try sep vit
This commit is contained in:
parent
f8e969cbd1
commit
4a962a02ad
213
models.py
213
models.py
@ -4,6 +4,7 @@ import torch.nn.functional as F
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
from functools import partial
|
from functools import partial
|
||||||
from einops.layers.torch import Rearrange, Reduce
|
from einops.layers.torch import Rearrange, Reduce
|
||||||
|
from einops import rearrange, repeat
|
||||||
from utils import *
|
from utils import *
|
||||||
from layers import *
|
from layers import *
|
||||||
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
||||||
@ -868,6 +869,203 @@ def window_reverse(windows, window_size, H, W):
|
|||||||
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, -1, H, W)
|
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, -1, H, W)
|
||||||
return x
|
return x
|
||||||
|
|
||||||
|
def cast_tuple(val, length = 1):
|
||||||
|
return val if isinstance(val, tuple) else ((val,) * length)
|
||||||
|
|
||||||
|
# helper classes
|
||||||
|
|
||||||
|
class ChanLayerNorm(nn.Module):
|
||||||
|
def __init__(self, dim, eps = 1e-5):
|
||||||
|
super().__init__()
|
||||||
|
self.eps = eps
|
||||||
|
self.g = nn.Parameter(torch.ones(1, dim, 1, 1))
|
||||||
|
self.b = nn.Parameter(torch.zeros(1, dim, 1, 1))
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
var = torch.var(x, dim = 1, unbiased = False, keepdim = True)
|
||||||
|
mean = torch.mean(x, dim = 1, keepdim = True)
|
||||||
|
return (x - mean) / (var + self.eps).sqrt() * self.g + self.b
|
||||||
|
|
||||||
|
class OverlappingPatchEmbed(nn.Module):
|
||||||
|
def __init__(self, dim_in, dim_out, stride = 2):
|
||||||
|
super().__init__()
|
||||||
|
kernel_size = stride * 2 - 1
|
||||||
|
padding = kernel_size // 2
|
||||||
|
self.conv = nn.Conv2d(dim_in, dim_out, kernel_size, stride = stride, padding = padding)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return self.conv(x)
|
||||||
|
|
||||||
|
class PEG(nn.Module):
|
||||||
|
def __init__(self, dim, kernel_size = 3):
|
||||||
|
super().__init__()
|
||||||
|
self.proj = nn.Conv2d(dim, dim, kernel_size = kernel_size, padding = kernel_size // 2, groups = dim, stride = 1)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return self.proj(x) + x
|
||||||
|
|
||||||
|
# feedforward
|
||||||
|
|
||||||
|
class FeedForward(nn.Module):
|
||||||
|
def __init__(self, dim, mult = 4, dropout = 0.):
|
||||||
|
super().__init__()
|
||||||
|
inner_dim = int(dim * mult)
|
||||||
|
self.net = nn.Sequential(
|
||||||
|
ChanLayerNorm(dim),
|
||||||
|
nn.Conv2d(dim, inner_dim, 1),
|
||||||
|
nn.GELU(),
|
||||||
|
nn.Dropout(dropout),
|
||||||
|
nn.Conv2d(inner_dim, dim, 1),
|
||||||
|
nn.Dropout(dropout)
|
||||||
|
)
|
||||||
|
def forward(self, x):
|
||||||
|
return self.net(x)
|
||||||
|
|
||||||
|
# attention
|
||||||
|
|
||||||
|
class DSSA(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
dim,
|
||||||
|
heads = 8,
|
||||||
|
dim_head = 32,
|
||||||
|
dropout = 0.,
|
||||||
|
window_size = 7
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
self.heads = heads
|
||||||
|
self.scale = dim_head ** -0.5
|
||||||
|
self.window_size = window_size
|
||||||
|
inner_dim = dim_head * heads
|
||||||
|
|
||||||
|
self.norm = ChanLayerNorm(dim)
|
||||||
|
|
||||||
|
self.attend = nn.Sequential(
|
||||||
|
nn.Softmax(dim = -1),
|
||||||
|
nn.Dropout(dropout)
|
||||||
|
)
|
||||||
|
|
||||||
|
self.to_qkv = nn.Conv1d(dim, inner_dim * 3, 1, bias = False)
|
||||||
|
|
||||||
|
# window tokens
|
||||||
|
|
||||||
|
self.window_tokens = nn.Parameter(torch.randn(dim))
|
||||||
|
|
||||||
|
# prenorm and non-linearity for window tokens
|
||||||
|
# then projection to queries and keys for window tokens
|
||||||
|
|
||||||
|
self.window_tokens_to_qk = nn.Sequential(
|
||||||
|
nn.LayerNorm(dim_head),
|
||||||
|
nn.GELU(),
|
||||||
|
Rearrange('b h n c -> b (h c) n'),
|
||||||
|
nn.Conv1d(inner_dim, inner_dim * 2, 1),
|
||||||
|
Rearrange('b (h c) n -> b h n c', h = heads),
|
||||||
|
)
|
||||||
|
|
||||||
|
# window attention
|
||||||
|
|
||||||
|
self.window_attend = nn.Sequential(
|
||||||
|
nn.Softmax(dim = -1),
|
||||||
|
nn.Dropout(dropout)
|
||||||
|
)
|
||||||
|
|
||||||
|
self.to_out = nn.Sequential(
|
||||||
|
nn.Conv2d(inner_dim, dim, 1),
|
||||||
|
nn.Dropout(dropout)
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
"""
|
||||||
|
einstein notation
|
||||||
|
|
||||||
|
b - batch
|
||||||
|
c - channels
|
||||||
|
w1 - window size (height)
|
||||||
|
w2 - also window size (width)
|
||||||
|
i - sequence dimension (source)
|
||||||
|
j - sequence dimension (target dimension to be reduced)
|
||||||
|
h - heads
|
||||||
|
x - height of feature map divided by window size
|
||||||
|
y - width of feature map divided by window size
|
||||||
|
"""
|
||||||
|
|
||||||
|
batch, height, width, heads, wsz = x.shape[0], *x.shape[-2:], self.heads, self.window_size
|
||||||
|
assert (height % wsz) == 0 and (width % wsz) == 0, f'height {height} and width {width} must be divisible by window size {wsz}'
|
||||||
|
num_windows = (height // wsz) * (width // wsz)
|
||||||
|
|
||||||
|
x = self.norm(x)
|
||||||
|
|
||||||
|
# fold in windows for "depthwise" attention - not sure why it is named depthwise when it is just "windowed" attention
|
||||||
|
|
||||||
|
x = rearrange(x, 'b c (h w1) (w w2) -> (b h w) c (w1 w2)', w1 = wsz, w2 = wsz)
|
||||||
|
|
||||||
|
# add windowing tokens
|
||||||
|
|
||||||
|
w = repeat(self.window_tokens, 'c -> b c 1', b = x.shape[0])
|
||||||
|
x = torch.cat((w, x), dim = -1)
|
||||||
|
|
||||||
|
# project for queries, keys, value
|
||||||
|
|
||||||
|
q, k, v = self.to_qkv(x).chunk(3, dim = 1)
|
||||||
|
|
||||||
|
# split out heads
|
||||||
|
|
||||||
|
q, k, v = map(lambda t: rearrange(t, 'b (h d) ... -> b h (...) d', h = heads), (q, k, v))
|
||||||
|
|
||||||
|
# scale
|
||||||
|
|
||||||
|
q = q * self.scale
|
||||||
|
|
||||||
|
# similarity
|
||||||
|
|
||||||
|
dots = einsum('b h i d, b h j d -> b h i j', q, k)
|
||||||
|
|
||||||
|
# attention
|
||||||
|
|
||||||
|
attn = self.attend(dots)
|
||||||
|
|
||||||
|
# aggregate values
|
||||||
|
|
||||||
|
out = torch.matmul(attn, v)
|
||||||
|
|
||||||
|
# split out windowed tokens
|
||||||
|
|
||||||
|
window_tokens, windowed_fmaps = out[:, :, 0], out[:, :, 1:]
|
||||||
|
|
||||||
|
# early return if there is only 1 window
|
||||||
|
|
||||||
|
if num_windows == 1:
|
||||||
|
fmap = rearrange(windowed_fmaps, '(b x y) h (w1 w2) d -> b (h d) (x w1) (y w2)', x = height // wsz, y = width // wsz, w1 = wsz, w2 = wsz)
|
||||||
|
return self.to_out(fmap)
|
||||||
|
|
||||||
|
# carry out the pointwise attention, the main novelty in the paper
|
||||||
|
|
||||||
|
window_tokens = rearrange(window_tokens, '(b x y) h d -> b h (x y) d', x = height // wsz, y = width // wsz)
|
||||||
|
windowed_fmaps = rearrange(windowed_fmaps, '(b x y) h n d -> b h (x y) n d', x = height // wsz, y = width // wsz)
|
||||||
|
|
||||||
|
# windowed queries and keys (preceded by prenorm activation)
|
||||||
|
|
||||||
|
w_q, w_k = self.window_tokens_to_qk(window_tokens).chunk(2, dim = -1)
|
||||||
|
|
||||||
|
# scale
|
||||||
|
|
||||||
|
w_q = w_q * self.scale
|
||||||
|
|
||||||
|
# similarities
|
||||||
|
|
||||||
|
w_dots = einsum('b h i d, b h j d -> b h i j', w_q, w_k)
|
||||||
|
|
||||||
|
w_attn = self.window_attend(w_dots)
|
||||||
|
|
||||||
|
# aggregate the feature maps from the "depthwise" attention step (the most interesting part of the paper, one i haven't seen before)
|
||||||
|
|
||||||
|
aggregated_windowed_fmap = einsum('b h i j, b h j w d -> b h i w d', w_attn, windowed_fmaps)
|
||||||
|
|
||||||
|
# fold back the windows and then combine heads for aggregation
|
||||||
|
|
||||||
|
fmap = rearrange(aggregated_windowed_fmap, 'b h (x y) (w1 w2) d -> b (h d) (x w1) (y w2)', x = height // wsz, y = width // wsz, w1 = wsz, w2 = wsz)
|
||||||
|
return self.to_out(fmap)
|
||||||
|
|
||||||
class PoolFormerBlock(nn.Module):
|
class PoolFormerBlock(nn.Module):
|
||||||
"""
|
"""
|
||||||
Implementation of one PoolFormer block.
|
Implementation of one PoolFormer block.
|
||||||
@ -893,8 +1091,10 @@ class PoolFormerBlock(nn.Module):
|
|||||||
#self.token_mixer = Pooling(pool_size=pool_size)
|
#self.token_mixer = Pooling(pool_size=pool_size)
|
||||||
# self.token_mixer = FNetBlock()
|
# self.token_mixer = FNetBlock()
|
||||||
self.window_size = 4
|
self.window_size = 4
|
||||||
|
self.attn_heads = 4
|
||||||
self.attn_mask = None
|
self.attn_mask = None
|
||||||
self.token_mixer = WindowAttention(dim=dim, window_size=to_2tuple(self.window_size), num_heads=4)
|
# self.token_mixer = WindowAttention(dim=dim, window_size=to_2tuple(self.window_size), num_heads=4)
|
||||||
|
self.token_mixer = DSSA(dim, heads=self.attn_heads, window_size=self.window_size, dropout=0.5)
|
||||||
self.norm2 = norm_layer(dim)
|
self.norm2 = norm_layer(dim)
|
||||||
mlp_hidden_dim = int(dim * mlp_ratio)
|
mlp_hidden_dim = int(dim * mlp_ratio)
|
||||||
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim,
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim,
|
||||||
@ -912,11 +1112,12 @@ class PoolFormerBlock(nn.Module):
|
|||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
B, C, H, W = x.shape
|
B, C, H, W = x.shape
|
||||||
x_windows = window_partition(x, self.window_size)
|
# x_windows = window_partition(x, self.window_size)
|
||||||
x_windows = x_windows.view(-1, self.window_size * self.window_size, C)
|
# x_windows = x_windows.view(-1, self.window_size * self.window_size, C)
|
||||||
attn_windows = self.token_mixer(x_windows, mask=self.attn_mask)
|
# attn_windows = self.token_mixer(x_windows, mask=self.attn_mask)
|
||||||
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
# attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
||||||
x_attn = window_reverse(attn_windows, self.window_size, H, W)
|
# x_attn = window_reverse(attn_windows, self.window_size, H, W)
|
||||||
|
x_attn = self.token_mixer(x)
|
||||||
if self.use_layer_scale:
|
if self.use_layer_scale:
|
||||||
x = x + self.drop_path(
|
x = x + self.drop_path(
|
||||||
self.layer_scale_1.unsqueeze(-1).unsqueeze(-1)
|
self.layer_scale_1.unsqueeze(-1).unsqueeze(-1)
|
||||||
|
Loading…
Reference in New Issue
Block a user