try modify swin
This commit is contained in:
		
							
								
								
									
										15
									
								
								models.py
									
									
									
									
									
								
							
							
						
						
									
										15
									
								
								models.py
									
									
									
									
									
								
							@@ -489,8 +489,9 @@ class FouriER(torch.nn.Module):
 | 
			
		||||
                                      embed_dim=self.p.embed_dim, stride=4, padding=2)
 | 
			
		||||
        network = []
 | 
			
		||||
        layers = [4, 4, 12, 4]
 | 
			
		||||
        embed_dims = [self.p.embed_dim, 128, 320, 128]
 | 
			
		||||
        mlp_ratios = [4, 4, 4, 4]
 | 
			
		||||
        embed_dims = [self.p.embed_dim, 320, 256, 128]
 | 
			
		||||
        mlp_ratios = [4, 4, 8, 12]
 | 
			
		||||
        num_heads = [2, 4, 8, 16]
 | 
			
		||||
        downsamples = [True, True, True, True]
 | 
			
		||||
        pool_size=3
 | 
			
		||||
        act_layer=nn.GELU
 | 
			
		||||
@@ -510,7 +511,8 @@ class FouriER(torch.nn.Module):
 | 
			
		||||
                                 drop_rate=drop_rate, 
 | 
			
		||||
                                 drop_path_rate=drop_path_rate,
 | 
			
		||||
                                 use_layer_scale=use_layer_scale, 
 | 
			
		||||
                                 layer_scale_init_value=layer_scale_init_value)
 | 
			
		||||
                                 layer_scale_init_value=layer_scale_init_value,
 | 
			
		||||
                                 num_heads=num_heads[i])
 | 
			
		||||
            network.append(stage)
 | 
			
		||||
            if i >= len(layers) - 1:
 | 
			
		||||
                break
 | 
			
		||||
@@ -687,7 +689,7 @@ def basic_blocks(dim, index, layers,
 | 
			
		||||
                 pool_size=3, mlp_ratio=4., 
 | 
			
		||||
                 act_layer=nn.GELU, norm_layer=GroupNorm, 
 | 
			
		||||
                 drop_rate=.0, drop_path_rate=0., 
 | 
			
		||||
                 use_layer_scale=True, layer_scale_init_value=1e-5):
 | 
			
		||||
                 use_layer_scale=True, layer_scale_init_value=1e-5, num_heads = 4):
 | 
			
		||||
    """
 | 
			
		||||
    generate PoolFormer blocks for a stage
 | 
			
		||||
    return: PoolFormer blocks 
 | 
			
		||||
@@ -702,6 +704,7 @@ def basic_blocks(dim, index, layers,
 | 
			
		||||
            drop=drop_rate, drop_path=block_dpr, 
 | 
			
		||||
            use_layer_scale=use_layer_scale, 
 | 
			
		||||
            layer_scale_init_value=layer_scale_init_value, 
 | 
			
		||||
            num_heads=num_heads
 | 
			
		||||
            ))
 | 
			
		||||
    blocks = nn.Sequential(*blocks)
 | 
			
		||||
 | 
			
		||||
@@ -884,7 +887,7 @@ class PoolFormerBlock(nn.Module):
 | 
			
		||||
    """
 | 
			
		||||
    def __init__(self, dim, pool_size=3, mlp_ratio=4., 
 | 
			
		||||
                 act_layer=nn.GELU, norm_layer=GroupNorm, 
 | 
			
		||||
                 drop=0., drop_path=0., 
 | 
			
		||||
                 drop=0., drop_path=0., num_heads=4,
 | 
			
		||||
                 use_layer_scale=True, layer_scale_init_value=1e-5):
 | 
			
		||||
 | 
			
		||||
        super().__init__()
 | 
			
		||||
@@ -894,7 +897,7 @@ class PoolFormerBlock(nn.Module):
 | 
			
		||||
        # self.token_mixer = FNetBlock()
 | 
			
		||||
        self.window_size = 4
 | 
			
		||||
        self.attn_mask = None
 | 
			
		||||
        self.token_mixer = WindowAttention(dim=dim, window_size=to_2tuple(self.window_size), num_heads=4)
 | 
			
		||||
        self.token_mixer = WindowAttention(dim=dim, window_size=to_2tuple(self.window_size), num_heads=num_heads, attn_drop=0.1, proj_drop=0.2)
 | 
			
		||||
        self.norm2 = norm_layer(dim)
 | 
			
		||||
        mlp_hidden_dim = int(dim * mlp_ratio)
 | 
			
		||||
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, 
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user