try swin
This commit is contained in:
		
							
								
								
									
										49
									
								
								models.py
									
									
									
									
									
								
							
							
						
						
									
										49
									
								
								models.py
									
									
									
									
									
								
							@@ -707,6 +707,20 @@ def basic_blocks(dim, index, layers,
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
    return blocks
 | 
					    return blocks
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def window_partition(x, window_size):
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    Args:
 | 
				
			||||||
 | 
					        x: (B, H, W, C)
 | 
				
			||||||
 | 
					        window_size (int): window size
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Returns:
 | 
				
			||||||
 | 
					        windows: (num_windows*B, window_size, window_size, C)
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    B, C, H, W = x.shape
 | 
				
			||||||
 | 
					    x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
 | 
				
			||||||
 | 
					    windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
 | 
				
			||||||
 | 
					    return windows
 | 
				
			||||||
 | 
					
 | 
				
			||||||
class WindowAttention(nn.Module):
 | 
					class WindowAttention(nn.Module):
 | 
				
			||||||
    r""" Window based multi-head self attention (W-MSA) module with relative position bias.
 | 
					    r""" Window based multi-head self attention (W-MSA) module with relative position bias.
 | 
				
			||||||
    It supports both of shifted and non-shifted window.
 | 
					    It supports both of shifted and non-shifted window.
 | 
				
			||||||
@@ -786,11 +800,6 @@ class WindowAttention(nn.Module):
 | 
				
			|||||||
            x: input features with shape of (num_windows*B, N, C)
 | 
					            x: input features with shape of (num_windows*B, N, C)
 | 
				
			||||||
            mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
 | 
					            mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
 | 
				
			||||||
        """
 | 
					        """
 | 
				
			||||||
        print(x.shape)
 | 
					 | 
				
			||||||
        B_, C, N, _ = x.shape
 | 
					 | 
				
			||||||
        x = x.reshape(B_, C, N * N)
 | 
					 | 
				
			||||||
        B_, C, N = x.shape
 | 
					 | 
				
			||||||
        x = x.reshape(B_, N, C)
 | 
					 | 
				
			||||||
        qkv_bias = None
 | 
					        qkv_bias = None
 | 
				
			||||||
        if self.q_bias is not None:
 | 
					        if self.q_bias is not None:
 | 
				
			||||||
            qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
 | 
					            qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
 | 
				
			||||||
@@ -843,6 +852,22 @@ class WindowAttention(nn.Module):
 | 
				
			|||||||
        # x = self.proj(x)
 | 
					        # x = self.proj(x)
 | 
				
			||||||
        flops += N * self.dim * self.dim
 | 
					        flops += N * self.dim * self.dim
 | 
				
			||||||
        return flops
 | 
					        return flops
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					def window_reverse(windows, window_size, H, W):
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    Args:
 | 
				
			||||||
 | 
					        windows: (num_windows*B, window_size, window_size, C)
 | 
				
			||||||
 | 
					        window_size (int): Window size
 | 
				
			||||||
 | 
					        H (int): Height of image
 | 
				
			||||||
 | 
					        W (int): Width of image
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Returns:
 | 
				
			||||||
 | 
					        x: (B, H, W, C)
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    B = int(windows.shape[0] / (H * W / window_size / window_size))
 | 
				
			||||||
 | 
					    x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
 | 
				
			||||||
 | 
					    x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, -1, H, W)
 | 
				
			||||||
 | 
					    return x
 | 
				
			||||||
 | 
					
 | 
				
			||||||
class PoolFormerBlock(nn.Module):
 | 
					class PoolFormerBlock(nn.Module):
 | 
				
			||||||
    """
 | 
					    """
 | 
				
			||||||
@@ -868,7 +893,9 @@ class PoolFormerBlock(nn.Module):
 | 
				
			|||||||
        self.norm1 = norm_layer(dim)
 | 
					        self.norm1 = norm_layer(dim)
 | 
				
			||||||
        #self.token_mixer = Pooling(pool_size=pool_size)
 | 
					        #self.token_mixer = Pooling(pool_size=pool_size)
 | 
				
			||||||
        # self.token_mixer = FNetBlock()
 | 
					        # self.token_mixer = FNetBlock()
 | 
				
			||||||
        self.token_mixer = WindowAttention(dim=dim, window_size=to_2tuple(7), num_heads=10)
 | 
					        self.window_size = 7
 | 
				
			||||||
 | 
					        self.attn_mask = None
 | 
				
			||||||
 | 
					        self.token_mixer = WindowAttention(dim=dim, window_size=to_2tuple(self.window_size), num_heads=10)
 | 
				
			||||||
        self.norm2 = norm_layer(dim)
 | 
					        self.norm2 = norm_layer(dim)
 | 
				
			||||||
        mlp_hidden_dim = int(dim * mlp_ratio)
 | 
					        mlp_hidden_dim = int(dim * mlp_ratio)
 | 
				
			||||||
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, 
 | 
					        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, 
 | 
				
			||||||
@@ -885,15 +912,21 @@ class PoolFormerBlock(nn.Module):
 | 
				
			|||||||
                layer_scale_init_value * torch.ones((dim)), requires_grad=True)
 | 
					                layer_scale_init_value * torch.ones((dim)), requires_grad=True)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def forward(self, x):
 | 
					    def forward(self, x):
 | 
				
			||||||
 | 
					        B, C, H, W = x.shape
 | 
				
			||||||
 | 
					        x_windows = window_partition(x, self.window_size)
 | 
				
			||||||
 | 
					        x_windows = x_windows.view(-1, self.window_size * self.window_size, C)
 | 
				
			||||||
 | 
					        attn_windows = self.token_mixer(self.norm1(x_windows), mask=self.attn_mask)
 | 
				
			||||||
 | 
					        attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
 | 
				
			||||||
 | 
					        x_attn = window_reverse(attn_windows, self.window_size, H, W)
 | 
				
			||||||
        if self.use_layer_scale:
 | 
					        if self.use_layer_scale:
 | 
				
			||||||
            x = x + self.drop_path(
 | 
					            x = x + self.drop_path(
 | 
				
			||||||
                self.layer_scale_1.unsqueeze(-1).unsqueeze(-1)
 | 
					                self.layer_scale_1.unsqueeze(-1).unsqueeze(-1)
 | 
				
			||||||
                * self.token_mixer(self.norm1(x)))
 | 
					                * x_attn)
 | 
				
			||||||
            x = x + self.drop_path(
 | 
					            x = x + self.drop_path(
 | 
				
			||||||
                self.layer_scale_2.unsqueeze(-1).unsqueeze(-1)
 | 
					                self.layer_scale_2.unsqueeze(-1).unsqueeze(-1)
 | 
				
			||||||
                * self.mlp(self.norm2(x)))
 | 
					                * self.mlp(self.norm2(x)))
 | 
				
			||||||
        else:
 | 
					        else:
 | 
				
			||||||
            x = x + self.drop_path(self.token_mixer(self.norm1(x)))
 | 
					            x = x + self.drop_path(x_attn)
 | 
				
			||||||
            x = x + self.drop_path(self.mlp(self.norm2(x)))
 | 
					            x = x + self.drop_path(self.mlp(self.norm2(x)))
 | 
				
			||||||
        return x
 | 
					        return x
 | 
				
			||||||
class PatchEmbed(nn.Module):
 | 
					class PatchEmbed(nn.Module):
 | 
				
			||||||
 
 | 
				
			|||||||
		Reference in New Issue
	
	Block a user