try sep vit
This commit is contained in:
		
							
								
								
									
										213
									
								
								models.py
									
									
									
									
									
								
							
							
						
						
									
										213
									
								
								models.py
									
									
									
									
									
								
							| @@ -4,6 +4,7 @@ import torch.nn.functional as F | ||||
| import numpy as np | ||||
| from functools import partial | ||||
| from einops.layers.torch import Rearrange, Reduce | ||||
| from einops import rearrange, repeat | ||||
| from utils import * | ||||
| from layers import * | ||||
| from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | ||||
| @@ -868,6 +869,203 @@ def window_reverse(windows, window_size, H, W): | ||||
|     x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, -1, H, W) | ||||
|     return x | ||||
|  | ||||
| def cast_tuple(val, length = 1): | ||||
|     return val if isinstance(val, tuple) else ((val,) * length) | ||||
|  | ||||
| # helper classes | ||||
|  | ||||
| class ChanLayerNorm(nn.Module): | ||||
|     def __init__(self, dim, eps = 1e-5): | ||||
|         super().__init__() | ||||
|         self.eps = eps | ||||
|         self.g = nn.Parameter(torch.ones(1, dim, 1, 1)) | ||||
|         self.b = nn.Parameter(torch.zeros(1, dim, 1, 1)) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         var = torch.var(x, dim = 1, unbiased = False, keepdim = True) | ||||
|         mean = torch.mean(x, dim = 1, keepdim = True) | ||||
|         return (x - mean) / (var + self.eps).sqrt() * self.g + self.b | ||||
|  | ||||
| class OverlappingPatchEmbed(nn.Module): | ||||
|     def __init__(self, dim_in, dim_out, stride = 2): | ||||
|         super().__init__() | ||||
|         kernel_size = stride * 2 - 1 | ||||
|         padding = kernel_size // 2 | ||||
|         self.conv = nn.Conv2d(dim_in, dim_out, kernel_size, stride = stride, padding = padding) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         return self.conv(x) | ||||
|  | ||||
| class PEG(nn.Module): | ||||
|     def __init__(self, dim, kernel_size = 3): | ||||
|         super().__init__() | ||||
|         self.proj = nn.Conv2d(dim, dim, kernel_size = kernel_size, padding = kernel_size // 2, groups = dim, stride = 1) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         return self.proj(x) + x | ||||
|  | ||||
| # feedforward | ||||
|  | ||||
| class FeedForward(nn.Module): | ||||
|     def __init__(self, dim, mult = 4, dropout = 0.): | ||||
|         super().__init__() | ||||
|         inner_dim = int(dim * mult) | ||||
|         self.net = nn.Sequential( | ||||
|             ChanLayerNorm(dim), | ||||
|             nn.Conv2d(dim, inner_dim, 1), | ||||
|             nn.GELU(), | ||||
|             nn.Dropout(dropout), | ||||
|             nn.Conv2d(inner_dim, dim, 1), | ||||
|             nn.Dropout(dropout) | ||||
|         ) | ||||
|     def forward(self, x): | ||||
|         return self.net(x) | ||||
|  | ||||
| # attention | ||||
|  | ||||
| class DSSA(nn.Module): | ||||
|     def __init__( | ||||
|         self, | ||||
|         dim, | ||||
|         heads = 8, | ||||
|         dim_head = 32, | ||||
|         dropout = 0., | ||||
|         window_size = 7 | ||||
|     ): | ||||
|         super().__init__() | ||||
|         self.heads = heads | ||||
|         self.scale = dim_head ** -0.5 | ||||
|         self.window_size = window_size | ||||
|         inner_dim = dim_head * heads | ||||
|  | ||||
|         self.norm = ChanLayerNorm(dim) | ||||
|  | ||||
|         self.attend = nn.Sequential( | ||||
|             nn.Softmax(dim = -1), | ||||
|             nn.Dropout(dropout) | ||||
|         ) | ||||
|  | ||||
|         self.to_qkv = nn.Conv1d(dim, inner_dim * 3, 1, bias = False) | ||||
|  | ||||
|         # window tokens | ||||
|  | ||||
|         self.window_tokens = nn.Parameter(torch.randn(dim)) | ||||
|  | ||||
|         # prenorm and non-linearity for window tokens | ||||
|         # then projection to queries and keys for window tokens | ||||
|  | ||||
|         self.window_tokens_to_qk = nn.Sequential( | ||||
|             nn.LayerNorm(dim_head), | ||||
|             nn.GELU(), | ||||
|             Rearrange('b h n c -> b (h c) n'), | ||||
|             nn.Conv1d(inner_dim, inner_dim * 2, 1), | ||||
|             Rearrange('b (h c) n -> b h n c', h = heads), | ||||
|         ) | ||||
|  | ||||
|         # window attention | ||||
|  | ||||
|         self.window_attend = nn.Sequential( | ||||
|             nn.Softmax(dim = -1), | ||||
|             nn.Dropout(dropout) | ||||
|         ) | ||||
|  | ||||
|         self.to_out = nn.Sequential( | ||||
|             nn.Conv2d(inner_dim, dim, 1), | ||||
|             nn.Dropout(dropout) | ||||
|         ) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         """ | ||||
|         einstein notation | ||||
|  | ||||
|         b - batch | ||||
|         c - channels | ||||
|         w1 - window size (height) | ||||
|         w2 - also window size (width) | ||||
|         i - sequence dimension (source) | ||||
|         j - sequence dimension (target dimension to be reduced) | ||||
|         h - heads | ||||
|         x - height of feature map divided by window size | ||||
|         y - width of feature map divided by window size | ||||
|         """ | ||||
|  | ||||
|         batch, height, width, heads, wsz = x.shape[0], *x.shape[-2:], self.heads, self.window_size | ||||
|         assert (height % wsz) == 0 and (width % wsz) == 0, f'height {height} and width {width} must be divisible by window size {wsz}' | ||||
|         num_windows = (height // wsz) * (width // wsz) | ||||
|  | ||||
|         x = self.norm(x) | ||||
|  | ||||
|         # fold in windows for "depthwise" attention - not sure why it is named depthwise when it is just "windowed" attention | ||||
|  | ||||
|         x = rearrange(x, 'b c (h w1) (w w2) -> (b h w) c (w1 w2)', w1 = wsz, w2 = wsz) | ||||
|  | ||||
|         # add windowing tokens | ||||
|  | ||||
|         w = repeat(self.window_tokens, 'c -> b c 1', b = x.shape[0]) | ||||
|         x = torch.cat((w, x), dim = -1) | ||||
|  | ||||
|         # project for queries, keys, value | ||||
|  | ||||
|         q, k, v = self.to_qkv(x).chunk(3, dim = 1) | ||||
|  | ||||
|         # split out heads | ||||
|  | ||||
|         q, k, v = map(lambda t: rearrange(t, 'b (h d) ... -> b h (...) d', h = heads), (q, k, v)) | ||||
|  | ||||
|         # scale | ||||
|  | ||||
|         q = q * self.scale | ||||
|  | ||||
|         # similarity | ||||
|  | ||||
|         dots = einsum('b h i d, b h j d -> b h i j', q, k) | ||||
|  | ||||
|         # attention | ||||
|  | ||||
|         attn = self.attend(dots) | ||||
|  | ||||
|         # aggregate values | ||||
|  | ||||
|         out = torch.matmul(attn, v) | ||||
|  | ||||
|         # split out windowed tokens | ||||
|  | ||||
|         window_tokens, windowed_fmaps = out[:, :, 0], out[:, :, 1:] | ||||
|  | ||||
|         # early return if there is only 1 window | ||||
|  | ||||
|         if num_windows == 1: | ||||
|             fmap = rearrange(windowed_fmaps, '(b x y) h (w1 w2) d -> b (h d) (x w1) (y w2)', x = height // wsz, y = width // wsz, w1 = wsz, w2 = wsz) | ||||
|             return self.to_out(fmap) | ||||
|  | ||||
|         # carry out the pointwise attention, the main novelty in the paper | ||||
|  | ||||
|         window_tokens = rearrange(window_tokens, '(b x y) h d -> b h (x y) d', x = height // wsz, y = width // wsz) | ||||
|         windowed_fmaps = rearrange(windowed_fmaps, '(b x y) h n d -> b h (x y) n d', x = height // wsz, y = width // wsz) | ||||
|  | ||||
|         # windowed queries and keys (preceded by prenorm activation) | ||||
|  | ||||
|         w_q, w_k = self.window_tokens_to_qk(window_tokens).chunk(2, dim = -1) | ||||
|  | ||||
|         # scale | ||||
|  | ||||
|         w_q = w_q * self.scale | ||||
|  | ||||
|         # similarities | ||||
|  | ||||
|         w_dots = einsum('b h i d, b h j d -> b h i j', w_q, w_k) | ||||
|  | ||||
|         w_attn = self.window_attend(w_dots) | ||||
|  | ||||
|         # aggregate the feature maps from the "depthwise" attention step (the most interesting part of the paper, one i haven't seen before) | ||||
|  | ||||
|         aggregated_windowed_fmap = einsum('b h i j, b h j w d -> b h i w d', w_attn, windowed_fmaps) | ||||
|  | ||||
|         # fold back the windows and then combine heads for aggregation | ||||
|  | ||||
|         fmap = rearrange(aggregated_windowed_fmap, 'b h (x y) (w1 w2) d -> b (h d) (x w1) (y w2)', x = height // wsz, y = width // wsz, w1 = wsz, w2 = wsz) | ||||
|         return self.to_out(fmap) | ||||
|  | ||||
| class PoolFormerBlock(nn.Module): | ||||
|     """ | ||||
|     Implementation of one PoolFormer block. | ||||
| @@ -893,8 +1091,10 @@ class PoolFormerBlock(nn.Module): | ||||
|         #self.token_mixer = Pooling(pool_size=pool_size) | ||||
|         # self.token_mixer = FNetBlock() | ||||
|         self.window_size = 4 | ||||
|         self.attn_heads = 4 | ||||
|         self.attn_mask = None | ||||
|         self.token_mixer = WindowAttention(dim=dim, window_size=to_2tuple(self.window_size), num_heads=4) | ||||
|         # self.token_mixer = WindowAttention(dim=dim, window_size=to_2tuple(self.window_size), num_heads=4) | ||||
|         self.token_mixer = DSSA(dim, heads=self.attn_heads, window_size=self.window_size, dropout=0.5) | ||||
|         self.norm2 = norm_layer(dim) | ||||
|         mlp_hidden_dim = int(dim * mlp_ratio) | ||||
|         self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim,  | ||||
| @@ -912,11 +1112,12 @@ class PoolFormerBlock(nn.Module): | ||||
|  | ||||
|     def forward(self, x): | ||||
|         B, C, H, W = x.shape | ||||
|         x_windows = window_partition(x, self.window_size) | ||||
|         x_windows = x_windows.view(-1, self.window_size * self.window_size, C) | ||||
|         attn_windows = self.token_mixer(x_windows, mask=self.attn_mask) | ||||
|         attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) | ||||
|         x_attn = window_reverse(attn_windows, self.window_size, H, W) | ||||
|         # x_windows = window_partition(x, self.window_size) | ||||
|         # x_windows = x_windows.view(-1, self.window_size * self.window_size, C) | ||||
|         # attn_windows = self.token_mixer(x_windows, mask=self.attn_mask) | ||||
|         # attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) | ||||
|         # x_attn = window_reverse(attn_windows, self.window_size, H, W) | ||||
|         x_attn = self.token_mixer(x) | ||||
|         if self.use_layer_scale: | ||||
|             x = x + self.drop_path( | ||||
|                 self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) | ||||
|   | ||||
		Reference in New Issue
	
	Block a user