
for sub, rel, obj, nt_rel in self.data[split]:
rel_inv = rel + self.p.num_rel
self.triples['{}_{}'.format(split, 'tail')].append(
{'triple': (sub, rel, obj, nt_rel), 'label': self.sr2o_all[(sub, rel, nt_rel)]})
self.triples['{}_{}'.format(split, 'head')].append(
{'triple': (obj, rel_inv, sub, nt_rel + self.p.num_rel), 'label': self.sr2o_all[(obj, rel_inv, nt_rel + self.p.num_rel)]})
self.triples = dict(self.triples)
def get_data_loader(dataset_class, split, batch_size, shuffle=True):
return DataLoader(
dataset_class(self.triples[split], self.p),
batch_size=batch_size,
shuffle=shuffle,
num_workers=max(0, self.p.num_workers),
collate_fn=dataset_class.collate_fn
)
self.data_iter = {
'train' : get_data_loader(TrainDataset, 'train', self.p.batch_size),
'valid_head' : get_data_loader(TestDataset, 'valid_head', self.p.batch_size),
'valid_tail' : get_data_loader(TestDataset, 'valid_tail', self.p.batch_size),
'test_head' : get_data_loader(TestDataset, 'test_head', self.p.batch_size),
'test_tail' : get_data_loader(TestDataset, 'test_tail', self.p.batch_size),
}
self.chequer_perm = self.get_chequer_perm()
def get_chequer_perm(self):
"""
Function to generate the chequer permutation required for InteractE model
Parameters
----------
Returns
-------
"""
ent_perm = np.int32([np.random.permutation(self.p.embed_dim)
for _ in range(self.p.perm)])
rel_perm = np.int32([np.random.permutation(self.p.embed_dim)
for _ in range(self.p.perm)])
comb_idx = []
for k in range(self.p.perm):
temp = []
ent_idx, rel_idx = 0, 0
for i in range(self.p.k_h):
for j in range(self.p.k_w):
if k % 2 == 0:
if i % 2 == 0:
temp.append(ent_perm[k, ent_idx])
ent_idx += 1
temp.append(rel_perm[k, rel_idx]+self.p.embed_dim)
rel_idx += 1
else:
temp.append(rel_perm[k, rel_idx]+self.p.embed_dim)
rel_idx += 1
temp.append(ent_perm[k, ent_idx])
ent_idx += 1
else:
if i % 2 == 0:
temp.append(rel_perm[k, rel_idx]+self.p.embed_dim)
rel_idx += 1
temp.append(ent_perm[k, ent_idx])
ent_idx += 1
else:
temp.append(ent_perm[k, ent_idx])
ent_idx += 1
temp.append(rel_perm[k, rel_idx]+self.p.embed_dim)
rel_idx += 1
comb_idx.append(temp)
chequer_perm = torch.LongTensor(np.int32(comb_idx)).to(self.device)
return chequer_perm
def add_model(self):
"""
Creates the computational graph
Parameters
----------
Returns
-------
Creates the computational graph for model and initializes it
"""
model = FouriER(self.p)
model.to(self.device)
return model
def add_optimizer(self, parameters):
"""
Creates an optimizer for training the parameters
Parameters
----------
parameters: The parameters of the model
Returns
-------
Returns an optimizer for learning the parameters of the model
"""
if self.p.opt == 'adam':
return torch.optim.Adam(parameters, lr=self.p.lr, weight_decay=self.p.l2)
else:
return torch.optim.SGD(parameters, lr=self.p.lr, weight_decay=self.p.l2)
def read_batch(self, batch, split):
"""
Function to read a batch of data and move the tensors in batch to CPU/GPU
Parameters
----------
batch: the batch to process
split: (string) If split == 'train', 'valid' or 'test' split
Returns
-------
triples: The triples used for this split
labels: The label for each triple
"""
if split == 'train':
if self.p.train_strategy == 'one_to_x':
triple, label, neg_ent, sub_samp = [
_.to(self.device) for _ in batch]
return triple[:, 0], triple[:, 1], triple[:, 2], triple[:, 3], label, neg_ent, sub_samp
else:
triple, label = [_.to(self.device) for _ in batch]
return triple[:, 0], triple[:, 1], triple[:, 2], triple[:, 3], label, None, None
else:
triple, label = [_.to(self.device) for _ in batch]
return triple[:, 0], triple[:, 1], triple[:, 2], triple[:, 3], label
def save_model(self, save_path):
"""
Function to save a model. It saves the model parameters, best validation scores,
best epoch corresponding to best validation, state of the optimizer and all arguments for the run.
Parameters
----------
save_path: path where the model is saved
Returns
-------
"""
state = {
'state_dict' : self.model.state_dict(),
'best_val' : self.best_val,
'best_epoch' : self.best_epoch,
'optimizer' : self.optimizer.state_dict(),
'args' : vars(self.p)
}
torch.save(state, save_path)
def load_model(self, load_path):
"""
Function to load a saved model
Parameters
----------
load_path: path to the saved model
Returns
-------
"""
state = torch.load(load_path)
state_dict = state['state_dict']
self.best_val_mrr = state['best_val']['mrr']
self.best_val = state['best_val']
self.model.load_state_dict(state_dict)
self.optimizer.load_state_dict(state['optimizer'])
# def evaluate(self, split, epoch=0):
# """
# Function to evaluate the model on validation or test set
# Parameters
# ----------
# split: (string) If split == 'valid' then evaluate on the validation set, else the test set
# epoch: (int) Current epoch count
# Returns
# -------
# resutls: The evaluation results containing the following:
# results['mr']: Average of ranks_left and ranks_right
# results['mrr']: Mean Reciprocal Rank
# results['hits@k']: Probability of getting the correct preodiction in top-k ranks based on predicted score
# """
# left_results = self.predict(split=split, mode='tail_batch')
# right_results = self.predict(split=split, mode='head_batch')
# results = get_combined_results(left_results, right_results)
# self.logger.info('[Epoch {} {}]: MRR: Tail : {:.5}, Head : {:.5}, Avg : {:.5}'.format(
# epoch, split, results['left_mrr'], results['right_mrr'], results['mrr']))
# return results
def evaluate(self, split, epoch=0):
"""
Function to evaluate the model on validation or test set
Parameters
----------
split: (string) If split == 'valid' then evaluate on the validation set, else the test set
epoch: (int) Current epoch count
Returns
-------
resutls: The evaluation results containing the following:
results['mr']: Average of ranks_left and ranks_right
results['mrr']: Mean Reciprocal Rank
results['hits@k']: Probability of getting the correct preodiction in top-k ranks based on predicted score
"""
left_results = self.predict(split=split, mode='tail_batch')
right_results = self.predict(split=split, mode='head_batch')
results = get_combined_results(left_results, right_results)
res_mrr = '\n\tMRR: Tail : {:.5}, Head : {:.5}, Avg : {:.5}\n'.format(results['left_mrr'],
results['right_mrr'],
results['mrr'])
res_mr = '\tMR: Tail : {:.5}, Head : {:.5}, Avg : {:.5}\n'.format(results['left_mr'],
results['right_mr'],
results['mr'])
res_hit1 = '\tHit-1: Tail : {:.5}, Head : {:.5}, Avg : {:.5}\n'.format(results['left_hits@1'],
results['right_hits@1'],
results['hits@1'])
res_hit3 = '\tHit-3: Tail : {:.5}, Head : {:.5}, Avg : {:.5}\n'.format(results['left_hits@3'],
results['right_hits@3'],
results['hits@3'])
res_hit10 = '\tHit-10: Tail : {:.5}, Head : {:.5}, Avg : {:.5}'.format(results['left_hits@10'],
results['right_hits@10'],
results['hits@10'])
log_res = res_mrr + res_mr + res_hit1 + res_hit3 + res_hit10
if (epoch + 1) % 10 == 0 or split == 'test':
self.logger.info(
'[Evaluating Epoch {} {}]: {}'.format(epoch, split, log_res))
else:
self.logger.info(
'[Evaluating Epoch {} {}]: {}'.format(epoch, split, res_mrr))
return results
def predict(self, split='valid', mode='tail_batch'):
"""
Function to run model evaluation for a given mode
Parameters
----------
split: (string) If split == 'valid' then evaluate on the validation set, else the test set
mode: (string): Can be 'head_batch' or 'tail_batch'
Returns
-------
resutls: The evaluation results containing the following:
results['mr']: Average of ranks_left and ranks_right
results['mrr']: Mean Reciprocal Rank
results['hits@k']: Probability of getting the correct preodiction in top-k ranks based on predicted score
"""
self.model.eval()
with torch.no_grad():
results = {}
train_iter = iter(
self.data_iter['{}_{}'.format(split, mode.split('_')[0])])
sub_all = []
obj_all = []
rel_all = []
target_score = []
target_rank = []
obj_pred = []
obj_pred_score = []
for step, batch in enumerate(train_iter):
sub, rel, obj, nt_rel, label = self.read_batch(batch, split)
pred = self.model.forward(sub, rel, nt_rel, None, 'one_to_n')
b_range = torch.arange(pred.size()[0], device=self.device)
target_pred = pred[b_range, obj]
pred = torch.where(label.byte(), torch.zeros_like(pred), pred)
pred[b_range, obj] = target_pred
highest = torch.argsort(pred, dim=1, descending=True)[:,0]
highest_score = pred[b_range, highest]
ranks = 1 + torch.argsort(torch.argsort(pred, dim=1,
descending=True), dim=1, descending=False)[b_range, obj]
sub_all.extend(sub.cpu().numpy())
obj_all.extend(obj.cpu().numpy())
rel_all.extend(rel.cpu().numpy())
target_score.extend(target_pred.cpu().numpy())
target_rank.extend(ranks.cpu().numpy())
obj_pred.extend(highest.cpu().numpy())
obj_pred_score.extend(highest_score.cpu().numpy())
ranks = ranks.float()
results['count'] = torch.numel(
ranks) + results.get('count', 0.0)
results['mr'] = torch.sum(
ranks).item() + results.get('mr', 0.0)
results['mrr'] = torch.sum(
1.0/ranks).item() + results.get('mrr', 0.0)
for k in range(10):
results['hits@{}'.format(k+1)] = torch.numel(
ranks[ranks <= (k+1)]) + results.get('hits@{}'.format(k+1), 0.0)
if step % 100 == 0:
self.logger.info('[{}, {} Step {}]\t{}'.format(
split.title(), mode.title(), step, self.p.name))
df = pd.DataFrame({"sub":sub_all,"rel":rel_all,"obj":obj_all, "rank": target_rank,"score":target_score, "pred":obj_pred,"pred_score":obj_pred_score})
df.to_csv(f"{self.p.name}_result.csv",header=True, index=False)
return results
def run_epoch(self, epoch):
"""
Function to run one epoch of training
Parameters
----------
epoch: current epoch count
Returns
-------
loss: The loss value after the completion of one epoch
"""
self.model.train()
losses = []
train_iter = iter(self.data_iter['train'])
for step, batch in enumerate(train_iter):
self.optimizer.zero_grad()
sub, rel, obj, nt_rel, label, neg_ent, sub_samp = self.read_batch(
batch, 'train')
pred = self.model.forward(sub, rel, nt_rel, neg_ent, self.p.train_strategy)
loss = self.model.loss(pred, label, sub_samp)
loss.backward()
self.optimizer.step()
losses.append(loss.item())
if step % 100 == 0:
self.logger.info('[E:{}| {}]: Train Loss:{:.5}, Val MRR:{:.5}, \t{}'.format(
epoch, step, np.mean(losses), self.best_val_mrr, self.p.name))
loss = np.mean(losses)
self.logger.info(
'[Epoch:{}]: Training Loss:{:.4}\n'.format(epoch, loss))
return loss
def fit(self):
"""
Function to run training and evaluation of model
Parameters
----------
Returns
-------
"""
self.best_val_mrr, self.best_val, self.best_epoch = 0., {}, 0.
val_mrr = 0
save_path = os.path.join('./torch_saved', self.p.name)
if self.p.restore:
self.load_model(save_path)
self.logger.info('Successfully Loaded previous model')
for epoch in range(self.p.max_epochs):
train_loss = self.run_epoch(epoch)
val_results = self.evaluate('valid', epoch)
if val_results['mrr'] > self.best_val_mrr:
self.best_val = val_results
self.best_val_mrr = val_results['mrr']
self.best_epoch = epoch
self.save_model(save_path)
self.logger.info('[Epoch {}]: Training Loss: {:.5}, Valid MRR: {:.5}, \n\n\n'.format(
epoch, train_loss, self.best_val_mrr))
# Restoring model corresponding to the best validation performance and evaluation on test data
self.logger.info('Loading best model, evaluating on test data')
self.load_model(save_path)
self.evaluate('test')
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Parser For Arguments", formatter_class=argparse.ArgumentDefaultsHelpFormatter)
# Dataset and Experiment name
parser.add_argument('--data', dest="dataset", default='FB15k-237',
help='Dataset to use for the experiment')
parser.add_argument("--name", default='testrun_' +
str(uuid.uuid4())[:8], help='Name of the experiment')
# Training parameters
parser.add_argument("--gpu", type=str, default='-1',
help='GPU to use, set -1 for CPU')
parser.add_argument("--train_strategy", type=str,
default='one_to_n', help='Training strategy to use')
parser.add_argument("--opt", type=str, default='adam',
help='Optimizer to use for training')
parser.add_argument('--neg_num', dest="neg_num", default=1000, type=int,
help='Number of negative samples to use for loss calculation')
parser.add_argument('--batch', dest="batch_size",
default=128, type=int, help='Batch size')
parser.add_argument("--l2", type=float, default=0.0,
help='L2 regularization')
parser.add_argument("--lr", type=float, default=0.0001,
help='Learning Rate')
parser.add_argument("--epoch", dest='max_epochs', default=500,
type=int, help='Maximum number of epochs. Default: 500')
parser.add_argument("--num_workers", type=int, default=0,
help='Maximum number of workers used in DataLoader. Default: 10')
parser.add_argument('--seed', dest="seed", default=42,
type=int, help='Seed to reproduce results. Default: 42')
parser.add_argument('--restore', dest="restore", action='store_true',
help='Restore from the previously saved model')
# Model parameters
parser.add_argument("--lbl_smooth", dest='lbl_smooth', default=0.1,
type=float, help='Label smoothing for true labels')
parser.add_argument("--embed_dim", type=int, default=400,
help='Embedding dimension for entity and relation, ignored if k_h and k_w are set')
# Specific setting for embedding vectors: entity embedding vector and relation embedding vector
parser.add_argument('--ent_vec_dim', type=int, default=400,
help="Embedding dimension of entity. Default: 200")
parser.add_argument('--rel_vec_dim', type=int, default=400,
help="Embedding dimension of relation. Default: 200")
parser.add_argument('--bias', dest="bias", action='store_true',
help='Whether to use bias in the model.')
parser.add_argument('--form', type=str, default='plain',
help='The reshaping form to use.')
# Reshape matrix parameters for InteractE
parser.add_argument('--k_w', dest="k_w", default=10, type=int,
help='Width of the reshaped matrix. Default: 10')
parser.add_argument('--k_h', dest="k_h", default=20, type=int,
help='Height of the reshaped matrix. Default: 20')
parser.add_argument('--num_filt', dest="num_filt", default=96, type=int,
help='Number of filters in convolution. Default: 96. Test: 32, 64, 128')
parser.add_argument('--ker_sz', dest="ker_sz", default=9, type=int,
help='Kernel size to use. Default: 9. Test: 3, 5, 7, 9')
parser.add_argument('--perm', dest="perm", default=1, type=int,
help='Number of Feature rearrangement to use. Default: 1, 2, 3, 4, 5')
# Configuration for dropout technique
parser.add_argument('--hid_drop', dest="hid_drop", default=0.5, type=float,
help='Dropout for Hidden layer. Default: 0.5. Test: 0.2, 0.3, 0.4, 0.5')
parser.add_argument('--feat_drop', dest="feat_drop", default=0.2, type=float,
help='Dropout for Feature. Default: 0.5. Test: 0.2, 0.3, 0.4, 0.5')
parser.add_argument('--inp_drop', dest="inp_drop", default=0.2, type=float,
help='Dropout for Input layer. Default: 0.5. Test: 0.2, 0.3, 0.4, 0.5')
parser.add_argument('--drop_path', dest="drop_path", default=0.0, type=float,
help='Path dropout. Default: 0.5. Test: 0.2, 0.3, 0.4, 0.5')
parser.add_argument('--drop', dest="drop", default=0.0, type=float,
help='Inner drop. Default: 0.5. Test: 0.2, 0.3, 0.4, 0.5')
# Configuration for in/output channels for ConvE, HypER, HypE
parser.add_argument('--in_channels', dest="in_channels",
default=1, type=int, help='Input channels. Default: 1')
parser.add_argument('--out_channels', dest="out_channels", default=32, type=int,
help='Output channels. Default: 96. Test: 32, 64, 128. Can be the same with num_filt hyperparameter.')
parser.add_argument('--filt_h', type=int, default=1,
help='Height of filter. This configuration for HypER model. Default: 1. Choice: 1, 2, 3, 5, 7, 9')
parser.add_argument('--filt_w', type=int, default=9,
help='Width of filter. This configuration for HypER model. Default: 9. If filt_h is 1, then filt_w: 1, 2, 3, 5, 7, 9, 11, 12, 13, 15')
# Configuration for mixer layer
parser.add_argument('--image_h', dest="image_h",
default=128, type=int, help='')
parser.add_argument('--image_w', dest="image_w",
default=128, type=int, help='')
parser.add_argument('--patch_size', dest="patch_size",
default=8, type=int, help='')
parser.add_argument('--mixer_dim', dest="mixer_dim",
default=256, type=int, help='')
parser.add_argument('--expansion_factor', dest="expansion_factor",
default=4, type=int, help='')
parser.add_argument('--expansion_factor_token', dest="expansion_factor_token",
default=0.5, type=float, help='')
parser.add_argument('--mixer_depth', dest="mixer_depth",
default=16, type=int, help='')
parser.add_argument('--mixer_dropout', dest="mixer_dropout",
default=0.2, type=float, help='')
# Logging parameters
parser.add_argument('--logdir', dest="log_dir",
default='./log/', help='Log directory')
parser.add_argument('--config', dest="config_dir",
default='./config/', help='Config directory')
parser.add_argument('--test_only', action='store_true', default=False)
parser.add_argument('--grid_search', action='store_true', default=False)
args = parser.parse_args()
prepare_env()
set_gpu(args.gpu)
set_seed(args.seed)
if (args.grid_search):
model = Main(args)
from sklearn.model_selection import GridSearchCV
from skorch import NeuralNet
estimator = NeuralNet(
module=FouriER(model.p),
criterion=torch.nn.BCELoss,
optimizer=torch.optim.Adam,
max_epochs=100,
batch_size=128,
verbose=False
)
paramsGrid = {
'optimizer__lr': [0.0003, 0.001],
# 'optimizer__weight_decay': [1e-4, 1e-5, 1e-6],
# 'module__hid_drop': [0.2, 0.5, 0.7],
# 'module__embed_dim': [300, 400, 500],
}
grid = GridSearchCV(estimator=estimator, param_grid=paramsGrid, n_jobs=-1, cv=2, scoring=torch.nn.BCELoss)
data = np.array(model.triples['train'])
data = data[np.random.choice(np.arange(len(data)), size=int(len(data) * 0.15), replace=False)]
dataloader = iter(DataLoader(
TrainDataset(data, model.p),
batch_size=len(data),
shuffle=True,
num_workers=max(0, model.p.num_workers),
collate_fn=TrainDataset.collate_fn
))
for step, batch in enumerate(dataloader):
sub, rel, obj, nt_rel, label, neg_ent, sub_samp = model.read_batch(
batch, 'train')
if (neg_ent is None):
neg_ent = np.repeat(None, repeats=len(sub))
else:
neg_ent = neg_ent.cpu()
inputs = []
for i in range(len(sub)):
input = {}
input['sub'] = sub[i]
input['rel'] = rel[i]
input['neg_ents'] = neg_ent[i]
inputs.append(input)
search = grid.fit(inputs, label)
print("BEST SCORE: ", search.best_score_)
print("BEST PARAMS: ", search.best_params_)
logger = get_logger(
args.name, args.log_dir, args.config_dir)
if (args.test_only):
model = Main(args, logger)
save_path = os.path.join('./torch_saved', args.name)
model.load_model(save_path)
model.evaluate('test')
else:
model = Main(args, logger)
model.fit()
# while True:
# try:
# model = Main(args, logger)
# model.fit()
# except Exception as e:
# print(e)
# traceback.print_exc()
# try:
# del model
# except Exception:
# pass
# time.sleep(30)
# continue
# break