This commit is contained in:
thanhvc3 2024-04-27 11:40:27 +07:00
parent ba388148d4
commit a47a60f6a1

View File

@ -707,6 +707,20 @@ def basic_blocks(dim, index, layers,
return blocks return blocks
def window_partition(x, window_size):
"""
Args:
x: (B, H, W, C)
window_size (int): window size
Returns:
windows: (num_windows*B, window_size, window_size, C)
"""
B, C, H, W = x.shape
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
return windows
class WindowAttention(nn.Module): class WindowAttention(nn.Module):
r""" Window based multi-head self attention (W-MSA) module with relative position bias. r""" Window based multi-head self attention (W-MSA) module with relative position bias.
It supports both of shifted and non-shifted window. It supports both of shifted and non-shifted window.
@ -786,11 +800,6 @@ class WindowAttention(nn.Module):
x: input features with shape of (num_windows*B, N, C) x: input features with shape of (num_windows*B, N, C)
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
""" """
print(x.shape)
B_, C, N, _ = x.shape
x = x.reshape(B_, C, N * N)
B_, C, N = x.shape
x = x.reshape(B_, N, C)
qkv_bias = None qkv_bias = None
if self.q_bias is not None: if self.q_bias is not None:
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias)) qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
@ -844,6 +853,22 @@ class WindowAttention(nn.Module):
flops += N * self.dim * self.dim flops += N * self.dim * self.dim
return flops return flops
def window_reverse(windows, window_size, H, W):
"""
Args:
windows: (num_windows*B, window_size, window_size, C)
window_size (int): Window size
H (int): Height of image
W (int): Width of image
Returns:
x: (B, H, W, C)
"""
B = int(windows.shape[0] / (H * W / window_size / window_size))
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, -1, H, W)
return x
class PoolFormerBlock(nn.Module): class PoolFormerBlock(nn.Module):
""" """
Implementation of one PoolFormer block. Implementation of one PoolFormer block.
@ -868,7 +893,9 @@ class PoolFormerBlock(nn.Module):
self.norm1 = norm_layer(dim) self.norm1 = norm_layer(dim)
#self.token_mixer = Pooling(pool_size=pool_size) #self.token_mixer = Pooling(pool_size=pool_size)
# self.token_mixer = FNetBlock() # self.token_mixer = FNetBlock()
self.token_mixer = WindowAttention(dim=dim, window_size=to_2tuple(7), num_heads=10) self.window_size = 7
self.attn_mask = None
self.token_mixer = WindowAttention(dim=dim, window_size=to_2tuple(self.window_size), num_heads=10)
self.norm2 = norm_layer(dim) self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio) mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim,
@ -885,15 +912,21 @@ class PoolFormerBlock(nn.Module):
layer_scale_init_value * torch.ones((dim)), requires_grad=True) layer_scale_init_value * torch.ones((dim)), requires_grad=True)
def forward(self, x): def forward(self, x):
B, C, H, W = x.shape
x_windows = window_partition(x, self.window_size)
x_windows = x_windows.view(-1, self.window_size * self.window_size, C)
attn_windows = self.token_mixer(self.norm1(x_windows), mask=self.attn_mask)
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
x_attn = window_reverse(attn_windows, self.window_size, H, W)
if self.use_layer_scale: if self.use_layer_scale:
x = x + self.drop_path( x = x + self.drop_path(
self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) self.layer_scale_1.unsqueeze(-1).unsqueeze(-1)
* self.token_mixer(self.norm1(x))) * x_attn)
x = x + self.drop_path( x = x + self.drop_path(
self.layer_scale_2.unsqueeze(-1).unsqueeze(-1) self.layer_scale_2.unsqueeze(-1).unsqueeze(-1)
* self.mlp(self.norm2(x))) * self.mlp(self.norm2(x)))
else: else:
x = x + self.drop_path(self.token_mixer(self.norm1(x))) x = x + self.drop_path(x_attn)
x = x + self.drop_path(self.mlp(self.norm2(x))) x = x + self.drop_path(self.mlp(self.norm2(x)))
return x return x
class PatchEmbed(nn.Module): class PatchEmbed(nn.Module):