try gtp vit
This commit is contained in:
parent
f8e969cbd1
commit
41a5c7b05a
308
models.py
308
models.py
@ -543,6 +543,44 @@ class FouriER(torch.nn.Module):
|
||||
|
||||
def forward_tokens(self, x):
|
||||
outs = []
|
||||
B, C, H, W = x.shape
|
||||
N = H*W
|
||||
if self.graph_type in ["Semantic", "Mixed"]:
|
||||
# Generate the semantic graph w.r.t. the cosine similarity between tokens
|
||||
# Compute cosine similarity
|
||||
if self.class_token:
|
||||
x_normed = x[:, 1:] / x[:, 1:].norm(dim=-1, keepdim=True)
|
||||
else:
|
||||
x_normed = x / x.norm(dim=-1, keepdim=True)
|
||||
x_cossim = x_normed @ x_normed.transpose(-1, -2)
|
||||
threshold = torch.kthvalue(x_cossim, N-1-self.num_neighbours, dim=-1, keepdim=True)[0] # B,H,1,1
|
||||
semantic_graph = torch.where(x_cossim>=threshold, 1.0, 0.0)
|
||||
if self.class_token:
|
||||
semantic_graph = semantic_graph - torch.eye(N-1, device=semantic_graph.device).unsqueeze(0)
|
||||
else:
|
||||
semantic_graph = semantic_graph - torch.eye(N, device=semantic_graph.device).unsqueeze(0)
|
||||
|
||||
if self.graph_type == "None":
|
||||
graph = None
|
||||
else:
|
||||
if self.graph_type == "Spatial":
|
||||
graph = self.spatial_graph.unsqueeze(0).expand(B,-1,-1)#.to(x.device)
|
||||
elif self.graph_type == "Semantic":
|
||||
graph = semantic_graph
|
||||
elif self.graph_type == "Mixed":
|
||||
# Integrate the spatial graph and semantic graph
|
||||
spatial_graph = self.spatial_graph.unsqueeze(0).expand(B,-1,-1).to(x.device)
|
||||
graph = torch.bitwise_or(semantic_graph.int(), spatial_graph.int()).float()
|
||||
|
||||
# Symmetrically normalize the graph
|
||||
degree = graph.sum(-1) # B, N
|
||||
degree = torch.diag_embed(degree**(-1/2))
|
||||
graph = degree @ graph @ degree
|
||||
|
||||
if self.token_scale:
|
||||
token_scales = self.token_scales.unsqueeze(0).expand(B,-1).to(x.device)
|
||||
else:
|
||||
token_scales = None
|
||||
for idx, block in enumerate(self.network):
|
||||
x = block(x)
|
||||
# output only the features of last layer for image classification
|
||||
@ -868,6 +906,270 @@ def window_reverse(windows, window_size, H, W):
|
||||
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, -1, H, W)
|
||||
return x
|
||||
|
||||
def propagate(x: torch.Tensor, weight: torch.Tensor,
|
||||
index_kept: torch.Tensor, index_prop: torch.Tensor,
|
||||
standard: str = "None", alpha: Optional[float] = 0,
|
||||
token_scales: Optional[torch.Tensor] = None,
|
||||
cls_token=True):
|
||||
"""
|
||||
Propagate tokens based on the selection results.
|
||||
================================================
|
||||
Args:
|
||||
- x: Tensor([B, N, C]): the feature map of N tokens, including the [CLS] token.
|
||||
|
||||
- weight: Tensor([B, N-1, N-1]): the weight of each token propagated to the other tokens,
|
||||
excluding the [CLS] token. weight could be a pre-defined
|
||||
graph of the current feature map (by default) or the
|
||||
attention map (need to manually modify the Block Module).
|
||||
|
||||
- index_kept: Tensor([B, N-1-num_prop]): the index of kept image tokens in the feature map X
|
||||
|
||||
- index_prop: Tensor([B, num_prop]): the index of propagated image tokens in the feature map X
|
||||
|
||||
- standard: str: the method applied to propagate the tokens, including "None", "Mean" and
|
||||
"GraphProp"
|
||||
|
||||
- alpha: float: the coefficient of propagated features
|
||||
|
||||
- token_scales: Tensor([B, N]): the scale of tokens, including the [CLS] token. token_scales
|
||||
is None by default. If it is not None, then token_scales
|
||||
represents the scales of each token and should sum up to N.
|
||||
|
||||
Return:
|
||||
- x: Tensor([B, N-1-num_prop, C]): the feature map after propagation
|
||||
|
||||
- weight: Tensor([B, N-1-num_prop, N-1-num_prop]): the graph of feature map after propagation
|
||||
|
||||
- token_scales: Tensor([B, N-1-num_prop]): the scale of tokens after propagation
|
||||
"""
|
||||
|
||||
B, C, N = x.shape
|
||||
|
||||
# Step 1: divide tokens
|
||||
if cls_token:
|
||||
x_cls = x[:, 0:1] # B, 1, C
|
||||
x_kept = x.gather(dim=1, index=index_kept.unsqueeze(-1).expand(-1,-1,C)) # B, N-1-num_prop, C
|
||||
x_prop = x.gather(dim=1, index=index_prop.unsqueeze(-1).expand(-1,-1,C)) # B, num_prop, C
|
||||
|
||||
# Step 2: divide token_scales if it is not None
|
||||
if token_scales is not None:
|
||||
if cls_token:
|
||||
token_scales_cls = token_scales[:, 0:1] # B, 1
|
||||
token_scales_kept = token_scales.gather(dim=1, index=index_kept) # B, N-1-num_prop
|
||||
token_scales_prop = token_scales.gather(dim=1, index=index_prop) # B, num_prop
|
||||
|
||||
# Step 3: propagate tokens
|
||||
if standard == "None":
|
||||
"""
|
||||
No further propagation
|
||||
"""
|
||||
pass
|
||||
|
||||
elif standard == "Mean":
|
||||
"""
|
||||
Calculate the mean of all the propagated tokens,
|
||||
and concatenate the result token back to kept tokens.
|
||||
"""
|
||||
# naive average
|
||||
x_prop = x_prop.mean(1, keepdim=True) # B, 1, C
|
||||
# Concatenate the average token
|
||||
x_kept = torch.cat((x_kept, x_prop), dim=1) # B, N-num_prop, C
|
||||
|
||||
elif standard == "GraphProp":
|
||||
"""
|
||||
Propagate all the propagated token to kept token
|
||||
with respect to the weights and token scales.
|
||||
"""
|
||||
assert weight is not None, "The graph weight is needed for graph propagation"
|
||||
|
||||
# Step 3.1: divide propagation weights.
|
||||
if cls_token:
|
||||
index_kept = index_kept - 1 # since weights do not include the [CLS] token
|
||||
index_prop = index_prop - 1 # since weights do not include the [CLS] token
|
||||
weight = weight.gather(dim=1, index=index_kept.unsqueeze(-1).expand(-1,-1,N-1)) # B, N-1-num_prop, N-1
|
||||
weight_prop = weight.gather(dim=2, index=index_prop.unsqueeze(1).expand(-1,weight.shape[1],-1)) # B, N-1-num_prop, num_prop
|
||||
weight = weight.gather(dim=2, index=index_kept.unsqueeze(1).expand(-1,weight.shape[1],-1)) # B, N-1-num_prop, N-1-num_prop
|
||||
else:
|
||||
weight = weight.gather(dim=1, index=index_kept.unsqueeze(-1).expand(-1,-1,N)) # B, N-1-num_prop, N-1
|
||||
weight_prop = weight.gather(dim=2, index=index_prop.unsqueeze(1).expand(-1,weight.shape[1],-1)) # B, N-1-num_prop, num_prop
|
||||
weight = weight.gather(dim=2, index=index_kept.unsqueeze(1).expand(-1,weight.shape[1],-1)) # B, N-1-num_prop, N-1-num_prop
|
||||
|
||||
# Step 3.2: generate the broadcast message and propagate the message to corresponding kept tokens
|
||||
# Simple implementation
|
||||
x_prop = weight_prop @ x_prop # B, N-1-num_prop, C
|
||||
x_kept = x_kept + alpha * x_prop # B, N-1-num_prop, C
|
||||
|
||||
""" scatter_reduce implementation for batched inputs
|
||||
# Get the non-zero values
|
||||
non_zero_indices = torch.nonzero(weight_prop, as_tuple=True)
|
||||
non_zero_values = weight_prop[non_zero_indices]
|
||||
|
||||
# Sparse multiplication
|
||||
batch_indices, row_indices, col_indices = non_zero_indices
|
||||
sparse_matmul = alpha * non_zero_values[:, None] * x_prop[batch_indices, col_indices, :]
|
||||
reduce_indices = batch_indices * x_kept.shape[1] + row_indices
|
||||
|
||||
x_kept = x_kept.reshape(-1, C).scatter_reduce(dim=0,
|
||||
index=reduce_indices[:, None],
|
||||
src=sparse_matmul,
|
||||
reduce="sum",
|
||||
include_self=True)
|
||||
x_kept = x_kept.reshape(B, -1, C)
|
||||
"""
|
||||
|
||||
# Step 3.3: calculate the scale of each token if token_scales is not None
|
||||
if token_scales is not None:
|
||||
if cls_token:
|
||||
token_scales_cls = token_scales[:, 0:1] # B, 1
|
||||
token_scales = token_scales[:, 1:]
|
||||
token_scales_kept = token_scales.gather(dim=1, index=index_kept) # B, N-1-num_prop
|
||||
token_scales_prop = token_scales.gather(dim=1, index=index_prop) # B, num_prop
|
||||
token_scales_prop = weight_prop @ token_scales_prop.unsqueeze(-1) # B, N-1-num_prop, 1
|
||||
token_scales = token_scales_kept + alpha * token_scales_prop.squeeze(-1) # B, N-1-num_prop
|
||||
if cls_token:
|
||||
token_scales = torch.cat((token_scales_cls, token_scales), dim=1) # B, N-num_prop
|
||||
else:
|
||||
assert False, "Propagation method \'%f\' has not been supported yet." % standard
|
||||
|
||||
|
||||
if cls_token:
|
||||
# Step 4: concatenate the [CLS] token and generate returned value
|
||||
x = torch.cat((x_cls, x_kept), dim=1) # B, N-num_prop, C
|
||||
else:
|
||||
x = x_kept
|
||||
return x, weight, token_scales
|
||||
|
||||
|
||||
|
||||
def select(weight: torch.Tensor, standard: str = "None", num_prop: int = 0, cls_token = True):
|
||||
"""
|
||||
Select image tokens to be propagated. The [CLS] token will be ignored.
|
||||
======================================================================
|
||||
Args:
|
||||
- weight: Tensor([B, H, N, N]): used for selecting the kept tokens. Only support the
|
||||
attention map of tokens at the moment.
|
||||
|
||||
- standard: str: the method applied to select the tokens
|
||||
|
||||
- num_prop: int: the number of tokens to be propagated
|
||||
|
||||
Return:
|
||||
- index_kept: Tensor([B, N-1-num_prop]): the index of kept tokens
|
||||
|
||||
- index_prop: Tensor([B, num_prop]): the index of propagated tokens
|
||||
"""
|
||||
|
||||
assert len(weight.shape) == 4, "Selection methods on tensors other than the attention map haven't been supported yet."
|
||||
B, H, N1, N2 = weight.shape
|
||||
assert N1 == N2, "Selection methods on tensors other than the attention map haven't been supported yet."
|
||||
N = N1
|
||||
assert num_prop >= 0, "The number of propagated/pruned tokens must be non-negative."
|
||||
|
||||
if cls_token:
|
||||
if standard == "CLSAttnMean":
|
||||
token_rank = weight[:,:,0,1:].mean(1)
|
||||
|
||||
elif standard == "CLSAttnMax":
|
||||
token_rank = weight[:,:,0,1:].max(1)[0]
|
||||
|
||||
elif standard == "IMGAttnMean":
|
||||
token_rank = weight[:,:,:,1:].sum(-2).mean(1)
|
||||
|
||||
elif standard == "IMGAttnMax":
|
||||
token_rank = weight[:,:,:,1:].sum(-2).max(1)[0]
|
||||
|
||||
elif standard == "DiagAttnMean":
|
||||
token_rank = torch.diagonal(weight, dim1=-2, dim2=-1)[:,:,1:].mean(1)
|
||||
|
||||
elif standard == "DiagAttnMax":
|
||||
token_rank = torch.diagonal(weight, dim1=-2, dim2=-1)[:,:,1:].max(1)[0]
|
||||
|
||||
elif standard == "MixedAttnMean":
|
||||
token_rank_1 = torch.diagonal(weight, dim1=-2, dim2=-1)[:,:,1:].mean(1)
|
||||
token_rank_2 = weight[:,:,:,1:].sum(-2).mean(1)
|
||||
token_rank = token_rank_1 * token_rank_2
|
||||
|
||||
elif standard == "MixedAttnMax":
|
||||
token_rank_1 = torch.diagonal(weight, dim1=-2, dim2=-1)[:,:,1:].max(1)[0]
|
||||
token_rank_2 = weight[:,:,:,1:].sum(-2).max(1)[0]
|
||||
token_rank = token_rank_1 * token_rank_2
|
||||
|
||||
elif standard == "SumAttnMax":
|
||||
token_rank_1 = torch.diagonal(weight, dim1=-2, dim2=-1)[:,:,1:].max(1)[0]
|
||||
token_rank_2 = weight[:,:,:,1:].sum(-2).max(1)[0]
|
||||
token_rank = token_rank_1 + token_rank_2
|
||||
|
||||
elif standard == "CosSimMean":
|
||||
weight = weight[:,:,1:,:].mean(1)
|
||||
weight = weight / weight.norm(dim=-1, keepdim=True)
|
||||
token_rank = -(weight @ weight.transpose(-1, -2)).sum(-1)
|
||||
|
||||
elif standard == "CosSimMax":
|
||||
weight = weight[:,:,1:,:].max(1)[0]
|
||||
weight = weight / weight.norm(dim=-1, keepdim=True)
|
||||
token_rank = -(weight @ weight.transpose(-1, -2)).sum(-1)
|
||||
|
||||
elif standard == "Random":
|
||||
token_rank = torch.randn((B, N-1), device=weight.device)
|
||||
|
||||
else:
|
||||
print("Type\'", standard, "\' selection not supported.")
|
||||
assert False
|
||||
|
||||
token_rank = torch.argsort(token_rank, dim=1, descending=True) # B, N-1
|
||||
index_kept = token_rank[:, :-num_prop]+1 # B, N-1-num_prop
|
||||
index_prop = token_rank[:, -num_prop:]+1 # B, num_prop
|
||||
|
||||
else:
|
||||
if standard == "IMGAttnMean":
|
||||
token_rank = weight.sum(-2).mean(1)
|
||||
|
||||
elif standard == "IMGAttnMax":
|
||||
token_rank = weight.sum(-2).max(1)[0]
|
||||
|
||||
elif standard == "DiagAttnMean":
|
||||
token_rank = torch.diagonal(weight, dim1=-2, dim2=-1).mean(1)
|
||||
|
||||
elif standard == "DiagAttnMax":
|
||||
token_rank = torch.diagonal(weight, dim1=-2, dim2=-1).max(1)[0]
|
||||
|
||||
elif standard == "MixedAttnMean":
|
||||
token_rank_1 = torch.diagonal(weight, dim1=-2, dim2=-1).mean(1)
|
||||
token_rank_2 = weight.sum(-2).mean(1)
|
||||
token_rank = token_rank_1 * token_rank_2
|
||||
|
||||
elif standard == "MixedAttnMax":
|
||||
token_rank_1 = torch.diagonal(weight, dim1=-2, dim2=-1).max(1)[0]
|
||||
token_rank_2 = weight.sum(-2).max(1)[0]
|
||||
token_rank = token_rank_1 * token_rank_2
|
||||
|
||||
elif standard == "SumAttnMax":
|
||||
token_rank_1 = torch.diagonal(weight, dim1=-2, dim2=-1).max(1)[0]
|
||||
token_rank_2 = weight.sum(-2).max(1)[0]
|
||||
token_rank = token_rank_1 + token_rank_2
|
||||
|
||||
elif standard == "CosSimMean":
|
||||
weight = weight.mean(1)
|
||||
weight = weight / weight.norm(dim=-1, keepdim=True)
|
||||
token_rank = -(weight @ weight.transpose(-1, -2)).sum(-1)
|
||||
|
||||
elif standard == "CosSimMax":
|
||||
weight = weight.max(1)[0]
|
||||
weight = weight / weight.norm(dim=-1, keepdim=True)
|
||||
token_rank = -(weight @ weight.transpose(-1, -2)).sum(-1)
|
||||
|
||||
elif standard == "Random":
|
||||
token_rank = torch.randn((B, N-1), device=weight.device)
|
||||
|
||||
else:
|
||||
print("Type\'", standard, "\' selection not supported.")
|
||||
assert False
|
||||
|
||||
token_rank = torch.argsort(token_rank, dim=1, descending=True) # B, N-1
|
||||
index_kept = token_rank[:, :-num_prop] # B, N-1-num_prop
|
||||
index_prop = token_rank[:, -num_prop:] # B, num_prop
|
||||
return index_kept, index_prop
|
||||
|
||||
class PoolFormerBlock(nn.Module):
|
||||
"""
|
||||
Implementation of one PoolFormer block.
|
||||
@ -910,13 +1212,17 @@ class PoolFormerBlock(nn.Module):
|
||||
self.layer_scale_2 = nn.Parameter(
|
||||
layer_scale_init_value * torch.ones((dim)), requires_grad=True)
|
||||
|
||||
def forward(self, x):
|
||||
def forward(self, x, graph):
|
||||
B, C, H, W = x.shape
|
||||
x_windows = window_partition(x, self.window_size)
|
||||
x_windows = x_windows.view(-1, self.window_size * self.window_size, C)
|
||||
attn_windows = self.token_mixer(x_windows, mask=self.attn_mask)
|
||||
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
||||
x_attn = window_reverse(attn_windows, self.window_size, H, W)
|
||||
index_kept, index_prop = select(x_attn, standard="MixedAttnMax", num_prop=0,
|
||||
cls_token=False)
|
||||
x, weight, token_scales = propagate(x, weight, index_kept, index_prop, standard="GraphProp",
|
||||
alpha=0.1, token_scales=token_scales, cls_token=False)
|
||||
if self.use_layer_scale:
|
||||
x = x + self.drop_path(
|
||||
self.layer_scale_1.unsqueeze(-1).unsqueeze(-1)
|
||||
|
Loading…
Reference in New Issue
Block a user