try swin
This commit is contained in:
parent
2e2b12571a
commit
30805a0af9
135
models.py
135
models.py
@ -9,7 +9,7 @@ from layers import *
|
||||
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
||||
from timm.models.layers import DropPath, trunc_normal_
|
||||
from timm.models.registry import register_model
|
||||
from timm.models.layers.helpers import to_2tuple
|
||||
from timm.layers.helpers import to_2tuple
|
||||
|
||||
|
||||
class ConvE(torch.nn.Module):
|
||||
@ -707,6 +707,136 @@ def basic_blocks(dim, index, layers,
|
||||
|
||||
return blocks
|
||||
|
||||
class WindowAttention(nn.Module):
|
||||
r""" Window based multi-head self attention (W-MSA) module with relative position bias.
|
||||
It supports both of shifted and non-shifted window.
|
||||
|
||||
Args:
|
||||
dim (int): Number of input channels.
|
||||
window_size (tuple[int]): The height and width of the window.
|
||||
num_heads (int): Number of attention heads.
|
||||
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
||||
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
|
||||
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
|
||||
pretrained_window_size (tuple[int]): The height and width of the window in pre-training.
|
||||
"""
|
||||
|
||||
def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0.,
|
||||
pretrained_window_size=[0, 0]):
|
||||
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.window_size = window_size # Wh, Ww
|
||||
self.pretrained_window_size = pretrained_window_size
|
||||
self.num_heads = num_heads
|
||||
|
||||
self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True)
|
||||
|
||||
# mlp to generate continuous relative position bias
|
||||
self.cpb_mlp = nn.Sequential(nn.Linear(2, 512, bias=True),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.Linear(512, num_heads, bias=False))
|
||||
|
||||
# get relative_coords_table
|
||||
relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0], dtype=torch.float32)
|
||||
relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1], dtype=torch.float32)
|
||||
relative_coords_table = torch.stack(
|
||||
torch.meshgrid([relative_coords_h,
|
||||
relative_coords_w])).permute(1, 2, 0).contiguous().unsqueeze(0) # 1, 2*Wh-1, 2*Ww-1, 2
|
||||
if pretrained_window_size[0] > 0:
|
||||
relative_coords_table[:, :, :, 0] /= (pretrained_window_size[0] - 1)
|
||||
relative_coords_table[:, :, :, 1] /= (pretrained_window_size[1] - 1)
|
||||
else:
|
||||
relative_coords_table[:, :, :, 0] /= (self.window_size[0] - 1)
|
||||
relative_coords_table[:, :, :, 1] /= (self.window_size[1] - 1)
|
||||
relative_coords_table *= 8 # normalize to -8, 8
|
||||
relative_coords_table = torch.sign(relative_coords_table) * torch.log2(
|
||||
torch.abs(relative_coords_table) + 1.0) / np.log2(8)
|
||||
|
||||
self.register_buffer("relative_coords_table", relative_coords_table)
|
||||
|
||||
# get pair-wise relative position index for each token inside the window
|
||||
coords_h = torch.arange(self.window_size[0])
|
||||
coords_w = torch.arange(self.window_size[1])
|
||||
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
||||
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
||||
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
||||
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
||||
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
|
||||
relative_coords[:, :, 1] += self.window_size[1] - 1
|
||||
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
||||
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
||||
self.register_buffer("relative_position_index", relative_position_index)
|
||||
|
||||
self.qkv = nn.Linear(dim, dim * 3, bias=False)
|
||||
if qkv_bias:
|
||||
self.q_bias = nn.Parameter(torch.zeros(dim))
|
||||
self.v_bias = nn.Parameter(torch.zeros(dim))
|
||||
else:
|
||||
self.q_bias = None
|
||||
self.v_bias = None
|
||||
self.attn_drop = nn.Dropout(attn_drop)
|
||||
self.proj = nn.Linear(dim, dim)
|
||||
self.proj_drop = nn.Dropout(proj_drop)
|
||||
self.softmax = nn.Softmax(dim=-1)
|
||||
|
||||
def forward(self, x, mask=None):
|
||||
"""
|
||||
Args:
|
||||
x: input features with shape of (num_windows*B, N, C)
|
||||
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
|
||||
"""
|
||||
B_, N, C = x.shape
|
||||
qkv_bias = None
|
||||
if self.q_bias is not None:
|
||||
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
|
||||
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
|
||||
qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
||||
|
||||
# cosine attention
|
||||
attn = (F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1))
|
||||
logit_scale = torch.clamp(self.logit_scale, max=torch.log(torch.tensor(1. / 0.01))).exp()
|
||||
attn = attn * logit_scale
|
||||
|
||||
relative_position_bias_table = self.cpb_mlp(self.relative_coords_table).view(-1, self.num_heads)
|
||||
relative_position_bias = relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
||||
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
|
||||
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
||||
relative_position_bias = 16 * torch.sigmoid(relative_position_bias)
|
||||
attn = attn + relative_position_bias.unsqueeze(0)
|
||||
|
||||
if mask is not None:
|
||||
nW = mask.shape[0]
|
||||
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
|
||||
attn = attn.view(-1, self.num_heads, N, N)
|
||||
attn = self.softmax(attn)
|
||||
else:
|
||||
attn = self.softmax(attn)
|
||||
|
||||
attn = self.attn_drop(attn)
|
||||
|
||||
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
||||
x = self.proj(x)
|
||||
x = self.proj_drop(x)
|
||||
return x
|
||||
|
||||
def extra_repr(self) -> str:
|
||||
return f'dim={self.dim}, window_size={self.window_size}, ' \
|
||||
f'pretrained_window_size={self.pretrained_window_size}, num_heads={self.num_heads}'
|
||||
|
||||
def flops(self, N):
|
||||
# calculate flops for 1 window with token length of N
|
||||
flops = 0
|
||||
# qkv = self.qkv(x)
|
||||
flops += N * self.dim * 3 * self.dim
|
||||
# attn = (q @ k.transpose(-2, -1))
|
||||
flops += self.num_heads * N * (self.dim // self.num_heads) * N
|
||||
# x = (attn @ v)
|
||||
flops += self.num_heads * N * N * (self.dim // self.num_heads)
|
||||
# x = self.proj(x)
|
||||
flops += N * self.dim * self.dim
|
||||
return flops
|
||||
|
||||
class PoolFormerBlock(nn.Module):
|
||||
"""
|
||||
@ -731,7 +861,8 @@ class PoolFormerBlock(nn.Module):
|
||||
|
||||
self.norm1 = norm_layer(dim)
|
||||
#self.token_mixer = Pooling(pool_size=pool_size)
|
||||
self.token_mixer = FNetBlock()
|
||||
# self.token_mixer = FNetBlock()
|
||||
self.token_mixer = WindowAttention(dim=dim, window_size=to_2tuple(7), num_heads=3, pretrained_window_size=[5,5])
|
||||
self.norm2 = norm_layer(dim)
|
||||
mlp_hidden_dim = int(dim * mlp_ratio)
|
||||
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim,
|
||||
|
@ -1,4 +1,6 @@
|
||||
torch==1.12.1+cu116
|
||||
ordered-set==4.1.0
|
||||
numpy==1.21.5
|
||||
einops==0.4.1
|
||||
einops==0.4.1
|
||||
pandas
|
||||
timm==0.9.16
|
Loading…
Reference in New Issue
Block a user