Compare commits
13 Commits
Author | SHA1 | Date | |
---|---|---|---|
a14267d96c | |||
d3a6cfe041 | |||
2b6e356e60 | |||
a8ac4d1b3f | |||
8866ea448e | |||
b661823661 | |||
805d4fb536 | |||
f86e27dab7 | |||
65963bf46b | |||
5494206a04 | |||
48669c72f4 | |||
d79bdd1c3e | |||
7e6d4982d9 |
451
models.py
451
models.py
@ -10,8 +10,6 @@ from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
||||
from timm.models.layers import DropPath, trunc_normal_
|
||||
from timm.models.registry import register_model
|
||||
from timm.layers.helpers import to_2tuple
|
||||
from typing import *
|
||||
import math
|
||||
|
||||
|
||||
class ConvE(torch.nn.Module):
|
||||
@ -437,6 +435,50 @@ class TuckER(torch.nn.Module):
|
||||
|
||||
return pred
|
||||
|
||||
class PatchMerging(nn.Module):
|
||||
r""" Patch Merging Layer.
|
||||
|
||||
Args:
|
||||
input_resolution (tuple[int]): Resolution of input feature.
|
||||
dim (int): Number of input channels.
|
||||
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
||||
"""
|
||||
|
||||
def __init__(self, dim, norm_layer=nn.LayerNorm):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
|
||||
self.norm = norm_layer(2 * dim)
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
x: B, C, H, W
|
||||
"""
|
||||
B, C, H, W = x.shape
|
||||
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."
|
||||
|
||||
x = x.view(B, H, W, C)
|
||||
|
||||
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
|
||||
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
|
||||
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
|
||||
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
|
||||
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
|
||||
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
|
||||
|
||||
x = self.reduction(x)
|
||||
x = self.norm(x)
|
||||
|
||||
return x
|
||||
|
||||
def extra_repr(self) -> str:
|
||||
return f"input_resolution={self.input_resolution}, dim={self.dim}"
|
||||
|
||||
def flops(self):
|
||||
H, W = self.input_resolution
|
||||
flops = (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim
|
||||
flops += H * W * self.dim // 2
|
||||
return flops
|
||||
|
||||
class FouriER(torch.nn.Module):
|
||||
def __init__(self, params, hid_drop = None, embed_dim = None):
|
||||
@ -490,9 +532,10 @@ class FouriER(torch.nn.Module):
|
||||
self.patch_embed = PatchEmbed(in_chans=channels, patch_size=self.p.patch_size,
|
||||
embed_dim=self.p.embed_dim, stride=4, padding=2)
|
||||
network = []
|
||||
layers = [4, 4, 12, 4]
|
||||
embed_dims = [self.p.embed_dim, 128, 320, 128]
|
||||
mlp_ratios = [4, 4, 4, 4]
|
||||
layers = [2, 2, 6, 2]
|
||||
embed_dims = [self.p.embed_dim, 320, 256, 128]
|
||||
mlp_ratios = [4, 4, 8, 12]
|
||||
num_heads = [4, 4, 4, 4]
|
||||
downsamples = [True, True, True, True]
|
||||
pool_size=3
|
||||
act_layer=nn.GELU
|
||||
@ -504,6 +547,7 @@ class FouriER(torch.nn.Module):
|
||||
down_patch_size=3
|
||||
down_stride=2
|
||||
down_pad=1
|
||||
window_size = 4
|
||||
num_classes=self.p.embed_dim
|
||||
for i in range(len(layers)):
|
||||
stage = basic_blocks(embed_dims[i], i, layers,
|
||||
@ -512,7 +556,9 @@ class FouriER(torch.nn.Module):
|
||||
drop_rate=drop_rate,
|
||||
drop_path_rate=drop_path_rate,
|
||||
use_layer_scale=use_layer_scale,
|
||||
layer_scale_init_value=layer_scale_init_value)
|
||||
layer_scale_init_value=layer_scale_init_value,
|
||||
num_heads=num_heads[i], input_resolution=(image_h // (2**i), image_w // (2**i)),
|
||||
window_size=window_size, shift_size=0)
|
||||
network.append(stage)
|
||||
if i >= len(layers) - 1:
|
||||
break
|
||||
@ -524,26 +570,11 @@ class FouriER(torch.nn.Module):
|
||||
padding=down_pad,
|
||||
in_chans=embed_dims[i], embed_dim=embed_dims[i+1]
|
||||
)
|
||||
# PatchMerging(dim=embed_dims[i+1])
|
||||
)
|
||||
|
||||
self.network = nn.ModuleList(network)
|
||||
self.norm = norm_layer(embed_dims[-1])
|
||||
self.graph_type = 'Spatial'
|
||||
N = (image_h // patch_size)**2
|
||||
if self.graph_type in ["Spatial", "Mixed"]:
|
||||
# Create a range tensor of node indices
|
||||
indices = torch.arange(N)
|
||||
# Reshape the indices tensor to create a grid of row and column indices
|
||||
row_indices = indices.view(-1, 1).expand(-1, N)
|
||||
col_indices = indices.view(1, -1).expand(N, -1)
|
||||
# Compute the adjacency matrix
|
||||
row1, col1 = row_indices // int(math.sqrt(N)), row_indices % int(math.sqrt(N))
|
||||
row2, col2 = col_indices // int(math.sqrt(N)), col_indices % int(math.sqrt(N))
|
||||
graph = ((abs(row1 - row2) <= 1).float() * (abs(col1 - col2) <= 1).float())
|
||||
graph = graph - torch.eye(N)
|
||||
self.spatial_graph = graph.cuda() # comment .to("cuda") if the environment is cpu
|
||||
self.class_token = False
|
||||
self.token_scale = False
|
||||
self.head = nn.Linear(
|
||||
embed_dims[-1], num_classes) if num_classes > 0 \
|
||||
else nn.Identity()
|
||||
@ -561,45 +592,8 @@ class FouriER(torch.nn.Module):
|
||||
|
||||
def forward_tokens(self, x):
|
||||
outs = []
|
||||
B, C, H, W = x.shape
|
||||
N = H*W
|
||||
if self.graph_type in ["Semantic", "Mixed"]:
|
||||
# Generate the semantic graph w.r.t. the cosine similarity between tokens
|
||||
# Compute cosine similarity
|
||||
if self.class_token:
|
||||
x_normed = x[:, 1:] / x[:, 1:].norm(dim=-1, keepdim=True)
|
||||
else:
|
||||
x_normed = x / x.norm(dim=-1, keepdim=True)
|
||||
x_cossim = x_normed @ x_normed.transpose(-1, -2)
|
||||
threshold = torch.kthvalue(x_cossim, N-1-self.num_neighbours, dim=-1, keepdim=True)[0] # B,H,1,1
|
||||
semantic_graph = torch.where(x_cossim>=threshold, 1.0, 0.0)
|
||||
if self.class_token:
|
||||
semantic_graph = semantic_graph - torch.eye(N-1, device=semantic_graph.device).unsqueeze(0)
|
||||
else:
|
||||
semantic_graph = semantic_graph - torch.eye(N, device=semantic_graph.device).unsqueeze(0)
|
||||
|
||||
if self.graph_type == "None":
|
||||
graph = None
|
||||
else:
|
||||
if self.graph_type == "Spatial":
|
||||
graph = self.spatial_graph.unsqueeze(0).expand(B,-1,-1)#.to(x.device)
|
||||
elif self.graph_type == "Semantic":
|
||||
graph = semantic_graph
|
||||
elif self.graph_type == "Mixed":
|
||||
# Integrate the spatial graph and semantic graph
|
||||
spatial_graph = self.spatial_graph.unsqueeze(0).expand(B,-1,-1).to(x.device)
|
||||
graph = torch.bitwise_or(semantic_graph.int(), spatial_graph.int()).float()
|
||||
|
||||
# Symmetrically normalize the graph
|
||||
degree = graph.sum(-1) # B, N
|
||||
degree = torch.diag_embed(degree**(-1/2))
|
||||
graph = degree @ graph @ degree
|
||||
|
||||
for idx, block in enumerate(self.network):
|
||||
try:
|
||||
x = block(x, graph)
|
||||
except:
|
||||
x = block(x)
|
||||
x = block(x)
|
||||
# output only the features of last layer for image classification
|
||||
return x
|
||||
|
||||
@ -742,7 +736,7 @@ def basic_blocks(dim, index, layers,
|
||||
pool_size=3, mlp_ratio=4.,
|
||||
act_layer=nn.GELU, norm_layer=GroupNorm,
|
||||
drop_rate=.0, drop_path_rate=0.,
|
||||
use_layer_scale=True, layer_scale_init_value=1e-5):
|
||||
use_layer_scale=True, layer_scale_init_value=1e-5, num_heads = 4, input_resolution = None, window_size = 4, shift_size = 2):
|
||||
"""
|
||||
generate PoolFormer blocks for a stage
|
||||
return: PoolFormer blocks
|
||||
@ -757,8 +751,10 @@ def basic_blocks(dim, index, layers,
|
||||
drop=drop_rate, drop_path=block_dpr,
|
||||
use_layer_scale=use_layer_scale,
|
||||
layer_scale_init_value=layer_scale_init_value,
|
||||
num_heads=num_heads, input_resolution = input_resolution,
|
||||
window_size=window_size, shift_size=shift_size
|
||||
))
|
||||
blocks = SeqModel(*blocks)
|
||||
blocks = nn.Sequential(*blocks)
|
||||
|
||||
return blocks
|
||||
|
||||
@ -876,9 +872,12 @@ class WindowAttention(nn.Module):
|
||||
attn = attn + relative_position_bias.unsqueeze(0)
|
||||
|
||||
if mask is not None:
|
||||
nW = mask.shape[0]
|
||||
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
|
||||
attn = attn.view(-1, self.num_heads, N, N)
|
||||
try:
|
||||
nW = mask.shape[0]
|
||||
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
|
||||
attn = attn.view(-1, self.num_heads, N, N)
|
||||
except:
|
||||
pass
|
||||
attn = self.softmax(attn)
|
||||
else:
|
||||
attn = self.softmax(attn)
|
||||
@ -923,279 +922,6 @@ def window_reverse(windows, window_size, H, W):
|
||||
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, -1, H, W)
|
||||
return x
|
||||
|
||||
class SeqModel(nn.Sequential):
|
||||
def forward(self, *inputs):
|
||||
for module in self._modules.values():
|
||||
if type(inputs) == tuple:
|
||||
inputs = module(*inputs)
|
||||
else:
|
||||
inputs = module(inputs)
|
||||
return inputs
|
||||
|
||||
def propagate(x: torch.Tensor, weight: torch.Tensor,
|
||||
index_kept: torch.Tensor, index_prop: torch.Tensor,
|
||||
standard: str = "None", alpha: Optional[float] = 0,
|
||||
token_scales: Optional[torch.Tensor] = None,
|
||||
cls_token=True):
|
||||
"""
|
||||
Propagate tokens based on the selection results.
|
||||
================================================
|
||||
Args:
|
||||
- x: Tensor([B, N, C]): the feature map of N tokens, including the [CLS] token.
|
||||
|
||||
- weight: Tensor([B, N-1, N-1]): the weight of each token propagated to the other tokens,
|
||||
excluding the [CLS] token. weight could be a pre-defined
|
||||
graph of the current feature map (by default) or the
|
||||
attention map (need to manually modify the Block Module).
|
||||
|
||||
- index_kept: Tensor([B, N-1-num_prop]): the index of kept image tokens in the feature map X
|
||||
|
||||
- index_prop: Tensor([B, num_prop]): the index of propagated image tokens in the feature map X
|
||||
|
||||
- standard: str: the method applied to propagate the tokens, including "None", "Mean" and
|
||||
"GraphProp"
|
||||
|
||||
- alpha: float: the coefficient of propagated features
|
||||
|
||||
- token_scales: Tensor([B, N]): the scale of tokens, including the [CLS] token. token_scales
|
||||
is None by default. If it is not None, then token_scales
|
||||
represents the scales of each token and should sum up to N.
|
||||
|
||||
Return:
|
||||
- x: Tensor([B, N-1-num_prop, C]): the feature map after propagation
|
||||
|
||||
- weight: Tensor([B, N-1-num_prop, N-1-num_prop]): the graph of feature map after propagation
|
||||
|
||||
- token_scales: Tensor([B, N-1-num_prop]): the scale of tokens after propagation
|
||||
"""
|
||||
|
||||
B, N, C = x.shape
|
||||
|
||||
# Step 1: divide tokens
|
||||
if cls_token:
|
||||
x_cls = x[:, 0:1] # B, 1, C
|
||||
x_kept = x.gather(dim=1, index=index_kept.unsqueeze(-1).expand(-1,-1,C)) # B, N-1-num_prop, C
|
||||
x_prop = x.gather(dim=1, index=index_prop.unsqueeze(-1).expand(-1,-1,C)) # B, num_prop, C
|
||||
|
||||
# Step 2: divide token_scales if it is not None
|
||||
if token_scales is not None:
|
||||
if cls_token:
|
||||
token_scales_cls = token_scales[:, 0:1] # B, 1
|
||||
token_scales_kept = token_scales.gather(dim=1, index=index_kept) # B, N-1-num_prop
|
||||
token_scales_prop = token_scales.gather(dim=1, index=index_prop) # B, num_prop
|
||||
|
||||
# Step 3: propagate tokens
|
||||
if standard == "None":
|
||||
"""
|
||||
No further propagation
|
||||
"""
|
||||
pass
|
||||
|
||||
elif standard == "Mean":
|
||||
"""
|
||||
Calculate the mean of all the propagated tokens,
|
||||
and concatenate the result token back to kept tokens.
|
||||
"""
|
||||
# naive average
|
||||
x_prop = x_prop.mean(1, keepdim=True) # B, 1, C
|
||||
# Concatenate the average token
|
||||
x_kept = torch.cat((x_kept, x_prop), dim=1) # B, N-num_prop, C
|
||||
|
||||
elif standard == "GraphProp":
|
||||
"""
|
||||
Propagate all the propagated token to kept token
|
||||
with respect to the weights and token scales.
|
||||
"""
|
||||
assert weight is not None, "The graph weight is needed for graph propagation"
|
||||
|
||||
# Step 3.1: divide propagation weights.
|
||||
if cls_token:
|
||||
index_kept = index_kept - 1 # since weights do not include the [CLS] token
|
||||
index_prop = index_prop - 1 # since weights do not include the [CLS] token
|
||||
weight = weight.gather(dim=1, index=index_kept.unsqueeze(-1).expand(-1,-1,N-1)) # B, N-1-num_prop, N-1
|
||||
weight_prop = weight.gather(dim=2, index=index_prop.unsqueeze(1).expand(-1,weight.shape[1],-1)) # B, N-1-num_prop, num_prop
|
||||
weight = weight.gather(dim=2, index=index_kept.unsqueeze(1).expand(-1,weight.shape[1],-1)) # B, N-1-num_prop, N-1-num_prop
|
||||
else:
|
||||
weight = weight.gather(dim=1, index=index_kept.unsqueeze(-1).expand(-1,-1,N)) # B, N-1-num_prop, N-1
|
||||
weight_prop = weight.gather(dim=2, index=index_prop.unsqueeze(1).expand(-1,weight.shape[1],-1)) # B, N-1-num_prop, num_prop
|
||||
weight = weight.gather(dim=2, index=index_kept.unsqueeze(1).expand(-1,weight.shape[1],-1)) # B, N-1-num_prop, N-1-num_prop
|
||||
|
||||
# Step 3.2: generate the broadcast message and propagate the message to corresponding kept tokens
|
||||
# Simple implementation
|
||||
x_prop = weight_prop @ x_prop # B, N-1-num_prop, C
|
||||
x_kept = x_kept + alpha * x_prop # B, N-1-num_prop, C
|
||||
|
||||
""" scatter_reduce implementation for batched inputs
|
||||
# Get the non-zero values
|
||||
non_zero_indices = torch.nonzero(weight_prop, as_tuple=True)
|
||||
non_zero_values = weight_prop[non_zero_indices]
|
||||
|
||||
# Sparse multiplication
|
||||
batch_indices, row_indices, col_indices = non_zero_indices
|
||||
sparse_matmul = alpha * non_zero_values[:, None] * x_prop[batch_indices, col_indices, :]
|
||||
reduce_indices = batch_indices * x_kept.shape[1] + row_indices
|
||||
|
||||
x_kept = x_kept.reshape(-1, C).scatter_reduce(dim=0,
|
||||
index=reduce_indices[:, None],
|
||||
src=sparse_matmul,
|
||||
reduce="sum",
|
||||
include_self=True)
|
||||
x_kept = x_kept.reshape(B, -1, C)
|
||||
"""
|
||||
|
||||
# Step 3.3: calculate the scale of each token if token_scales is not None
|
||||
if token_scales is not None:
|
||||
if cls_token:
|
||||
token_scales_cls = token_scales[:, 0:1] # B, 1
|
||||
token_scales = token_scales[:, 1:]
|
||||
token_scales_kept = token_scales.gather(dim=1, index=index_kept) # B, N-1-num_prop
|
||||
token_scales_prop = token_scales.gather(dim=1, index=index_prop) # B, num_prop
|
||||
token_scales_prop = weight_prop @ token_scales_prop.unsqueeze(-1) # B, N-1-num_prop, 1
|
||||
token_scales = token_scales_kept + alpha * token_scales_prop.squeeze(-1) # B, N-1-num_prop
|
||||
if cls_token:
|
||||
token_scales = torch.cat((token_scales_cls, token_scales), dim=1) # B, N-num_prop
|
||||
else:
|
||||
assert False, "Propagation method \'%f\' has not been supported yet." % standard
|
||||
|
||||
|
||||
if cls_token:
|
||||
# Step 4: concatenate the [CLS] token and generate returned value
|
||||
x = torch.cat((x_cls, x_kept), dim=1) # B, N-num_prop, C
|
||||
else:
|
||||
x = x_kept
|
||||
return x, weight, token_scales
|
||||
|
||||
|
||||
|
||||
def select(weight: torch.Tensor, standard: str = "None", num_prop: int = 0, cls_token = True):
|
||||
"""
|
||||
Select image tokens to be propagated. The [CLS] token will be ignored.
|
||||
======================================================================
|
||||
Args:
|
||||
- weight: Tensor([B, H, N, N]): used for selecting the kept tokens. Only support the
|
||||
attention map of tokens at the moment.
|
||||
|
||||
- standard: str: the method applied to select the tokens
|
||||
|
||||
- num_prop: int: the number of tokens to be propagated
|
||||
|
||||
Return:
|
||||
- index_kept: Tensor([B, N-1-num_prop]): the index of kept tokens
|
||||
|
||||
- index_prop: Tensor([B, num_prop]): the index of propagated tokens
|
||||
"""
|
||||
|
||||
assert len(weight.shape) == 4, "Selection methods on tensors other than the attention map haven't been supported yet."
|
||||
B, H, N1, N2 = weight.shape
|
||||
assert N1 == N2, "Selection methods on tensors other than the attention map haven't been supported yet."
|
||||
N = N1
|
||||
assert num_prop >= 0, "The number of propagated/pruned tokens must be non-negative."
|
||||
|
||||
if cls_token:
|
||||
if standard == "CLSAttnMean":
|
||||
token_rank = weight[:,:,0,1:].mean(1)
|
||||
|
||||
elif standard == "CLSAttnMax":
|
||||
token_rank = weight[:,:,0,1:].max(1)[0]
|
||||
|
||||
elif standard == "IMGAttnMean":
|
||||
token_rank = weight[:,:,:,1:].sum(-2).mean(1)
|
||||
|
||||
elif standard == "IMGAttnMax":
|
||||
token_rank = weight[:,:,:,1:].sum(-2).max(1)[0]
|
||||
|
||||
elif standard == "DiagAttnMean":
|
||||
token_rank = torch.diagonal(weight, dim1=-2, dim2=-1)[:,:,1:].mean(1)
|
||||
|
||||
elif standard == "DiagAttnMax":
|
||||
token_rank = torch.diagonal(weight, dim1=-2, dim2=-1)[:,:,1:].max(1)[0]
|
||||
|
||||
elif standard == "MixedAttnMean":
|
||||
token_rank_1 = torch.diagonal(weight, dim1=-2, dim2=-1)[:,:,1:].mean(1)
|
||||
token_rank_2 = weight[:,:,:,1:].sum(-2).mean(1)
|
||||
token_rank = token_rank_1 * token_rank_2
|
||||
|
||||
elif standard == "MixedAttnMax":
|
||||
token_rank_1 = torch.diagonal(weight, dim1=-2, dim2=-1)[:,:,1:].max(1)[0]
|
||||
token_rank_2 = weight[:,:,:,1:].sum(-2).max(1)[0]
|
||||
token_rank = token_rank_1 * token_rank_2
|
||||
|
||||
elif standard == "SumAttnMax":
|
||||
token_rank_1 = torch.diagonal(weight, dim1=-2, dim2=-1)[:,:,1:].max(1)[0]
|
||||
token_rank_2 = weight[:,:,:,1:].sum(-2).max(1)[0]
|
||||
token_rank = token_rank_1 + token_rank_2
|
||||
|
||||
elif standard == "CosSimMean":
|
||||
weight = weight[:,:,1:,:].mean(1)
|
||||
weight = weight / weight.norm(dim=-1, keepdim=True)
|
||||
token_rank = -(weight @ weight.transpose(-1, -2)).sum(-1)
|
||||
|
||||
elif standard == "CosSimMax":
|
||||
weight = weight[:,:,1:,:].max(1)[0]
|
||||
weight = weight / weight.norm(dim=-1, keepdim=True)
|
||||
token_rank = -(weight @ weight.transpose(-1, -2)).sum(-1)
|
||||
|
||||
elif standard == "Random":
|
||||
token_rank = torch.randn((B, N-1), device=weight.device)
|
||||
|
||||
else:
|
||||
print("Type\'", standard, "\' selection not supported.")
|
||||
assert False
|
||||
|
||||
token_rank = torch.argsort(token_rank, dim=1, descending=True) # B, N-1
|
||||
index_kept = token_rank[:, :-num_prop]+1 # B, N-1-num_prop
|
||||
index_prop = token_rank[:, -num_prop:]+1 # B, num_prop
|
||||
|
||||
else:
|
||||
if standard == "IMGAttnMean":
|
||||
token_rank = weight.sum(-2).mean(1)
|
||||
|
||||
elif standard == "IMGAttnMax":
|
||||
token_rank = weight.sum(-2).max(1)[0]
|
||||
|
||||
elif standard == "DiagAttnMean":
|
||||
token_rank = torch.diagonal(weight, dim1=-2, dim2=-1).mean(1)
|
||||
|
||||
elif standard == "DiagAttnMax":
|
||||
token_rank = torch.diagonal(weight, dim1=-2, dim2=-1).max(1)[0]
|
||||
|
||||
elif standard == "MixedAttnMean":
|
||||
token_rank_1 = torch.diagonal(weight, dim1=-2, dim2=-1).mean(1)
|
||||
token_rank_2 = weight.sum(-2).mean(1)
|
||||
token_rank = token_rank_1 * token_rank_2
|
||||
|
||||
elif standard == "MixedAttnMax":
|
||||
token_rank_1 = torch.diagonal(weight, dim1=-2, dim2=-1).max(1)[0]
|
||||
token_rank_2 = weight.sum(-2).max(1)[0]
|
||||
token_rank = token_rank_1 * token_rank_2
|
||||
|
||||
elif standard == "SumAttnMax":
|
||||
token_rank_1 = torch.diagonal(weight, dim1=-2, dim2=-1).max(1)[0]
|
||||
token_rank_2 = weight.sum(-2).max(1)[0]
|
||||
token_rank = token_rank_1 + token_rank_2
|
||||
|
||||
elif standard == "CosSimMean":
|
||||
weight = weight.mean(1)
|
||||
weight = weight / weight.norm(dim=-1, keepdim=True)
|
||||
token_rank = -(weight @ weight.transpose(-1, -2)).sum(-1)
|
||||
|
||||
elif standard == "CosSimMax":
|
||||
weight = weight.max(1)[0]
|
||||
weight = weight / weight.norm(dim=-1, keepdim=True)
|
||||
token_rank = -(weight @ weight.transpose(-1, -2)).sum(-1)
|
||||
|
||||
elif standard == "Random":
|
||||
token_rank = torch.randn((B, N-1), device=weight.device)
|
||||
|
||||
else:
|
||||
print("Type\'", standard, "\' selection not supported.")
|
||||
assert False
|
||||
|
||||
token_rank = torch.argsort(token_rank, dim=1, descending=True) # B, N-1
|
||||
index_kept = token_rank[:, :-num_prop] # B, N-1-num_prop
|
||||
index_prop = token_rank[:, -num_prop:] # B, num_prop
|
||||
return index_kept, index_prop
|
||||
|
||||
class PoolFormerBlock(nn.Module):
|
||||
"""
|
||||
Implementation of one PoolFormer block.
|
||||
@ -1212,17 +938,18 @@ class PoolFormerBlock(nn.Module):
|
||||
"""
|
||||
def __init__(self, dim, pool_size=3, mlp_ratio=4.,
|
||||
act_layer=nn.GELU, norm_layer=GroupNorm,
|
||||
drop=0., drop_path=0.,
|
||||
use_layer_scale=True, layer_scale_init_value=1e-5):
|
||||
drop=0., drop_path=0., num_heads=4,
|
||||
use_layer_scale=True, layer_scale_init_value=1e-5, input_resolution = None, window_size = 4, shift_size = 2):
|
||||
|
||||
super().__init__()
|
||||
|
||||
self.norm1 = norm_layer(dim)
|
||||
#self.token_mixer = Pooling(pool_size=pool_size)
|
||||
# self.token_mixer = FNetBlock()
|
||||
self.window_size = 4
|
||||
self.attn_mask = None
|
||||
self.token_mixer = WindowAttention(dim=dim, window_size=to_2tuple(self.window_size), num_heads=4)
|
||||
self.window_size = window_size
|
||||
self.shift_size = shift_size
|
||||
self.input_resolution = input_resolution
|
||||
self.token_mixer = WindowAttention(dim=dim, window_size=to_2tuple(self.window_size), num_heads=num_heads, attn_drop=0.2, proj_drop=0.1)
|
||||
self.norm2 = norm_layer(dim)
|
||||
mlp_hidden_dim = int(dim * mlp_ratio)
|
||||
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim,
|
||||
@ -1237,21 +964,43 @@ class PoolFormerBlock(nn.Module):
|
||||
layer_scale_init_value * torch.ones((dim)), requires_grad=True)
|
||||
self.layer_scale_2 = nn.Parameter(
|
||||
layer_scale_init_value * torch.ones((dim)), requires_grad=True)
|
||||
|
||||
if self.shift_size > 0:
|
||||
# calculate attention mask for SW-MSA
|
||||
H, W = self.input_resolution
|
||||
img_mask = torch.zeros((1, 1, H, W)) # 1 H W 1
|
||||
h_slices = (slice(0, -self.window_size),
|
||||
slice(-self.window_size, -self.shift_size),
|
||||
slice(-self.shift_size, None))
|
||||
w_slices = (slice(0, -self.window_size),
|
||||
slice(-self.window_size, -self.shift_size),
|
||||
slice(-self.shift_size, None))
|
||||
cnt = 0
|
||||
for h in h_slices:
|
||||
for w in w_slices:
|
||||
img_mask[:, :, h, w] = cnt
|
||||
cnt += 1
|
||||
|
||||
def forward(self, x, weight, token_scales = None):
|
||||
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
|
||||
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
|
||||
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
||||
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
|
||||
else:
|
||||
attn_mask = None
|
||||
|
||||
self.register_buffer("attn_mask", attn_mask)
|
||||
|
||||
def forward(self, x):
|
||||
B, C, H, W = x.shape
|
||||
x_windows = window_partition(x, self.window_size)
|
||||
x_windows = x_windows.view(-1, self.window_size * self.window_size, C)
|
||||
attn_windows = self.token_mixer(x_windows, mask=self.attn_mask)
|
||||
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
||||
x_attn = window_reverse(attn_windows, self.window_size, H, W)
|
||||
index_kept, index_prop = select(x_attn, standard="MixedAttnMax", num_prop=0,
|
||||
cls_token=False)
|
||||
original_shape = x_attn.shape
|
||||
x_attn = x_attn.view(-1, self.window_size * self.window_size, C)
|
||||
x_attn, weight, token_scales = propagate(x_attn, weight, index_kept, index_prop, standard="GraphProp",
|
||||
alpha=0.1, token_scales=token_scales, cls_token=False)
|
||||
x_attn = x_attn.view(*original_shape)
|
||||
if self.shift_size > 0:
|
||||
x = torch.roll(x_attn, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
|
||||
else:
|
||||
x = x_attn
|
||||
if self.use_layer_scale:
|
||||
x = x + self.drop_path(
|
||||
self.layer_scale_1.unsqueeze(-1).unsqueeze(-1)
|
||||
|
Reference in New Issue
Block a user