Compare commits
14 Commits
Author | SHA1 | Date | |
---|---|---|---|
3f0018fedc | |||
9502c8d009 | |||
2637f53848 | |||
975a0a77c2 | |||
a064d12763 | |||
6d43b88599 | |||
7448528eec | |||
7194f8046c | |||
417a38d2e5 | |||
03f42561c6 | |||
936c37d0f6 | |||
39734013c4 | |||
bb9856ecd1 | |||
c2b17ec1ba |
@ -12407,3 +12407,233 @@
|
|||||||
12406 Carry out roadside bombing[65]
|
12406 Carry out roadside bombing[65]
|
||||||
12407 Appeal for target to allow international involvement (non-mediation)[1]
|
12407 Appeal for target to allow international involvement (non-mediation)[1]
|
||||||
12408 Reject request for change in leadership[179]
|
12408 Reject request for change in leadership[179]
|
||||||
|
12409 Criticize or denounce
|
||||||
|
12410 Express intent to meet or negotiate
|
||||||
|
12411 Consult
|
||||||
|
12412 Make an appeal or request
|
||||||
|
12413 Abduct, hijack, or take hostage
|
||||||
|
12414 Praise or endorse
|
||||||
|
12415 Engage in negotiation
|
||||||
|
12416 Use unconventional violence
|
||||||
|
12417 Make statement
|
||||||
|
12418 Arrest, detain, or charge with legal action
|
||||||
|
12419 Use conventional military force
|
||||||
|
12420 Complain officially
|
||||||
|
12421 Impose administrative sanctions
|
||||||
|
12422 Express intent to cooperate
|
||||||
|
12423 Make a visit
|
||||||
|
12424 Appeal for de-escalation of military engagement
|
||||||
|
12425 Sign formal agreement
|
||||||
|
12426 Attempt to assassinate
|
||||||
|
12427 Host a visit
|
||||||
|
12428 Increase military alert status
|
||||||
|
12429 Impose embargo, boycott, or sanctions
|
||||||
|
12430 Provide economic aid
|
||||||
|
12431 Demonstrate or rally
|
||||||
|
12432 Express intent to engage in diplomatic cooperation (such as policy support)
|
||||||
|
12433 Appeal for intelligence
|
||||||
|
12434 Demand
|
||||||
|
12435 Carry out suicide bombing
|
||||||
|
12436 Threaten
|
||||||
|
12437 Express intent to provide material aid
|
||||||
|
12438 Grant diplomatic recognition
|
||||||
|
12439 Meet at a 'third' location
|
||||||
|
12440 Accuse
|
||||||
|
12441 Investigate
|
||||||
|
12442 Reject
|
||||||
|
12443 Appeal for diplomatic cooperation (such as policy support)
|
||||||
|
12444 Engage in symbolic act
|
||||||
|
12445 Defy norms, law
|
||||||
|
12446 Consider policy option
|
||||||
|
12447 Provide aid
|
||||||
|
12448 Sexually assault
|
||||||
|
12449 Make empathetic comment
|
||||||
|
12450 Bring lawsuit against
|
||||||
|
12451 Impose blockade, restrict movement
|
||||||
|
12452 Make pessimistic comment
|
||||||
|
12453 Protest violently, riot
|
||||||
|
12454 Reduce or break diplomatic relations
|
||||||
|
12455 Grant asylum
|
||||||
|
12456 Engage in diplomatic cooperation
|
||||||
|
12457 Make optimistic comment
|
||||||
|
12458 Torture
|
||||||
|
12459 Refuse to yield
|
||||||
|
12460 Appeal for change in leadership
|
||||||
|
12461 Cooperate militarily
|
||||||
|
12462 Mobilize or increase armed forces
|
||||||
|
12463 fight with small arms and light weapons
|
||||||
|
12464 Ease administrative sanctions
|
||||||
|
12465 Appeal for political reform
|
||||||
|
12466 Return, release person(s)
|
||||||
|
12467 Discuss by telephone
|
||||||
|
12468 Demonstrate for leadership change
|
||||||
|
12469 Impose restrictions on political freedoms
|
||||||
|
12470 Reduce relations
|
||||||
|
12471 Investigate crime, corruption
|
||||||
|
12472 Engage in material cooperation
|
||||||
|
12473 Appeal to others to meet or negotiate
|
||||||
|
12474 Provide humanitarian aid
|
||||||
|
12475 Use tactics of violent repression
|
||||||
|
12476 Occupy territory
|
||||||
|
12477 Demand humanitarian aid
|
||||||
|
12478 Threaten non-force
|
||||||
|
12479 Express intent to cooperate economically
|
||||||
|
12480 Conduct suicide, car, or other non-military bombing
|
||||||
|
12481 Demand diplomatic cooperation (such as policy support)
|
||||||
|
12482 Demand meeting, negotiation
|
||||||
|
12483 Deny responsibility
|
||||||
|
12484 Express intent to change institutions, regime
|
||||||
|
12485 Give ultimatum
|
||||||
|
12486 Appeal for judicial cooperation
|
||||||
|
12487 Rally support on behalf of
|
||||||
|
12488 Obstruct passage, block
|
||||||
|
12489 Share intelligence or information
|
||||||
|
12490 Expel or deport individuals
|
||||||
|
12491 Confiscate property
|
||||||
|
12492 Accuse of aggression
|
||||||
|
12493 Physically assault
|
||||||
|
12494 Retreat or surrender militarily
|
||||||
|
12495 Veto
|
||||||
|
12496 Kill by physical assault
|
||||||
|
12497 Assassinate
|
||||||
|
12498 Appeal for change in institutions, regime
|
||||||
|
12499 Forgive
|
||||||
|
12500 Reject proposal to meet, discuss, or negotiate
|
||||||
|
12501 Express intent to provide humanitarian aid
|
||||||
|
12502 Appeal for release of persons or property
|
||||||
|
12503 Acknowledge or claim responsibility
|
||||||
|
12504 Ease economic sanctions, boycott, embargo
|
||||||
|
12505 Express intent to cooperate militarily
|
||||||
|
12506 Cooperate economically
|
||||||
|
12507 Express intent to provide economic aid
|
||||||
|
12508 Mobilize or increase police power
|
||||||
|
12509 Employ aerial weapons
|
||||||
|
12510 Accuse of human rights abuses
|
||||||
|
12511 Conduct strike or boycott
|
||||||
|
12512 Appeal for policy change
|
||||||
|
12513 Demonstrate military or police power
|
||||||
|
12514 Provide military aid
|
||||||
|
12515 Reject plan, agreement to settle dispute
|
||||||
|
12516 Yield
|
||||||
|
12517 Appeal for easing of administrative sanctions
|
||||||
|
12518 Mediate
|
||||||
|
12519 Apologize
|
||||||
|
12520 Express intent to release persons or property
|
||||||
|
12521 Express intent to de-escalate military engagement
|
||||||
|
12522 Accede to demands for rights
|
||||||
|
12523 Demand economic aid
|
||||||
|
12524 Impose state of emergency or martial law
|
||||||
|
12525 Receive deployment of peacekeepers
|
||||||
|
12526 Demand de-escalation of military engagement
|
||||||
|
12527 Declare truce, ceasefire
|
||||||
|
12528 Reduce or stop humanitarian assistance
|
||||||
|
12529 Appeal to others to settle dispute
|
||||||
|
12530 Reject request for military aid
|
||||||
|
12531 Threaten with political dissent, protest
|
||||||
|
12532 Appeal to engage in or accept mediation
|
||||||
|
12533 Express intent to ease economic sanctions, boycott, or embargo
|
||||||
|
12534 Coerce
|
||||||
|
12535 fight with artillery and tanks
|
||||||
|
12536 Express intent to cooperate on intelligence
|
||||||
|
12537 Express intent to settle dispute
|
||||||
|
12538 Express accord
|
||||||
|
12539 Decline comment
|
||||||
|
12540 Rally opposition against
|
||||||
|
12541 Halt negotiations
|
||||||
|
12542 Demand that target yields
|
||||||
|
12543 Appeal for military aid
|
||||||
|
12544 Threaten with military force
|
||||||
|
12545 Express intent to provide military protection or peacekeeping
|
||||||
|
12546 Threaten with sanctions, boycott, embargo
|
||||||
|
12547 Express intent to provide military aid
|
||||||
|
12548 Demand change in leadership
|
||||||
|
12549 Appeal for economic aid
|
||||||
|
12550 Refuse to de-escalate military engagement
|
||||||
|
12551 Refuse to release persons or property
|
||||||
|
12552 Increase police alert status
|
||||||
|
12553 Return, release property
|
||||||
|
12554 Ease military blockade
|
||||||
|
12555 Appeal for material cooperation
|
||||||
|
12556 Express intent to cooperate on judicial matters
|
||||||
|
12557 Appeal for economic cooperation
|
||||||
|
12558 Demand settling of dispute
|
||||||
|
12559 Accuse of crime, corruption
|
||||||
|
12560 Defend verbally
|
||||||
|
12561 Provide military protection or peacekeeping
|
||||||
|
12562 Accuse of espionage, treason
|
||||||
|
12563 Seize or damage property
|
||||||
|
12564 Accede to requests or demands for political reform
|
||||||
|
12565 Appeal for easing of economic sanctions, boycott, or embargo
|
||||||
|
12566 Threaten to reduce or stop aid
|
||||||
|
12567 Engage in judicial cooperation
|
||||||
|
12568 Appeal to yield
|
||||||
|
12569 Demand military aid
|
||||||
|
12570 Refuse to ease administrative sanctions
|
||||||
|
12571 Demand release of persons or property
|
||||||
|
12572 Accede to demands for change in leadership
|
||||||
|
12573 Appeal for humanitarian aid
|
||||||
|
12574 Threaten with repression
|
||||||
|
12575 Demand change in institutions, regime
|
||||||
|
12576 Demonstrate for policy change
|
||||||
|
12577 Appeal for aid
|
||||||
|
12578 Appeal for rights
|
||||||
|
12579 Engage in violent protest for rights
|
||||||
|
12580 Express intent to mediate
|
||||||
|
12581 Expel or withdraw peacekeepers
|
||||||
|
12582 Appeal for military protection or peacekeeping
|
||||||
|
12583 Engage in mass killings
|
||||||
|
12584 Accuse of war crimes
|
||||||
|
12585 Reject military cooperation
|
||||||
|
12586 Threaten to halt negotiations
|
||||||
|
12587 Ban political parties or politicians
|
||||||
|
12588 Express intent to change leadership
|
||||||
|
12589 Demand material cooperation
|
||||||
|
12590 Express intent to institute political reform
|
||||||
|
12591 Demand easing of administrative sanctions
|
||||||
|
12592 Express intent to engage in material cooperation
|
||||||
|
12593 Reduce or stop economic assistance
|
||||||
|
12594 Express intent to ease administrative sanctions
|
||||||
|
12595 Demand intelligence cooperation
|
||||||
|
12596 Ease curfew
|
||||||
|
12597 Receive inspectors
|
||||||
|
12598 Demand rights
|
||||||
|
12599 Demand political reform
|
||||||
|
12600 Demand judicial cooperation
|
||||||
|
12601 Engage in political dissent
|
||||||
|
12602 Detonate nuclear weapons
|
||||||
|
12603 Violate ceasefire
|
||||||
|
12604 Express intent to accept mediation
|
||||||
|
12605 Refuse to ease economic sanctions, boycott, or embargo
|
||||||
|
12606 Demand mediation
|
||||||
|
12607 Obstruct passage to demand leadership change
|
||||||
|
12608 Express intent to yield
|
||||||
|
12609 Conduct hunger strike
|
||||||
|
12610 Threaten to halt mediation
|
||||||
|
12611 Reject judicial cooperation
|
||||||
|
12612 Reduce or stop military assistance
|
||||||
|
12613 Ease political dissent
|
||||||
|
12614 Threaten to reduce or break relations
|
||||||
|
12615 Demobilize armed forces
|
||||||
|
12616 Use as human shield
|
||||||
|
12617 Demand policy change
|
||||||
|
12618 Accede to demands for change in institutions, regime
|
||||||
|
12619 Reject economic cooperation
|
||||||
|
12620 Reject material cooperation
|
||||||
|
12621 Halt mediation
|
||||||
|
12622 Accede to demands for change in policy
|
||||||
|
12623 Investigate war crimes
|
||||||
|
12624 Threaten with administrative sanctions
|
||||||
|
12625 Reduce or stop material aid
|
||||||
|
12626 Destroy property
|
||||||
|
12627 Express intent to change policy
|
||||||
|
12628 Use chemical, biological, or radiological weapons
|
||||||
|
12629 Reject request for military protection or peacekeeping
|
||||||
|
12630 Demand material aid
|
||||||
|
12631 Engage in mass expulsion
|
||||||
|
12632 Investigate human rights abuses
|
||||||
|
12633 Carry out car bombing
|
||||||
|
12634 Expel or withdraw
|
||||||
|
12635 Ease state of emergency or martial law
|
||||||
|
12636 Carry out roadside bombing
|
||||||
|
12637 Appeal for target to allow international involvement (non-mediation)
|
||||||
|
12638 Reject request for change in leadership
|
@ -421,3 +421,27 @@
|
|||||||
420 P551[36-69]
|
420 P551[36-69]
|
||||||
421 P579[0-15]
|
421 P579[0-15]
|
||||||
422 P102[54-62]
|
422 P102[54-62]
|
||||||
|
423 P131
|
||||||
|
424 P1435
|
||||||
|
425 P39
|
||||||
|
426 P54
|
||||||
|
427 P31
|
||||||
|
428 P463
|
||||||
|
429 P512
|
||||||
|
430 P190
|
||||||
|
431 P150
|
||||||
|
432 P1376
|
||||||
|
433 P166
|
||||||
|
434 P2962
|
||||||
|
435 P108
|
||||||
|
436 P17
|
||||||
|
437 P793
|
||||||
|
438 P69
|
||||||
|
439 P26
|
||||||
|
440 P579
|
||||||
|
441 P1411
|
||||||
|
442 P6
|
||||||
|
443 P1346
|
||||||
|
444 P102
|
||||||
|
445 P27
|
||||||
|
446 P551
|
||||||
|
53
main.py
53
main.py
@ -91,9 +91,11 @@ class Main(object):
|
|||||||
for line in open('./data/{}/{}'.format(self.p.dataset, "relations.dict")):
|
for line in open('./data/{}/{}'.format(self.p.dataset, "relations.dict")):
|
||||||
id, rel = map(str.lower, line.strip().split('\t'))
|
id, rel = map(str.lower, line.strip().split('\t'))
|
||||||
self.rel2id[rel] = int(id)
|
self.rel2id[rel] = int(id)
|
||||||
|
rel_set.add(rel)
|
||||||
|
|
||||||
# self.ent2id = {ent: idx for idx, ent in enumerate(ent_set)}
|
# self.ent2id = {ent: idx for idx, ent in enumerate(ent_set)}
|
||||||
# self.rel2id = {rel: idx for idx, rel in enumerate(rel_set)}
|
# self.rel2id = {rel: idx for idx, rel in enumerate(rel_set)}
|
||||||
|
|
||||||
self.rel2id.update({rel+'_reverse': idx+len(self.rel2id)
|
self.rel2id.update({rel+'_reverse': idx+len(self.rel2id)
|
||||||
for idx, rel in enumerate(rel_set)})
|
for idx, rel in enumerate(rel_set)})
|
||||||
|
|
||||||
@ -111,47 +113,48 @@ class Main(object):
|
|||||||
for split in ['train', 'test', 'valid']:
|
for split in ['train', 'test', 'valid']:
|
||||||
for line in open('./data/{}/{}.txt'.format(self.p.dataset, split)):
|
for line in open('./data/{}/{}.txt'.format(self.p.dataset, split)):
|
||||||
sub, rel, obj, *_ = map(str.lower, line.replace('\xa0', '').strip().split('\t'))
|
sub, rel, obj, *_ = map(str.lower, line.replace('\xa0', '').strip().split('\t'))
|
||||||
sub, rel, obj = self.ent2id[sub], self.rel2id[rel], self.ent2id[obj]
|
nt_rel = rel.split('[')[0]
|
||||||
self.data[split].append((sub, rel, obj))
|
sub, rel, obj, nt_rel = self.ent2id[sub], self.rel2id[rel], self.ent2id[obj], self.rel2id[nt_rel]
|
||||||
|
self.data[split].append((sub, rel, obj, nt_rel))
|
||||||
|
|
||||||
if split == 'train':
|
if split == 'train':
|
||||||
sr2o[(sub, rel)].add(obj)
|
sr2o[(sub, rel, nt_rel)].add(obj)
|
||||||
sr2o[(obj, rel+self.p.num_rel)].add(sub)
|
sr2o[(obj, rel+self.p.num_rel, nt_rel + self.p.num_rel)].add(sub)
|
||||||
self.data = dict(self.data)
|
self.data = dict(self.data)
|
||||||
|
|
||||||
self.sr2o = {k: list(v) for k, v in sr2o.items()}
|
self.sr2o = {k: list(v) for k, v in sr2o.items()}
|
||||||
for split in ['test', 'valid']:
|
for split in ['test', 'valid']:
|
||||||
for sub, rel, obj in self.data[split]:
|
for sub, rel, obj, nt_rel in self.data[split]:
|
||||||
sr2o[(sub, rel)].add(obj)
|
sr2o[(sub, rel, nt_rel)].add(obj)
|
||||||
sr2o[(obj, rel+self.p.num_rel)].add(sub)
|
sr2o[(obj, rel+self.p.num_rel, nt_rel + self.p.num_rel)].add(sub)
|
||||||
|
|
||||||
self.sr2o_all = {k: list(v) for k, v in sr2o.items()}
|
self.sr2o_all = {k: list(v) for k, v in sr2o.items()}
|
||||||
|
|
||||||
self.triples = ddict(list)
|
self.triples = ddict(list)
|
||||||
|
|
||||||
if self.p.train_strategy == 'one_to_n':
|
if self.p.train_strategy == 'one_to_n':
|
||||||
for (sub, rel), obj in self.sr2o.items():
|
for (sub, rel, nt_rel), obj in self.sr2o.items():
|
||||||
self.triples['train'].append(
|
self.triples['train'].append(
|
||||||
{'triple': (sub, rel, -1), 'label': self.sr2o[(sub, rel)], 'sub_samp': 1})
|
{'triple': (sub, rel, -1, nt_rel), 'label': self.sr2o[(sub, rel, nt_rel)], 'sub_samp': 1})
|
||||||
else:
|
else:
|
||||||
for sub, rel, obj in self.data['train']:
|
for sub, rel, obj, nt_rel in self.data['train']:
|
||||||
rel_inv = rel + self.p.num_rel
|
rel_inv = rel + self.p.num_rel
|
||||||
sub_samp = len(self.sr2o[(sub, rel)]) + \
|
sub_samp = len(self.sr2o[(sub, rel, nt_rel)]) + \
|
||||||
len(self.sr2o[(obj, rel_inv)])
|
len(self.sr2o[(obj, rel_inv, nt_rel + self.p.num_rel)])
|
||||||
sub_samp = np.sqrt(1/sub_samp)
|
sub_samp = np.sqrt(1/sub_samp)
|
||||||
|
|
||||||
self.triples['train'].append({'triple': (
|
self.triples['train'].append({'triple': (
|
||||||
sub, rel, obj), 'label': self.sr2o[(sub, rel)], 'sub_samp': sub_samp})
|
sub, rel, obj, nt_rel), 'label': self.sr2o[(sub, rel, nt_rel)], 'sub_samp': sub_samp})
|
||||||
self.triples['train'].append({'triple': (
|
self.triples['train'].append({'triple': (
|
||||||
obj, rel_inv, sub), 'label': self.sr2o[(obj, rel_inv)], 'sub_samp': sub_samp})
|
obj, rel_inv, sub, nt_rel + self.p.num_rel), 'label': self.sr2o[(obj, rel_inv, nt_rel + self.p.num_rel)], 'sub_samp': sub_samp})
|
||||||
|
|
||||||
for split in ['test', 'valid']:
|
for split in ['test', 'valid']:
|
||||||
for sub, rel, obj in self.data[split]:
|
for sub, rel, obj, nt_rel in self.data[split]:
|
||||||
rel_inv = rel + self.p.num_rel
|
rel_inv = rel + self.p.num_rel
|
||||||
self.triples['{}_{}'.format(split, 'tail')].append(
|
self.triples['{}_{}'.format(split, 'tail')].append(
|
||||||
{'triple': (sub, rel, obj), 'label': self.sr2o_all[(sub, rel)]})
|
{'triple': (sub, rel, obj, nt_rel), 'label': self.sr2o_all[(sub, rel, nt_rel)]})
|
||||||
self.triples['{}_{}'.format(split, 'head')].append(
|
self.triples['{}_{}'.format(split, 'head')].append(
|
||||||
{'triple': (obj, rel_inv, sub), 'label': self.sr2o_all[(obj, rel_inv)]})
|
{'triple': (obj, rel_inv, sub, nt_rel + self.p.num_rel), 'label': self.sr2o_all[(obj, rel_inv, nt_rel + self.p.num_rel)]})
|
||||||
|
|
||||||
self.triples = dict(self.triples)
|
self.triples = dict(self.triples)
|
||||||
|
|
||||||
@ -275,13 +278,13 @@ class Main(object):
|
|||||||
if self.p.train_strategy == 'one_to_x':
|
if self.p.train_strategy == 'one_to_x':
|
||||||
triple, label, neg_ent, sub_samp = [
|
triple, label, neg_ent, sub_samp = [
|
||||||
_.to(self.device) for _ in batch]
|
_.to(self.device) for _ in batch]
|
||||||
return triple[:, 0], triple[:, 1], triple[:, 2], label, neg_ent, sub_samp
|
return triple[:, 0], triple[:, 1], triple[:, 2], triple[:, 3], label, neg_ent, sub_samp
|
||||||
else:
|
else:
|
||||||
triple, label = [_.to(self.device) for _ in batch]
|
triple, label = [_.to(self.device) for _ in batch]
|
||||||
return triple[:, 0], triple[:, 1], triple[:, 2], label, None, None
|
return triple[:, 0], triple[:, 1], triple[:, 2], triple[:, 3], label, None, None
|
||||||
else:
|
else:
|
||||||
triple, label = [_.to(self.device) for _ in batch]
|
triple, label = [_.to(self.device) for _ in batch]
|
||||||
return triple[:, 0], triple[:, 1], triple[:, 2], label
|
return triple[:, 0], triple[:, 1], triple[:, 2], triple[:, 3], label
|
||||||
|
|
||||||
def save_model(self, save_path):
|
def save_model(self, save_path):
|
||||||
"""
|
"""
|
||||||
@ -416,8 +419,8 @@ class Main(object):
|
|||||||
obj_pred = []
|
obj_pred = []
|
||||||
obj_pred_score = []
|
obj_pred_score = []
|
||||||
for step, batch in enumerate(train_iter):
|
for step, batch in enumerate(train_iter):
|
||||||
sub, rel, obj, label = self.read_batch(batch, split)
|
sub, rel, obj, nt_rel, label = self.read_batch(batch, split)
|
||||||
pred = self.model.forward(sub, rel, None, 'one_to_n')
|
pred = self.model.forward(sub, rel, nt_rel, None, 'one_to_n')
|
||||||
b_range = torch.arange(pred.size()[0], device=self.device)
|
b_range = torch.arange(pred.size()[0], device=self.device)
|
||||||
target_pred = pred[b_range, obj]
|
target_pred = pred[b_range, obj]
|
||||||
pred = torch.where(label.byte(), torch.zeros_like(pred), pred)
|
pred = torch.where(label.byte(), torch.zeros_like(pred), pred)
|
||||||
@ -474,10 +477,10 @@ class Main(object):
|
|||||||
for step, batch in enumerate(train_iter):
|
for step, batch in enumerate(train_iter):
|
||||||
self.optimizer.zero_grad()
|
self.optimizer.zero_grad()
|
||||||
|
|
||||||
sub, rel, obj, label, neg_ent, sub_samp = self.read_batch(
|
sub, rel, obj, nt_rel, label, neg_ent, sub_samp = self.read_batch(
|
||||||
batch, 'train')
|
batch, 'train')
|
||||||
|
|
||||||
pred = self.model.forward(sub, rel, neg_ent, self.p.train_strategy)
|
pred = self.model.forward(sub, rel, nt_rel, neg_ent, self.p.train_strategy)
|
||||||
loss = self.model.loss(pred, label, sub_samp)
|
loss = self.model.loss(pred, label, sub_samp)
|
||||||
|
|
||||||
loss.backward()
|
loss.backward()
|
||||||
@ -690,7 +693,7 @@ if __name__ == "__main__":
|
|||||||
collate_fn=TrainDataset.collate_fn
|
collate_fn=TrainDataset.collate_fn
|
||||||
))
|
))
|
||||||
for step, batch in enumerate(dataloader):
|
for step, batch in enumerate(dataloader):
|
||||||
sub, rel, obj, label, neg_ent, sub_samp = model.read_batch(
|
sub, rel, obj, nt_rel, label, neg_ent, sub_samp = model.read_batch(
|
||||||
batch, 'train')
|
batch, 'train')
|
||||||
|
|
||||||
if (neg_ent is None):
|
if (neg_ent is None):
|
||||||
|
365
models.py
365
models.py
@ -10,8 +10,6 @@ from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
|||||||
from timm.models.layers import DropPath, trunc_normal_
|
from timm.models.layers import DropPath, trunc_normal_
|
||||||
from timm.models.registry import register_model
|
from timm.models.registry import register_model
|
||||||
from timm.layers.helpers import to_2tuple
|
from timm.layers.helpers import to_2tuple
|
||||||
from typing import *
|
|
||||||
import math
|
|
||||||
|
|
||||||
|
|
||||||
class ConvE(torch.nn.Module):
|
class ConvE(torch.nn.Module):
|
||||||
@ -468,6 +466,10 @@ class FouriER(torch.nn.Module):
|
|||||||
self.p.ent_vec_dim, image_h*image_w)
|
self.p.ent_vec_dim, image_h*image_w)
|
||||||
torch.nn.init.xavier_normal_(self.ent_fusion.weight)
|
torch.nn.init.xavier_normal_(self.ent_fusion.weight)
|
||||||
|
|
||||||
|
self.ent_attn = torch.nn.Linear(
|
||||||
|
128, 128)
|
||||||
|
torch.nn.init.xavier_normal_(self.ent_attn.weight)
|
||||||
|
|
||||||
self.rel_fusion = torch.nn.Linear(
|
self.rel_fusion = torch.nn.Linear(
|
||||||
self.p.rel_vec_dim, image_h*image_w)
|
self.p.rel_vec_dim, image_h*image_w)
|
||||||
torch.nn.init.xavier_normal_(self.rel_fusion.weight)
|
torch.nn.init.xavier_normal_(self.rel_fusion.weight)
|
||||||
@ -528,22 +530,6 @@ class FouriER(torch.nn.Module):
|
|||||||
|
|
||||||
self.network = nn.ModuleList(network)
|
self.network = nn.ModuleList(network)
|
||||||
self.norm = norm_layer(embed_dims[-1])
|
self.norm = norm_layer(embed_dims[-1])
|
||||||
self.graph_type = 'Spatial'
|
|
||||||
N = (image_h // patch_size)**2
|
|
||||||
if self.graph_type in ["Spatial", "Mixed"]:
|
|
||||||
# Create a range tensor of node indices
|
|
||||||
indices = torch.arange(N)
|
|
||||||
# Reshape the indices tensor to create a grid of row and column indices
|
|
||||||
row_indices = indices.view(-1, 1).expand(-1, N)
|
|
||||||
col_indices = indices.view(1, -1).expand(N, -1)
|
|
||||||
# Compute the adjacency matrix
|
|
||||||
row1, col1 = row_indices // int(math.sqrt(N)), row_indices % int(math.sqrt(N))
|
|
||||||
row2, col2 = col_indices // int(math.sqrt(N)), col_indices % int(math.sqrt(N))
|
|
||||||
graph = ((abs(row1 - row2) <= 1).float() * (abs(col1 - col2) <= 1).float())
|
|
||||||
graph = graph - torch.eye(N)
|
|
||||||
self.spatial_graph = graph.cuda() # comment .to("cuda") if the environment is cpu
|
|
||||||
self.class_token = False
|
|
||||||
self.token_scale = False
|
|
||||||
self.head = nn.Linear(
|
self.head = nn.Linear(
|
||||||
embed_dims[-1], num_classes) if num_classes > 0 \
|
embed_dims[-1], num_classes) if num_classes > 0 \
|
||||||
else nn.Identity()
|
else nn.Identity()
|
||||||
@ -561,49 +547,19 @@ class FouriER(torch.nn.Module):
|
|||||||
|
|
||||||
def forward_tokens(self, x):
|
def forward_tokens(self, x):
|
||||||
outs = []
|
outs = []
|
||||||
B, C, H, W = x.shape
|
|
||||||
N = H*W
|
|
||||||
if self.graph_type in ["Semantic", "Mixed"]:
|
|
||||||
# Generate the semantic graph w.r.t. the cosine similarity between tokens
|
|
||||||
# Compute cosine similarity
|
|
||||||
if self.class_token:
|
|
||||||
x_normed = x[:, 1:] / x[:, 1:].norm(dim=-1, keepdim=True)
|
|
||||||
else:
|
|
||||||
x_normed = x / x.norm(dim=-1, keepdim=True)
|
|
||||||
x_cossim = x_normed @ x_normed.transpose(-1, -2)
|
|
||||||
threshold = torch.kthvalue(x_cossim, N-1-self.num_neighbours, dim=-1, keepdim=True)[0] # B,H,1,1
|
|
||||||
semantic_graph = torch.where(x_cossim>=threshold, 1.0, 0.0)
|
|
||||||
if self.class_token:
|
|
||||||
semantic_graph = semantic_graph - torch.eye(N-1, device=semantic_graph.device).unsqueeze(0)
|
|
||||||
else:
|
|
||||||
semantic_graph = semantic_graph - torch.eye(N, device=semantic_graph.device).unsqueeze(0)
|
|
||||||
|
|
||||||
if self.graph_type == "None":
|
|
||||||
graph = None
|
|
||||||
else:
|
|
||||||
if self.graph_type == "Spatial":
|
|
||||||
graph = self.spatial_graph.unsqueeze(0).expand(B,-1,-1)#.to(x.device)
|
|
||||||
elif self.graph_type == "Semantic":
|
|
||||||
graph = semantic_graph
|
|
||||||
elif self.graph_type == "Mixed":
|
|
||||||
# Integrate the spatial graph and semantic graph
|
|
||||||
spatial_graph = self.spatial_graph.unsqueeze(0).expand(B,-1,-1).to(x.device)
|
|
||||||
graph = torch.bitwise_or(semantic_graph.int(), spatial_graph.int()).float()
|
|
||||||
|
|
||||||
# Symmetrically normalize the graph
|
|
||||||
degree = graph.sum(-1) # B, N
|
|
||||||
degree = torch.diag_embed(degree**(-1/2))
|
|
||||||
graph = degree @ graph @ degree
|
|
||||||
|
|
||||||
for idx, block in enumerate(self.network):
|
for idx, block in enumerate(self.network):
|
||||||
try:
|
x = block(x)
|
||||||
x = block(x, graph)
|
|
||||||
except:
|
|
||||||
x = block(x)
|
|
||||||
# output only the features of last layer for image classification
|
# output only the features of last layer for image classification
|
||||||
return x
|
return x
|
||||||
|
|
||||||
|
def fuse_attention(self, s_embedding, l_embedding):
|
||||||
|
w1 = self.ent_attn(torch.tanh(s_embedding))
|
||||||
|
w2 = self.ent_attn(torch.tanh(l_embedding))
|
||||||
|
aff = F.softmax(torch.cat((w1,w2),1), 1)
|
||||||
|
en_embedding = aff[:,0].unsqueeze(1) * s_embedding + aff[:, 1].unsqueeze(1) * l_embedding
|
||||||
|
return en_embedding
|
||||||
|
|
||||||
def forward(self, sub, rel, neg_ents, strategy='one_to_x'):
|
def forward(self, sub, rel, nt_rel, neg_ents, strategy='one_to_x'):
|
||||||
sub_emb = self.ent_fusion(self.ent_embed(sub))
|
sub_emb = self.ent_fusion(self.ent_embed(sub))
|
||||||
rel_emb = self.rel_fusion(self.rel_embed(rel))
|
rel_emb = self.rel_fusion(self.rel_embed(rel))
|
||||||
comb_emb = torch.stack([sub_emb.view(-1, self.p.image_h, self.p.image_w), rel_emb.view(-1, self.p.image_h, self.p.image_w)], dim=1)
|
comb_emb = torch.stack([sub_emb.view(-1, self.p.image_h, self.p.image_w), rel_emb.view(-1, self.p.image_h, self.p.image_w)], dim=1)
|
||||||
@ -612,6 +568,17 @@ class FouriER(torch.nn.Module):
|
|||||||
z = self.forward_embeddings(y)
|
z = self.forward_embeddings(y)
|
||||||
z = self.forward_tokens(z)
|
z = self.forward_tokens(z)
|
||||||
z = z.mean([-2, -1])
|
z = z.mean([-2, -1])
|
||||||
|
|
||||||
|
nt_rel_emb = self.rel_fusion(self.rel_embed(nt_rel))
|
||||||
|
comb_emb_1 = torch.stack([sub_emb.view(-1, self.p.image_h, self.p.image_w), nt_rel_emb.view(-1, self.p.image_h, self.p.image_w)], dim=1)
|
||||||
|
y_1 = comb_emb_1.view(-1, 2, self.p.image_h, self.p.image_w)
|
||||||
|
y_1 = self.bn0(y_1)
|
||||||
|
z_1 = self.forward_embeddings(y_1)
|
||||||
|
z_1 = self.forward_tokens(z_1)
|
||||||
|
z_1 = z_1.mean([-2, -1])
|
||||||
|
|
||||||
|
z = self.fuse_attention(z, z_1)
|
||||||
|
|
||||||
z = self.norm(z)
|
z = self.norm(z)
|
||||||
x = self.head(z)
|
x = self.head(z)
|
||||||
x = self.hidden_drop(x)
|
x = self.hidden_drop(x)
|
||||||
@ -758,7 +725,7 @@ def basic_blocks(dim, index, layers,
|
|||||||
use_layer_scale=use_layer_scale,
|
use_layer_scale=use_layer_scale,
|
||||||
layer_scale_init_value=layer_scale_init_value,
|
layer_scale_init_value=layer_scale_init_value,
|
||||||
))
|
))
|
||||||
blocks = SeqModel(*blocks)
|
blocks = nn.Sequential(*blocks)
|
||||||
|
|
||||||
return blocks
|
return blocks
|
||||||
|
|
||||||
@ -923,279 +890,6 @@ def window_reverse(windows, window_size, H, W):
|
|||||||
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, -1, H, W)
|
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, -1, H, W)
|
||||||
return x
|
return x
|
||||||
|
|
||||||
class SeqModel(nn.Sequential):
|
|
||||||
def forward(self, *inputs):
|
|
||||||
for module in self._modules.values():
|
|
||||||
if type(inputs) == tuple:
|
|
||||||
inputs = module(*inputs)
|
|
||||||
else:
|
|
||||||
inputs = module(inputs)
|
|
||||||
return inputs
|
|
||||||
|
|
||||||
def propagate(x: torch.Tensor, weight: torch.Tensor,
|
|
||||||
index_kept: torch.Tensor, index_prop: torch.Tensor,
|
|
||||||
standard: str = "None", alpha: Optional[float] = 0,
|
|
||||||
token_scales: Optional[torch.Tensor] = None,
|
|
||||||
cls_token=True):
|
|
||||||
"""
|
|
||||||
Propagate tokens based on the selection results.
|
|
||||||
================================================
|
|
||||||
Args:
|
|
||||||
- x: Tensor([B, N, C]): the feature map of N tokens, including the [CLS] token.
|
|
||||||
|
|
||||||
- weight: Tensor([B, N-1, N-1]): the weight of each token propagated to the other tokens,
|
|
||||||
excluding the [CLS] token. weight could be a pre-defined
|
|
||||||
graph of the current feature map (by default) or the
|
|
||||||
attention map (need to manually modify the Block Module).
|
|
||||||
|
|
||||||
- index_kept: Tensor([B, N-1-num_prop]): the index of kept image tokens in the feature map X
|
|
||||||
|
|
||||||
- index_prop: Tensor([B, num_prop]): the index of propagated image tokens in the feature map X
|
|
||||||
|
|
||||||
- standard: str: the method applied to propagate the tokens, including "None", "Mean" and
|
|
||||||
"GraphProp"
|
|
||||||
|
|
||||||
- alpha: float: the coefficient of propagated features
|
|
||||||
|
|
||||||
- token_scales: Tensor([B, N]): the scale of tokens, including the [CLS] token. token_scales
|
|
||||||
is None by default. If it is not None, then token_scales
|
|
||||||
represents the scales of each token and should sum up to N.
|
|
||||||
|
|
||||||
Return:
|
|
||||||
- x: Tensor([B, N-1-num_prop, C]): the feature map after propagation
|
|
||||||
|
|
||||||
- weight: Tensor([B, N-1-num_prop, N-1-num_prop]): the graph of feature map after propagation
|
|
||||||
|
|
||||||
- token_scales: Tensor([B, N-1-num_prop]): the scale of tokens after propagation
|
|
||||||
"""
|
|
||||||
|
|
||||||
B, N, C = x.shape
|
|
||||||
|
|
||||||
# Step 1: divide tokens
|
|
||||||
if cls_token:
|
|
||||||
x_cls = x[:, 0:1] # B, 1, C
|
|
||||||
x_kept = x.gather(dim=1, index=index_kept.unsqueeze(-1).expand(-1,-1,C)) # B, N-1-num_prop, C
|
|
||||||
x_prop = x.gather(dim=1, index=index_prop.unsqueeze(-1).expand(-1,-1,C)) # B, num_prop, C
|
|
||||||
|
|
||||||
# Step 2: divide token_scales if it is not None
|
|
||||||
if token_scales is not None:
|
|
||||||
if cls_token:
|
|
||||||
token_scales_cls = token_scales[:, 0:1] # B, 1
|
|
||||||
token_scales_kept = token_scales.gather(dim=1, index=index_kept) # B, N-1-num_prop
|
|
||||||
token_scales_prop = token_scales.gather(dim=1, index=index_prop) # B, num_prop
|
|
||||||
|
|
||||||
# Step 3: propagate tokens
|
|
||||||
if standard == "None":
|
|
||||||
"""
|
|
||||||
No further propagation
|
|
||||||
"""
|
|
||||||
pass
|
|
||||||
|
|
||||||
elif standard == "Mean":
|
|
||||||
"""
|
|
||||||
Calculate the mean of all the propagated tokens,
|
|
||||||
and concatenate the result token back to kept tokens.
|
|
||||||
"""
|
|
||||||
# naive average
|
|
||||||
x_prop = x_prop.mean(1, keepdim=True) # B, 1, C
|
|
||||||
# Concatenate the average token
|
|
||||||
x_kept = torch.cat((x_kept, x_prop), dim=1) # B, N-num_prop, C
|
|
||||||
|
|
||||||
elif standard == "GraphProp":
|
|
||||||
"""
|
|
||||||
Propagate all the propagated token to kept token
|
|
||||||
with respect to the weights and token scales.
|
|
||||||
"""
|
|
||||||
assert weight is not None, "The graph weight is needed for graph propagation"
|
|
||||||
|
|
||||||
# Step 3.1: divide propagation weights.
|
|
||||||
if cls_token:
|
|
||||||
index_kept = index_kept - 1 # since weights do not include the [CLS] token
|
|
||||||
index_prop = index_prop - 1 # since weights do not include the [CLS] token
|
|
||||||
weight = weight.gather(dim=1, index=index_kept.unsqueeze(-1).expand(-1,-1,N-1)) # B, N-1-num_prop, N-1
|
|
||||||
weight_prop = weight.gather(dim=2, index=index_prop.unsqueeze(1).expand(-1,weight.shape[1],-1)) # B, N-1-num_prop, num_prop
|
|
||||||
weight = weight.gather(dim=2, index=index_kept.unsqueeze(1).expand(-1,weight.shape[1],-1)) # B, N-1-num_prop, N-1-num_prop
|
|
||||||
else:
|
|
||||||
weight = weight.gather(dim=1, index=index_kept.unsqueeze(-1).expand(-1,-1,N)) # B, N-1-num_prop, N-1
|
|
||||||
weight_prop = weight.gather(dim=2, index=index_prop.unsqueeze(1).expand(-1,weight.shape[1],-1)) # B, N-1-num_prop, num_prop
|
|
||||||
weight = weight.gather(dim=2, index=index_kept.unsqueeze(1).expand(-1,weight.shape[1],-1)) # B, N-1-num_prop, N-1-num_prop
|
|
||||||
|
|
||||||
# Step 3.2: generate the broadcast message and propagate the message to corresponding kept tokens
|
|
||||||
# Simple implementation
|
|
||||||
x_prop = weight_prop @ x_prop # B, N-1-num_prop, C
|
|
||||||
x_kept = x_kept + alpha * x_prop # B, N-1-num_prop, C
|
|
||||||
|
|
||||||
""" scatter_reduce implementation for batched inputs
|
|
||||||
# Get the non-zero values
|
|
||||||
non_zero_indices = torch.nonzero(weight_prop, as_tuple=True)
|
|
||||||
non_zero_values = weight_prop[non_zero_indices]
|
|
||||||
|
|
||||||
# Sparse multiplication
|
|
||||||
batch_indices, row_indices, col_indices = non_zero_indices
|
|
||||||
sparse_matmul = alpha * non_zero_values[:, None] * x_prop[batch_indices, col_indices, :]
|
|
||||||
reduce_indices = batch_indices * x_kept.shape[1] + row_indices
|
|
||||||
|
|
||||||
x_kept = x_kept.reshape(-1, C).scatter_reduce(dim=0,
|
|
||||||
index=reduce_indices[:, None],
|
|
||||||
src=sparse_matmul,
|
|
||||||
reduce="sum",
|
|
||||||
include_self=True)
|
|
||||||
x_kept = x_kept.reshape(B, -1, C)
|
|
||||||
"""
|
|
||||||
|
|
||||||
# Step 3.3: calculate the scale of each token if token_scales is not None
|
|
||||||
if token_scales is not None:
|
|
||||||
if cls_token:
|
|
||||||
token_scales_cls = token_scales[:, 0:1] # B, 1
|
|
||||||
token_scales = token_scales[:, 1:]
|
|
||||||
token_scales_kept = token_scales.gather(dim=1, index=index_kept) # B, N-1-num_prop
|
|
||||||
token_scales_prop = token_scales.gather(dim=1, index=index_prop) # B, num_prop
|
|
||||||
token_scales_prop = weight_prop @ token_scales_prop.unsqueeze(-1) # B, N-1-num_prop, 1
|
|
||||||
token_scales = token_scales_kept + alpha * token_scales_prop.squeeze(-1) # B, N-1-num_prop
|
|
||||||
if cls_token:
|
|
||||||
token_scales = torch.cat((token_scales_cls, token_scales), dim=1) # B, N-num_prop
|
|
||||||
else:
|
|
||||||
assert False, "Propagation method \'%f\' has not been supported yet." % standard
|
|
||||||
|
|
||||||
|
|
||||||
if cls_token:
|
|
||||||
# Step 4: concatenate the [CLS] token and generate returned value
|
|
||||||
x = torch.cat((x_cls, x_kept), dim=1) # B, N-num_prop, C
|
|
||||||
else:
|
|
||||||
x = x_kept
|
|
||||||
return x, weight, token_scales
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def select(weight: torch.Tensor, standard: str = "None", num_prop: int = 0, cls_token = True):
|
|
||||||
"""
|
|
||||||
Select image tokens to be propagated. The [CLS] token will be ignored.
|
|
||||||
======================================================================
|
|
||||||
Args:
|
|
||||||
- weight: Tensor([B, H, N, N]): used for selecting the kept tokens. Only support the
|
|
||||||
attention map of tokens at the moment.
|
|
||||||
|
|
||||||
- standard: str: the method applied to select the tokens
|
|
||||||
|
|
||||||
- num_prop: int: the number of tokens to be propagated
|
|
||||||
|
|
||||||
Return:
|
|
||||||
- index_kept: Tensor([B, N-1-num_prop]): the index of kept tokens
|
|
||||||
|
|
||||||
- index_prop: Tensor([B, num_prop]): the index of propagated tokens
|
|
||||||
"""
|
|
||||||
|
|
||||||
assert len(weight.shape) == 4, "Selection methods on tensors other than the attention map haven't been supported yet."
|
|
||||||
B, H, N1, N2 = weight.shape
|
|
||||||
assert N1 == N2, "Selection methods on tensors other than the attention map haven't been supported yet."
|
|
||||||
N = N1
|
|
||||||
assert num_prop >= 0, "The number of propagated/pruned tokens must be non-negative."
|
|
||||||
|
|
||||||
if cls_token:
|
|
||||||
if standard == "CLSAttnMean":
|
|
||||||
token_rank = weight[:,:,0,1:].mean(1)
|
|
||||||
|
|
||||||
elif standard == "CLSAttnMax":
|
|
||||||
token_rank = weight[:,:,0,1:].max(1)[0]
|
|
||||||
|
|
||||||
elif standard == "IMGAttnMean":
|
|
||||||
token_rank = weight[:,:,:,1:].sum(-2).mean(1)
|
|
||||||
|
|
||||||
elif standard == "IMGAttnMax":
|
|
||||||
token_rank = weight[:,:,:,1:].sum(-2).max(1)[0]
|
|
||||||
|
|
||||||
elif standard == "DiagAttnMean":
|
|
||||||
token_rank = torch.diagonal(weight, dim1=-2, dim2=-1)[:,:,1:].mean(1)
|
|
||||||
|
|
||||||
elif standard == "DiagAttnMax":
|
|
||||||
token_rank = torch.diagonal(weight, dim1=-2, dim2=-1)[:,:,1:].max(1)[0]
|
|
||||||
|
|
||||||
elif standard == "MixedAttnMean":
|
|
||||||
token_rank_1 = torch.diagonal(weight, dim1=-2, dim2=-1)[:,:,1:].mean(1)
|
|
||||||
token_rank_2 = weight[:,:,:,1:].sum(-2).mean(1)
|
|
||||||
token_rank = token_rank_1 * token_rank_2
|
|
||||||
|
|
||||||
elif standard == "MixedAttnMax":
|
|
||||||
token_rank_1 = torch.diagonal(weight, dim1=-2, dim2=-1)[:,:,1:].max(1)[0]
|
|
||||||
token_rank_2 = weight[:,:,:,1:].sum(-2).max(1)[0]
|
|
||||||
token_rank = token_rank_1 * token_rank_2
|
|
||||||
|
|
||||||
elif standard == "SumAttnMax":
|
|
||||||
token_rank_1 = torch.diagonal(weight, dim1=-2, dim2=-1)[:,:,1:].max(1)[0]
|
|
||||||
token_rank_2 = weight[:,:,:,1:].sum(-2).max(1)[0]
|
|
||||||
token_rank = token_rank_1 + token_rank_2
|
|
||||||
|
|
||||||
elif standard == "CosSimMean":
|
|
||||||
weight = weight[:,:,1:,:].mean(1)
|
|
||||||
weight = weight / weight.norm(dim=-1, keepdim=True)
|
|
||||||
token_rank = -(weight @ weight.transpose(-1, -2)).sum(-1)
|
|
||||||
|
|
||||||
elif standard == "CosSimMax":
|
|
||||||
weight = weight[:,:,1:,:].max(1)[0]
|
|
||||||
weight = weight / weight.norm(dim=-1, keepdim=True)
|
|
||||||
token_rank = -(weight @ weight.transpose(-1, -2)).sum(-1)
|
|
||||||
|
|
||||||
elif standard == "Random":
|
|
||||||
token_rank = torch.randn((B, N-1), device=weight.device)
|
|
||||||
|
|
||||||
else:
|
|
||||||
print("Type\'", standard, "\' selection not supported.")
|
|
||||||
assert False
|
|
||||||
|
|
||||||
token_rank = torch.argsort(token_rank, dim=1, descending=True) # B, N-1
|
|
||||||
index_kept = token_rank[:, :-num_prop]+1 # B, N-1-num_prop
|
|
||||||
index_prop = token_rank[:, -num_prop:]+1 # B, num_prop
|
|
||||||
|
|
||||||
else:
|
|
||||||
if standard == "IMGAttnMean":
|
|
||||||
token_rank = weight.sum(-2).mean(1)
|
|
||||||
|
|
||||||
elif standard == "IMGAttnMax":
|
|
||||||
token_rank = weight.sum(-2).max(1)[0]
|
|
||||||
|
|
||||||
elif standard == "DiagAttnMean":
|
|
||||||
token_rank = torch.diagonal(weight, dim1=-2, dim2=-1).mean(1)
|
|
||||||
|
|
||||||
elif standard == "DiagAttnMax":
|
|
||||||
token_rank = torch.diagonal(weight, dim1=-2, dim2=-1).max(1)[0]
|
|
||||||
|
|
||||||
elif standard == "MixedAttnMean":
|
|
||||||
token_rank_1 = torch.diagonal(weight, dim1=-2, dim2=-1).mean(1)
|
|
||||||
token_rank_2 = weight.sum(-2).mean(1)
|
|
||||||
token_rank = token_rank_1 * token_rank_2
|
|
||||||
|
|
||||||
elif standard == "MixedAttnMax":
|
|
||||||
token_rank_1 = torch.diagonal(weight, dim1=-2, dim2=-1).max(1)[0]
|
|
||||||
token_rank_2 = weight.sum(-2).max(1)[0]
|
|
||||||
token_rank = token_rank_1 * token_rank_2
|
|
||||||
|
|
||||||
elif standard == "SumAttnMax":
|
|
||||||
token_rank_1 = torch.diagonal(weight, dim1=-2, dim2=-1).max(1)[0]
|
|
||||||
token_rank_2 = weight.sum(-2).max(1)[0]
|
|
||||||
token_rank = token_rank_1 + token_rank_2
|
|
||||||
|
|
||||||
elif standard == "CosSimMean":
|
|
||||||
weight = weight.mean(1)
|
|
||||||
weight = weight / weight.norm(dim=-1, keepdim=True)
|
|
||||||
token_rank = -(weight @ weight.transpose(-1, -2)).sum(-1)
|
|
||||||
|
|
||||||
elif standard == "CosSimMax":
|
|
||||||
weight = weight.max(1)[0]
|
|
||||||
weight = weight / weight.norm(dim=-1, keepdim=True)
|
|
||||||
token_rank = -(weight @ weight.transpose(-1, -2)).sum(-1)
|
|
||||||
|
|
||||||
elif standard == "Random":
|
|
||||||
token_rank = torch.randn((B, N-1), device=weight.device)
|
|
||||||
|
|
||||||
else:
|
|
||||||
print("Type\'", standard, "\' selection not supported.")
|
|
||||||
assert False
|
|
||||||
|
|
||||||
token_rank = torch.argsort(token_rank, dim=1, descending=True) # B, N-1
|
|
||||||
index_kept = token_rank[:, :-num_prop] # B, N-1-num_prop
|
|
||||||
index_prop = token_rank[:, -num_prop:] # B, num_prop
|
|
||||||
return index_kept, index_prop
|
|
||||||
|
|
||||||
class PoolFormerBlock(nn.Module):
|
class PoolFormerBlock(nn.Module):
|
||||||
"""
|
"""
|
||||||
Implementation of one PoolFormer block.
|
Implementation of one PoolFormer block.
|
||||||
@ -1238,20 +932,13 @@ class PoolFormerBlock(nn.Module):
|
|||||||
self.layer_scale_2 = nn.Parameter(
|
self.layer_scale_2 = nn.Parameter(
|
||||||
layer_scale_init_value * torch.ones((dim)), requires_grad=True)
|
layer_scale_init_value * torch.ones((dim)), requires_grad=True)
|
||||||
|
|
||||||
def forward(self, x, weight, token_scales = None):
|
def forward(self, x):
|
||||||
B, C, H, W = x.shape
|
B, C, H, W = x.shape
|
||||||
x_windows = window_partition(x, self.window_size)
|
x_windows = window_partition(x, self.window_size)
|
||||||
x_windows = x_windows.view(-1, self.window_size * self.window_size, C)
|
x_windows = x_windows.view(-1, self.window_size * self.window_size, C)
|
||||||
attn_windows = self.token_mixer(x_windows, mask=self.attn_mask)
|
attn_windows = self.token_mixer(x_windows, mask=self.attn_mask)
|
||||||
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
||||||
x_attn = window_reverse(attn_windows, self.window_size, H, W)
|
x_attn = window_reverse(attn_windows, self.window_size, H, W)
|
||||||
index_kept, index_prop = select(x_attn, standard="MixedAttnMax", num_prop=0,
|
|
||||||
cls_token=False)
|
|
||||||
original_shape = x_attn.shape
|
|
||||||
x_attn = x_attn.view(-1, self.window_size * self.window_size, C)
|
|
||||||
x_attn, weight, token_scales = propagate(x_attn, weight, index_kept, index_prop, standard="GraphProp",
|
|
||||||
alpha=0.1, token_scales=token_scales, cls_token=False)
|
|
||||||
x_attn = x_attn.view(*original_shape)
|
|
||||||
if self.use_layer_scale:
|
if self.use_layer_scale:
|
||||||
x = x + self.drop_path(
|
x = x + self.drop_path(
|
||||||
self.layer_scale_1.unsqueeze(-1).unsqueeze(-1)
|
self.layer_scale_1.unsqueeze(-1).unsqueeze(-1)
|
||||||
|
Reference in New Issue
Block a user