try swin
This commit is contained in:
parent
ba388148d4
commit
a47a60f6a1
49
models.py
49
models.py
@ -707,6 +707,20 @@ def basic_blocks(dim, index, layers,
|
|||||||
|
|
||||||
return blocks
|
return blocks
|
||||||
|
|
||||||
|
def window_partition(x, window_size):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
x: (B, H, W, C)
|
||||||
|
window_size (int): window size
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
windows: (num_windows*B, window_size, window_size, C)
|
||||||
|
"""
|
||||||
|
B, C, H, W = x.shape
|
||||||
|
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
|
||||||
|
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
||||||
|
return windows
|
||||||
|
|
||||||
class WindowAttention(nn.Module):
|
class WindowAttention(nn.Module):
|
||||||
r""" Window based multi-head self attention (W-MSA) module with relative position bias.
|
r""" Window based multi-head self attention (W-MSA) module with relative position bias.
|
||||||
It supports both of shifted and non-shifted window.
|
It supports both of shifted and non-shifted window.
|
||||||
@ -786,11 +800,6 @@ class WindowAttention(nn.Module):
|
|||||||
x: input features with shape of (num_windows*B, N, C)
|
x: input features with shape of (num_windows*B, N, C)
|
||||||
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
|
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
|
||||||
"""
|
"""
|
||||||
print(x.shape)
|
|
||||||
B_, C, N, _ = x.shape
|
|
||||||
x = x.reshape(B_, C, N * N)
|
|
||||||
B_, C, N = x.shape
|
|
||||||
x = x.reshape(B_, N, C)
|
|
||||||
qkv_bias = None
|
qkv_bias = None
|
||||||
if self.q_bias is not None:
|
if self.q_bias is not None:
|
||||||
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
|
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
|
||||||
@ -844,6 +853,22 @@ class WindowAttention(nn.Module):
|
|||||||
flops += N * self.dim * self.dim
|
flops += N * self.dim * self.dim
|
||||||
return flops
|
return flops
|
||||||
|
|
||||||
|
def window_reverse(windows, window_size, H, W):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
windows: (num_windows*B, window_size, window_size, C)
|
||||||
|
window_size (int): Window size
|
||||||
|
H (int): Height of image
|
||||||
|
W (int): Width of image
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
x: (B, H, W, C)
|
||||||
|
"""
|
||||||
|
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
||||||
|
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
|
||||||
|
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, -1, H, W)
|
||||||
|
return x
|
||||||
|
|
||||||
class PoolFormerBlock(nn.Module):
|
class PoolFormerBlock(nn.Module):
|
||||||
"""
|
"""
|
||||||
Implementation of one PoolFormer block.
|
Implementation of one PoolFormer block.
|
||||||
@ -868,7 +893,9 @@ class PoolFormerBlock(nn.Module):
|
|||||||
self.norm1 = norm_layer(dim)
|
self.norm1 = norm_layer(dim)
|
||||||
#self.token_mixer = Pooling(pool_size=pool_size)
|
#self.token_mixer = Pooling(pool_size=pool_size)
|
||||||
# self.token_mixer = FNetBlock()
|
# self.token_mixer = FNetBlock()
|
||||||
self.token_mixer = WindowAttention(dim=dim, window_size=to_2tuple(7), num_heads=10)
|
self.window_size = 7
|
||||||
|
self.attn_mask = None
|
||||||
|
self.token_mixer = WindowAttention(dim=dim, window_size=to_2tuple(self.window_size), num_heads=10)
|
||||||
self.norm2 = norm_layer(dim)
|
self.norm2 = norm_layer(dim)
|
||||||
mlp_hidden_dim = int(dim * mlp_ratio)
|
mlp_hidden_dim = int(dim * mlp_ratio)
|
||||||
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim,
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim,
|
||||||
@ -885,15 +912,21 @@ class PoolFormerBlock(nn.Module):
|
|||||||
layer_scale_init_value * torch.ones((dim)), requires_grad=True)
|
layer_scale_init_value * torch.ones((dim)), requires_grad=True)
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
|
B, C, H, W = x.shape
|
||||||
|
x_windows = window_partition(x, self.window_size)
|
||||||
|
x_windows = x_windows.view(-1, self.window_size * self.window_size, C)
|
||||||
|
attn_windows = self.token_mixer(self.norm1(x_windows), mask=self.attn_mask)
|
||||||
|
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
||||||
|
x_attn = window_reverse(attn_windows, self.window_size, H, W)
|
||||||
if self.use_layer_scale:
|
if self.use_layer_scale:
|
||||||
x = x + self.drop_path(
|
x = x + self.drop_path(
|
||||||
self.layer_scale_1.unsqueeze(-1).unsqueeze(-1)
|
self.layer_scale_1.unsqueeze(-1).unsqueeze(-1)
|
||||||
* self.token_mixer(self.norm1(x)))
|
* x_attn)
|
||||||
x = x + self.drop_path(
|
x = x + self.drop_path(
|
||||||
self.layer_scale_2.unsqueeze(-1).unsqueeze(-1)
|
self.layer_scale_2.unsqueeze(-1).unsqueeze(-1)
|
||||||
* self.mlp(self.norm2(x)))
|
* self.mlp(self.norm2(x)))
|
||||||
else:
|
else:
|
||||||
x = x + self.drop_path(self.token_mixer(self.norm1(x)))
|
x = x + self.drop_path(x_attn)
|
||||||
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
||||||
return x
|
return x
|
||||||
class PatchEmbed(nn.Module):
|
class PatchEmbed(nn.Module):
|
||||||
|
Loading…
Reference in New Issue
Block a user