try sep vit
This commit is contained in:
		
							
								
								
									
										213
									
								
								models.py
									
									
									
									
									
								
							
							
						
						
									
										213
									
								
								models.py
									
									
									
									
									
								
							| @@ -4,6 +4,7 @@ import torch.nn.functional as F | |||||||
| import numpy as np | import numpy as np | ||||||
| from functools import partial | from functools import partial | ||||||
| from einops.layers.torch import Rearrange, Reduce | from einops.layers.torch import Rearrange, Reduce | ||||||
|  | from einops import rearrange, repeat | ||||||
| from utils import * | from utils import * | ||||||
| from layers import * | from layers import * | ||||||
| from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | ||||||
| @@ -868,6 +869,203 @@ def window_reverse(windows, window_size, H, W): | |||||||
|     x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, -1, H, W) |     x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, -1, H, W) | ||||||
|     return x |     return x | ||||||
|  |  | ||||||
|  | def cast_tuple(val, length = 1): | ||||||
|  |     return val if isinstance(val, tuple) else ((val,) * length) | ||||||
|  |  | ||||||
|  | # helper classes | ||||||
|  |  | ||||||
|  | class ChanLayerNorm(nn.Module): | ||||||
|  |     def __init__(self, dim, eps = 1e-5): | ||||||
|  |         super().__init__() | ||||||
|  |         self.eps = eps | ||||||
|  |         self.g = nn.Parameter(torch.ones(1, dim, 1, 1)) | ||||||
|  |         self.b = nn.Parameter(torch.zeros(1, dim, 1, 1)) | ||||||
|  |  | ||||||
|  |     def forward(self, x): | ||||||
|  |         var = torch.var(x, dim = 1, unbiased = False, keepdim = True) | ||||||
|  |         mean = torch.mean(x, dim = 1, keepdim = True) | ||||||
|  |         return (x - mean) / (var + self.eps).sqrt() * self.g + self.b | ||||||
|  |  | ||||||
|  | class OverlappingPatchEmbed(nn.Module): | ||||||
|  |     def __init__(self, dim_in, dim_out, stride = 2): | ||||||
|  |         super().__init__() | ||||||
|  |         kernel_size = stride * 2 - 1 | ||||||
|  |         padding = kernel_size // 2 | ||||||
|  |         self.conv = nn.Conv2d(dim_in, dim_out, kernel_size, stride = stride, padding = padding) | ||||||
|  |  | ||||||
|  |     def forward(self, x): | ||||||
|  |         return self.conv(x) | ||||||
|  |  | ||||||
|  | class PEG(nn.Module): | ||||||
|  |     def __init__(self, dim, kernel_size = 3): | ||||||
|  |         super().__init__() | ||||||
|  |         self.proj = nn.Conv2d(dim, dim, kernel_size = kernel_size, padding = kernel_size // 2, groups = dim, stride = 1) | ||||||
|  |  | ||||||
|  |     def forward(self, x): | ||||||
|  |         return self.proj(x) + x | ||||||
|  |  | ||||||
|  | # feedforward | ||||||
|  |  | ||||||
|  | class FeedForward(nn.Module): | ||||||
|  |     def __init__(self, dim, mult = 4, dropout = 0.): | ||||||
|  |         super().__init__() | ||||||
|  |         inner_dim = int(dim * mult) | ||||||
|  |         self.net = nn.Sequential( | ||||||
|  |             ChanLayerNorm(dim), | ||||||
|  |             nn.Conv2d(dim, inner_dim, 1), | ||||||
|  |             nn.GELU(), | ||||||
|  |             nn.Dropout(dropout), | ||||||
|  |             nn.Conv2d(inner_dim, dim, 1), | ||||||
|  |             nn.Dropout(dropout) | ||||||
|  |         ) | ||||||
|  |     def forward(self, x): | ||||||
|  |         return self.net(x) | ||||||
|  |  | ||||||
|  | # attention | ||||||
|  |  | ||||||
|  | class DSSA(nn.Module): | ||||||
|  |     def __init__( | ||||||
|  |         self, | ||||||
|  |         dim, | ||||||
|  |         heads = 8, | ||||||
|  |         dim_head = 32, | ||||||
|  |         dropout = 0., | ||||||
|  |         window_size = 7 | ||||||
|  |     ): | ||||||
|  |         super().__init__() | ||||||
|  |         self.heads = heads | ||||||
|  |         self.scale = dim_head ** -0.5 | ||||||
|  |         self.window_size = window_size | ||||||
|  |         inner_dim = dim_head * heads | ||||||
|  |  | ||||||
|  |         self.norm = ChanLayerNorm(dim) | ||||||
|  |  | ||||||
|  |         self.attend = nn.Sequential( | ||||||
|  |             nn.Softmax(dim = -1), | ||||||
|  |             nn.Dropout(dropout) | ||||||
|  |         ) | ||||||
|  |  | ||||||
|  |         self.to_qkv = nn.Conv1d(dim, inner_dim * 3, 1, bias = False) | ||||||
|  |  | ||||||
|  |         # window tokens | ||||||
|  |  | ||||||
|  |         self.window_tokens = nn.Parameter(torch.randn(dim)) | ||||||
|  |  | ||||||
|  |         # prenorm and non-linearity for window tokens | ||||||
|  |         # then projection to queries and keys for window tokens | ||||||
|  |  | ||||||
|  |         self.window_tokens_to_qk = nn.Sequential( | ||||||
|  |             nn.LayerNorm(dim_head), | ||||||
|  |             nn.GELU(), | ||||||
|  |             Rearrange('b h n c -> b (h c) n'), | ||||||
|  |             nn.Conv1d(inner_dim, inner_dim * 2, 1), | ||||||
|  |             Rearrange('b (h c) n -> b h n c', h = heads), | ||||||
|  |         ) | ||||||
|  |  | ||||||
|  |         # window attention | ||||||
|  |  | ||||||
|  |         self.window_attend = nn.Sequential( | ||||||
|  |             nn.Softmax(dim = -1), | ||||||
|  |             nn.Dropout(dropout) | ||||||
|  |         ) | ||||||
|  |  | ||||||
|  |         self.to_out = nn.Sequential( | ||||||
|  |             nn.Conv2d(inner_dim, dim, 1), | ||||||
|  |             nn.Dropout(dropout) | ||||||
|  |         ) | ||||||
|  |  | ||||||
|  |     def forward(self, x): | ||||||
|  |         """ | ||||||
|  |         einstein notation | ||||||
|  |  | ||||||
|  |         b - batch | ||||||
|  |         c - channels | ||||||
|  |         w1 - window size (height) | ||||||
|  |         w2 - also window size (width) | ||||||
|  |         i - sequence dimension (source) | ||||||
|  |         j - sequence dimension (target dimension to be reduced) | ||||||
|  |         h - heads | ||||||
|  |         x - height of feature map divided by window size | ||||||
|  |         y - width of feature map divided by window size | ||||||
|  |         """ | ||||||
|  |  | ||||||
|  |         batch, height, width, heads, wsz = x.shape[0], *x.shape[-2:], self.heads, self.window_size | ||||||
|  |         assert (height % wsz) == 0 and (width % wsz) == 0, f'height {height} and width {width} must be divisible by window size {wsz}' | ||||||
|  |         num_windows = (height // wsz) * (width // wsz) | ||||||
|  |  | ||||||
|  |         x = self.norm(x) | ||||||
|  |  | ||||||
|  |         # fold in windows for "depthwise" attention - not sure why it is named depthwise when it is just "windowed" attention | ||||||
|  |  | ||||||
|  |         x = rearrange(x, 'b c (h w1) (w w2) -> (b h w) c (w1 w2)', w1 = wsz, w2 = wsz) | ||||||
|  |  | ||||||
|  |         # add windowing tokens | ||||||
|  |  | ||||||
|  |         w = repeat(self.window_tokens, 'c -> b c 1', b = x.shape[0]) | ||||||
|  |         x = torch.cat((w, x), dim = -1) | ||||||
|  |  | ||||||
|  |         # project for queries, keys, value | ||||||
|  |  | ||||||
|  |         q, k, v = self.to_qkv(x).chunk(3, dim = 1) | ||||||
|  |  | ||||||
|  |         # split out heads | ||||||
|  |  | ||||||
|  |         q, k, v = map(lambda t: rearrange(t, 'b (h d) ... -> b h (...) d', h = heads), (q, k, v)) | ||||||
|  |  | ||||||
|  |         # scale | ||||||
|  |  | ||||||
|  |         q = q * self.scale | ||||||
|  |  | ||||||
|  |         # similarity | ||||||
|  |  | ||||||
|  |         dots = einsum('b h i d, b h j d -> b h i j', q, k) | ||||||
|  |  | ||||||
|  |         # attention | ||||||
|  |  | ||||||
|  |         attn = self.attend(dots) | ||||||
|  |  | ||||||
|  |         # aggregate values | ||||||
|  |  | ||||||
|  |         out = torch.matmul(attn, v) | ||||||
|  |  | ||||||
|  |         # split out windowed tokens | ||||||
|  |  | ||||||
|  |         window_tokens, windowed_fmaps = out[:, :, 0], out[:, :, 1:] | ||||||
|  |  | ||||||
|  |         # early return if there is only 1 window | ||||||
|  |  | ||||||
|  |         if num_windows == 1: | ||||||
|  |             fmap = rearrange(windowed_fmaps, '(b x y) h (w1 w2) d -> b (h d) (x w1) (y w2)', x = height // wsz, y = width // wsz, w1 = wsz, w2 = wsz) | ||||||
|  |             return self.to_out(fmap) | ||||||
|  |  | ||||||
|  |         # carry out the pointwise attention, the main novelty in the paper | ||||||
|  |  | ||||||
|  |         window_tokens = rearrange(window_tokens, '(b x y) h d -> b h (x y) d', x = height // wsz, y = width // wsz) | ||||||
|  |         windowed_fmaps = rearrange(windowed_fmaps, '(b x y) h n d -> b h (x y) n d', x = height // wsz, y = width // wsz) | ||||||
|  |  | ||||||
|  |         # windowed queries and keys (preceded by prenorm activation) | ||||||
|  |  | ||||||
|  |         w_q, w_k = self.window_tokens_to_qk(window_tokens).chunk(2, dim = -1) | ||||||
|  |  | ||||||
|  |         # scale | ||||||
|  |  | ||||||
|  |         w_q = w_q * self.scale | ||||||
|  |  | ||||||
|  |         # similarities | ||||||
|  |  | ||||||
|  |         w_dots = einsum('b h i d, b h j d -> b h i j', w_q, w_k) | ||||||
|  |  | ||||||
|  |         w_attn = self.window_attend(w_dots) | ||||||
|  |  | ||||||
|  |         # aggregate the feature maps from the "depthwise" attention step (the most interesting part of the paper, one i haven't seen before) | ||||||
|  |  | ||||||
|  |         aggregated_windowed_fmap = einsum('b h i j, b h j w d -> b h i w d', w_attn, windowed_fmaps) | ||||||
|  |  | ||||||
|  |         # fold back the windows and then combine heads for aggregation | ||||||
|  |  | ||||||
|  |         fmap = rearrange(aggregated_windowed_fmap, 'b h (x y) (w1 w2) d -> b (h d) (x w1) (y w2)', x = height // wsz, y = width // wsz, w1 = wsz, w2 = wsz) | ||||||
|  |         return self.to_out(fmap) | ||||||
|  |  | ||||||
| class PoolFormerBlock(nn.Module): | class PoolFormerBlock(nn.Module): | ||||||
|     """ |     """ | ||||||
|     Implementation of one PoolFormer block. |     Implementation of one PoolFormer block. | ||||||
| @@ -893,8 +1091,10 @@ class PoolFormerBlock(nn.Module): | |||||||
|         #self.token_mixer = Pooling(pool_size=pool_size) |         #self.token_mixer = Pooling(pool_size=pool_size) | ||||||
|         # self.token_mixer = FNetBlock() |         # self.token_mixer = FNetBlock() | ||||||
|         self.window_size = 4 |         self.window_size = 4 | ||||||
|  |         self.attn_heads = 4 | ||||||
|         self.attn_mask = None |         self.attn_mask = None | ||||||
|         self.token_mixer = WindowAttention(dim=dim, window_size=to_2tuple(self.window_size), num_heads=4) |         # self.token_mixer = WindowAttention(dim=dim, window_size=to_2tuple(self.window_size), num_heads=4) | ||||||
|  |         self.token_mixer = DSSA(dim, heads=self.attn_heads, window_size=self.window_size, dropout=0.5) | ||||||
|         self.norm2 = norm_layer(dim) |         self.norm2 = norm_layer(dim) | ||||||
|         mlp_hidden_dim = int(dim * mlp_ratio) |         mlp_hidden_dim = int(dim * mlp_ratio) | ||||||
|         self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim,  |         self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim,  | ||||||
| @@ -912,11 +1112,12 @@ class PoolFormerBlock(nn.Module): | |||||||
|  |  | ||||||
|     def forward(self, x): |     def forward(self, x): | ||||||
|         B, C, H, W = x.shape |         B, C, H, W = x.shape | ||||||
|         x_windows = window_partition(x, self.window_size) |         # x_windows = window_partition(x, self.window_size) | ||||||
|         x_windows = x_windows.view(-1, self.window_size * self.window_size, C) |         # x_windows = x_windows.view(-1, self.window_size * self.window_size, C) | ||||||
|         attn_windows = self.token_mixer(x_windows, mask=self.attn_mask) |         # attn_windows = self.token_mixer(x_windows, mask=self.attn_mask) | ||||||
|         attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) |         # attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) | ||||||
|         x_attn = window_reverse(attn_windows, self.window_size, H, W) |         # x_attn = window_reverse(attn_windows, self.window_size, H, W) | ||||||
|  |         x_attn = self.token_mixer(x) | ||||||
|         if self.use_layer_scale: |         if self.use_layer_scale: | ||||||
|             x = x + self.drop_path( |             x = x + self.drop_path( | ||||||
|                 self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) |                 self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user