Compare commits
33 Commits
Author | SHA1 | Date | |
---|---|---|---|
a14267d96c | |||
d3a6cfe041 | |||
2b6e356e60 | |||
a8ac4d1b3f | |||
8866ea448e | |||
b661823661 | |||
805d4fb536 | |||
f86e27dab7 | |||
65963bf46b | |||
5494206a04 | |||
48669c72f4 | |||
d79bdd1c3e | |||
7e6d4982d9 | |||
f8e969cbd1 | |||
ae0f43ab4d | |||
dda7f13dbd | |||
1dd423edf0 | |||
a1bf2d7389 | |||
c31588cc5f | |||
c03e24f4c2 | |||
a47a60f6a1 | |||
ba388148d4 | |||
1b816fed50 | |||
32962bf421 | |||
b9efe68d3c | |||
465f98bef8 | |||
d4ac470c54 | |||
28a8352044 | |||
b77c79708e | |||
22d44d1a99 | |||
63ccb4ec75 | |||
6ec566505f | |||
30805a0af9 |
30
main.py
30
main.py
@ -20,6 +20,7 @@ from data_loader import TrainDataset, TestDataset
|
||||
from utils import get_logger, get_combined_results, set_gpu, prepare_env, set_seed
|
||||
|
||||
from models import ComplEx, ConvE, HypER, InteractE, FouriER, TuckER
|
||||
import traceback
|
||||
|
||||
|
||||
class Main(object):
|
||||
@ -715,16 +716,19 @@ if __name__ == "__main__":
|
||||
model.load_model(save_path)
|
||||
model.evaluate('test')
|
||||
else:
|
||||
while True:
|
||||
try:
|
||||
model = Main(args, logger)
|
||||
model.fit()
|
||||
except Exception as e:
|
||||
print(e)
|
||||
try:
|
||||
del model
|
||||
except Exception:
|
||||
pass
|
||||
time.sleep(30)
|
||||
continue
|
||||
break
|
||||
model = Main(args, logger)
|
||||
model.fit()
|
||||
# while True:
|
||||
# try:
|
||||
# model = Main(args, logger)
|
||||
# model.fit()
|
||||
# except Exception as e:
|
||||
# print(e)
|
||||
# traceback.print_exc()
|
||||
# try:
|
||||
# del model
|
||||
# except Exception:
|
||||
# pass
|
||||
# time.sleep(30)
|
||||
# continue
|
||||
# break
|
||||
|
275
models.py
275
models.py
@ -9,7 +9,7 @@ from layers import *
|
||||
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
||||
from timm.models.layers import DropPath, trunc_normal_
|
||||
from timm.models.registry import register_model
|
||||
from timm.models.layers.helpers import to_2tuple
|
||||
from timm.layers.helpers import to_2tuple
|
||||
|
||||
|
||||
class ConvE(torch.nn.Module):
|
||||
@ -435,6 +435,50 @@ class TuckER(torch.nn.Module):
|
||||
|
||||
return pred
|
||||
|
||||
class PatchMerging(nn.Module):
|
||||
r""" Patch Merging Layer.
|
||||
|
||||
Args:
|
||||
input_resolution (tuple[int]): Resolution of input feature.
|
||||
dim (int): Number of input channels.
|
||||
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
||||
"""
|
||||
|
||||
def __init__(self, dim, norm_layer=nn.LayerNorm):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
|
||||
self.norm = norm_layer(2 * dim)
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
x: B, C, H, W
|
||||
"""
|
||||
B, C, H, W = x.shape
|
||||
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."
|
||||
|
||||
x = x.view(B, H, W, C)
|
||||
|
||||
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
|
||||
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
|
||||
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
|
||||
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
|
||||
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
|
||||
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
|
||||
|
||||
x = self.reduction(x)
|
||||
x = self.norm(x)
|
||||
|
||||
return x
|
||||
|
||||
def extra_repr(self) -> str:
|
||||
return f"input_resolution={self.input_resolution}, dim={self.dim}"
|
||||
|
||||
def flops(self):
|
||||
H, W = self.input_resolution
|
||||
flops = (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim
|
||||
flops += H * W * self.dim // 2
|
||||
return flops
|
||||
|
||||
class FouriER(torch.nn.Module):
|
||||
def __init__(self, params, hid_drop = None, embed_dim = None):
|
||||
@ -488,9 +532,10 @@ class FouriER(torch.nn.Module):
|
||||
self.patch_embed = PatchEmbed(in_chans=channels, patch_size=self.p.patch_size,
|
||||
embed_dim=self.p.embed_dim, stride=4, padding=2)
|
||||
network = []
|
||||
layers = [4, 4, 12, 4]
|
||||
embed_dims = [self.p.embed_dim, 128, 320, 128]
|
||||
mlp_ratios = [4, 4, 4, 4]
|
||||
layers = [2, 2, 6, 2]
|
||||
embed_dims = [self.p.embed_dim, 320, 256, 128]
|
||||
mlp_ratios = [4, 4, 8, 12]
|
||||
num_heads = [4, 4, 4, 4]
|
||||
downsamples = [True, True, True, True]
|
||||
pool_size=3
|
||||
act_layer=nn.GELU
|
||||
@ -502,6 +547,7 @@ class FouriER(torch.nn.Module):
|
||||
down_patch_size=3
|
||||
down_stride=2
|
||||
down_pad=1
|
||||
window_size = 4
|
||||
num_classes=self.p.embed_dim
|
||||
for i in range(len(layers)):
|
||||
stage = basic_blocks(embed_dims[i], i, layers,
|
||||
@ -510,7 +556,9 @@ class FouriER(torch.nn.Module):
|
||||
drop_rate=drop_rate,
|
||||
drop_path_rate=drop_path_rate,
|
||||
use_layer_scale=use_layer_scale,
|
||||
layer_scale_init_value=layer_scale_init_value)
|
||||
layer_scale_init_value=layer_scale_init_value,
|
||||
num_heads=num_heads[i], input_resolution=(image_h // (2**i), image_w // (2**i)),
|
||||
window_size=window_size, shift_size=0)
|
||||
network.append(stage)
|
||||
if i >= len(layers) - 1:
|
||||
break
|
||||
@ -522,6 +570,7 @@ class FouriER(torch.nn.Module):
|
||||
padding=down_pad,
|
||||
in_chans=embed_dims[i], embed_dim=embed_dims[i+1]
|
||||
)
|
||||
# PatchMerging(dim=embed_dims[i+1])
|
||||
)
|
||||
|
||||
self.network = nn.ModuleList(network)
|
||||
@ -687,7 +736,7 @@ def basic_blocks(dim, index, layers,
|
||||
pool_size=3, mlp_ratio=4.,
|
||||
act_layer=nn.GELU, norm_layer=GroupNorm,
|
||||
drop_rate=.0, drop_path_rate=0.,
|
||||
use_layer_scale=True, layer_scale_init_value=1e-5):
|
||||
use_layer_scale=True, layer_scale_init_value=1e-5, num_heads = 4, input_resolution = None, window_size = 4, shift_size = 2):
|
||||
"""
|
||||
generate PoolFormer blocks for a stage
|
||||
return: PoolFormer blocks
|
||||
@ -702,11 +751,176 @@ def basic_blocks(dim, index, layers,
|
||||
drop=drop_rate, drop_path=block_dpr,
|
||||
use_layer_scale=use_layer_scale,
|
||||
layer_scale_init_value=layer_scale_init_value,
|
||||
num_heads=num_heads, input_resolution = input_resolution,
|
||||
window_size=window_size, shift_size=shift_size
|
||||
))
|
||||
blocks = nn.Sequential(*blocks)
|
||||
|
||||
return blocks
|
||||
|
||||
def window_partition(x, window_size):
|
||||
"""
|
||||
Args:
|
||||
x: (B, H, W, C)
|
||||
window_size (int): window size
|
||||
|
||||
Returns:
|
||||
windows: (num_windows*B, window_size, window_size, C)
|
||||
"""
|
||||
B, C, H, W = x.shape
|
||||
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
|
||||
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
||||
return windows
|
||||
|
||||
class WindowAttention(nn.Module):
|
||||
r""" Window based multi-head self attention (W-MSA) module with relative position bias.
|
||||
It supports both of shifted and non-shifted window.
|
||||
|
||||
Args:
|
||||
dim (int): Number of input channels.
|
||||
window_size (tuple[int]): The height and width of the window.
|
||||
num_heads (int): Number of attention heads.
|
||||
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
||||
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
|
||||
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
|
||||
pretrained_window_size (tuple[int]): The height and width of the window in pre-training.
|
||||
"""
|
||||
|
||||
def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0.,
|
||||
pretrained_window_size=[0, 0]):
|
||||
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.window_size = window_size # Wh, Ww
|
||||
self.pretrained_window_size = pretrained_window_size
|
||||
self.num_heads = num_heads
|
||||
|
||||
self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True)
|
||||
|
||||
# mlp to generate continuous relative position bias
|
||||
self.cpb_mlp = nn.Sequential(nn.Linear(2, 512, bias=True),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.Linear(512, num_heads, bias=False))
|
||||
|
||||
# get relative_coords_table
|
||||
relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0], dtype=torch.float32)
|
||||
relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1], dtype=torch.float32)
|
||||
relative_coords_table = torch.stack(
|
||||
torch.meshgrid([relative_coords_h,
|
||||
relative_coords_w])).permute(1, 2, 0).contiguous().unsqueeze(0) # 1, 2*Wh-1, 2*Ww-1, 2
|
||||
if pretrained_window_size[0] > 0:
|
||||
relative_coords_table[:, :, :, 0] /= (pretrained_window_size[0] - 1)
|
||||
relative_coords_table[:, :, :, 1] /= (pretrained_window_size[1] - 1)
|
||||
else:
|
||||
relative_coords_table[:, :, :, 0] /= (self.window_size[0] - 1)
|
||||
relative_coords_table[:, :, :, 1] /= (self.window_size[1] - 1)
|
||||
relative_coords_table *= 8 # normalize to -8, 8
|
||||
relative_coords_table = torch.sign(relative_coords_table) * torch.log2(
|
||||
torch.abs(relative_coords_table) + 1.0) / np.log2(8)
|
||||
|
||||
self.register_buffer("relative_coords_table", relative_coords_table)
|
||||
|
||||
# get pair-wise relative position index for each token inside the window
|
||||
coords_h = torch.arange(self.window_size[0])
|
||||
coords_w = torch.arange(self.window_size[1])
|
||||
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
||||
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
||||
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
||||
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
||||
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
|
||||
relative_coords[:, :, 1] += self.window_size[1] - 1
|
||||
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
||||
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
||||
self.register_buffer("relative_position_index", relative_position_index)
|
||||
|
||||
self.qkv = nn.Linear(dim, dim * 3, bias=False)
|
||||
if qkv_bias:
|
||||
self.q_bias = nn.Parameter(torch.zeros(dim))
|
||||
self.v_bias = nn.Parameter(torch.zeros(dim))
|
||||
else:
|
||||
self.q_bias = None
|
||||
self.v_bias = None
|
||||
self.attn_drop = nn.Dropout(attn_drop)
|
||||
self.proj = nn.Linear(dim, dim)
|
||||
self.proj_drop = nn.Dropout(proj_drop)
|
||||
self.softmax = nn.Softmax(dim=-1)
|
||||
|
||||
def forward(self, x, mask=None):
|
||||
"""
|
||||
Args:
|
||||
x: input features with shape of (num_windows*B, N, C)
|
||||
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
|
||||
"""
|
||||
B_, N, C = x.shape
|
||||
qkv_bias = None
|
||||
if self.q_bias is not None:
|
||||
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
|
||||
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
|
||||
qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
||||
|
||||
# cosine attention
|
||||
attn = (F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1))
|
||||
logit_scale = torch.clamp(self.logit_scale, max=torch.log(torch.tensor(1. / 0.01)).cuda()).exp()
|
||||
attn = attn * logit_scale
|
||||
|
||||
relative_position_bias_table = self.cpb_mlp(self.relative_coords_table).view(-1, self.num_heads)
|
||||
relative_position_bias = relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
||||
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
|
||||
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
||||
relative_position_bias = 16 * torch.sigmoid(relative_position_bias)
|
||||
attn = attn + relative_position_bias.unsqueeze(0)
|
||||
|
||||
if mask is not None:
|
||||
try:
|
||||
nW = mask.shape[0]
|
||||
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
|
||||
attn = attn.view(-1, self.num_heads, N, N)
|
||||
except:
|
||||
pass
|
||||
attn = self.softmax(attn)
|
||||
else:
|
||||
attn = self.softmax(attn)
|
||||
|
||||
attn = self.attn_drop(attn)
|
||||
|
||||
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
||||
x = self.proj(x)
|
||||
x = self.proj_drop(x)
|
||||
return x
|
||||
|
||||
def extra_repr(self) -> str:
|
||||
return f'dim={self.dim}, window_size={self.window_size}, ' \
|
||||
f'pretrained_window_size={self.pretrained_window_size}, num_heads={self.num_heads}'
|
||||
|
||||
def flops(self, N):
|
||||
# calculate flops for 1 window with token length of N
|
||||
flops = 0
|
||||
# qkv = self.qkv(x)
|
||||
flops += N * self.dim * 3 * self.dim
|
||||
# attn = (q @ k.transpose(-2, -1))
|
||||
flops += self.num_heads * N * (self.dim // self.num_heads) * N
|
||||
# x = (attn @ v)
|
||||
flops += self.num_heads * N * N * (self.dim // self.num_heads)
|
||||
# x = self.proj(x)
|
||||
flops += N * self.dim * self.dim
|
||||
return flops
|
||||
|
||||
def window_reverse(windows, window_size, H, W):
|
||||
"""
|
||||
Args:
|
||||
windows: (num_windows*B, window_size, window_size, C)
|
||||
window_size (int): Window size
|
||||
H (int): Height of image
|
||||
W (int): Width of image
|
||||
|
||||
Returns:
|
||||
x: (B, H, W, C)
|
||||
"""
|
||||
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
||||
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
|
||||
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, -1, H, W)
|
||||
return x
|
||||
|
||||
class PoolFormerBlock(nn.Module):
|
||||
"""
|
||||
@ -724,14 +938,18 @@ class PoolFormerBlock(nn.Module):
|
||||
"""
|
||||
def __init__(self, dim, pool_size=3, mlp_ratio=4.,
|
||||
act_layer=nn.GELU, norm_layer=GroupNorm,
|
||||
drop=0., drop_path=0.,
|
||||
use_layer_scale=True, layer_scale_init_value=1e-5):
|
||||
drop=0., drop_path=0., num_heads=4,
|
||||
use_layer_scale=True, layer_scale_init_value=1e-5, input_resolution = None, window_size = 4, shift_size = 2):
|
||||
|
||||
super().__init__()
|
||||
|
||||
self.norm1 = norm_layer(dim)
|
||||
#self.token_mixer = Pooling(pool_size=pool_size)
|
||||
self.token_mixer = FNetBlock()
|
||||
# self.token_mixer = FNetBlock()
|
||||
self.window_size = window_size
|
||||
self.shift_size = shift_size
|
||||
self.input_resolution = input_resolution
|
||||
self.token_mixer = WindowAttention(dim=dim, window_size=to_2tuple(self.window_size), num_heads=num_heads, attn_drop=0.2, proj_drop=0.1)
|
||||
self.norm2 = norm_layer(dim)
|
||||
mlp_hidden_dim = int(dim * mlp_ratio)
|
||||
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim,
|
||||
@ -746,17 +964,52 @@ class PoolFormerBlock(nn.Module):
|
||||
layer_scale_init_value * torch.ones((dim)), requires_grad=True)
|
||||
self.layer_scale_2 = nn.Parameter(
|
||||
layer_scale_init_value * torch.ones((dim)), requires_grad=True)
|
||||
|
||||
if self.shift_size > 0:
|
||||
# calculate attention mask for SW-MSA
|
||||
H, W = self.input_resolution
|
||||
img_mask = torch.zeros((1, 1, H, W)) # 1 H W 1
|
||||
h_slices = (slice(0, -self.window_size),
|
||||
slice(-self.window_size, -self.shift_size),
|
||||
slice(-self.shift_size, None))
|
||||
w_slices = (slice(0, -self.window_size),
|
||||
slice(-self.window_size, -self.shift_size),
|
||||
slice(-self.shift_size, None))
|
||||
cnt = 0
|
||||
for h in h_slices:
|
||||
for w in w_slices:
|
||||
img_mask[:, :, h, w] = cnt
|
||||
cnt += 1
|
||||
|
||||
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
|
||||
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
|
||||
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
||||
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
|
||||
else:
|
||||
attn_mask = None
|
||||
|
||||
self.register_buffer("attn_mask", attn_mask)
|
||||
|
||||
def forward(self, x):
|
||||
B, C, H, W = x.shape
|
||||
x_windows = window_partition(x, self.window_size)
|
||||
x_windows = x_windows.view(-1, self.window_size * self.window_size, C)
|
||||
attn_windows = self.token_mixer(x_windows, mask=self.attn_mask)
|
||||
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
||||
x_attn = window_reverse(attn_windows, self.window_size, H, W)
|
||||
if self.shift_size > 0:
|
||||
x = torch.roll(x_attn, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
|
||||
else:
|
||||
x = x_attn
|
||||
if self.use_layer_scale:
|
||||
x = x + self.drop_path(
|
||||
self.layer_scale_1.unsqueeze(-1).unsqueeze(-1)
|
||||
* self.token_mixer(self.norm1(x)))
|
||||
* x_attn)
|
||||
x = x + self.drop_path(
|
||||
self.layer_scale_2.unsqueeze(-1).unsqueeze(-1)
|
||||
* self.mlp(self.norm2(x)))
|
||||
else:
|
||||
x = x + self.drop_path(self.token_mixer(self.norm1(x)))
|
||||
x = x + self.drop_path(x_attn)
|
||||
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
||||
return x
|
||||
class PatchEmbed(nn.Module):
|
||||
|
@ -1,4 +1,6 @@
|
||||
torch==1.12.1+cu116
|
||||
ordered-set==4.1.0
|
||||
numpy==1.21.5
|
||||
einops==0.4.1
|
||||
einops==0.4.1
|
||||
pandas
|
||||
timm==0.9.16
|
Reference in New Issue
Block a user