33 Commits

Author SHA1 Message Date
a14267d96c try modify swin 2024-04-29 20:48:47 +07:00
d3a6cfe041 try modify swin 2024-04-29 19:57:20 +07:00
2b6e356e60 try modify swin 2024-04-29 18:28:08 +07:00
a8ac4d1b3f try modify swin 2024-04-29 17:28:55 +07:00
8866ea448e try modify swin 2024-04-29 17:16:51 +07:00
b661823661 try modify swin 2024-04-29 17:15:54 +07:00
805d4fb536 try modify swin 2024-04-29 17:14:48 +07:00
f86e27dab7 try modify swin 2024-04-29 17:13:31 +07:00
65963bf46b try modify swin 2024-04-29 17:09:05 +07:00
5494206a04 try modify swin 2024-04-29 17:06:55 +07:00
48669c72f4 try modify swin 2024-04-29 16:38:27 +07:00
d79bdd1c3e try modify swin 2024-04-29 16:17:02 +07:00
7e6d4982d9 try modify swin 2024-04-29 16:07:22 +07:00
f8e969cbd1 try swin 2024-04-27 11:52:23 +07:00
ae0f43ab4d try swin 2024-04-27 11:51:35 +07:00
dda7f13dbd try swin 2024-04-27 11:49:07 +07:00
1dd423edf0 try swin 2024-04-27 11:48:25 +07:00
a1bf2d7389 try swin 2024-04-27 11:46:32 +07:00
c31588cc5f try swin 2024-04-27 11:45:24 +07:00
c03e24f4c2 try swin 2024-04-27 11:43:15 +07:00
a47a60f6a1 try swin 2024-04-27 11:40:27 +07:00
ba388148d4 try swin 2024-04-27 11:27:38 +07:00
1b816fed50 try swin 2024-04-27 11:24:57 +07:00
32962bf421 try swin 2024-04-27 11:23:28 +07:00
b9efe68d3c try swin 2024-04-27 11:12:52 +07:00
465f98bef8 try swin 2024-04-27 11:08:46 +07:00
d4ac470c54 try swin 2024-04-27 11:07:48 +07:00
28a8352044 try swin 2024-04-27 10:59:11 +07:00
b77c79708e try swin 2024-04-27 10:56:10 +07:00
22d44d1a99 try swin 2024-04-27 10:32:08 +07:00
63ccb4ec75 try swin 2024-04-27 10:26:58 +07:00
6ec566505f try swin 2024-04-27 10:18:48 +07:00
30805a0af9 try swin 2024-04-27 10:04:41 +07:00
3 changed files with 284 additions and 25 deletions

30
main.py
View File

@ -20,6 +20,7 @@ from data_loader import TrainDataset, TestDataset
from utils import get_logger, get_combined_results, set_gpu, prepare_env, set_seed
from models import ComplEx, ConvE, HypER, InteractE, FouriER, TuckER
import traceback
class Main(object):
@ -715,16 +716,19 @@ if __name__ == "__main__":
model.load_model(save_path)
model.evaluate('test')
else:
while True:
try:
model = Main(args, logger)
model.fit()
except Exception as e:
print(e)
try:
del model
except Exception:
pass
time.sleep(30)
continue
break
model = Main(args, logger)
model.fit()
# while True:
# try:
# model = Main(args, logger)
# model.fit()
# except Exception as e:
# print(e)
# traceback.print_exc()
# try:
# del model
# except Exception:
# pass
# time.sleep(30)
# continue
# break

275
models.py
View File

@ -9,7 +9,7 @@ from layers import *
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.models.layers import DropPath, trunc_normal_
from timm.models.registry import register_model
from timm.models.layers.helpers import to_2tuple
from timm.layers.helpers import to_2tuple
class ConvE(torch.nn.Module):
@ -435,6 +435,50 @@ class TuckER(torch.nn.Module):
return pred
class PatchMerging(nn.Module):
r""" Patch Merging Layer.
Args:
input_resolution (tuple[int]): Resolution of input feature.
dim (int): Number of input channels.
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
"""
def __init__(self, dim, norm_layer=nn.LayerNorm):
super().__init__()
self.dim = dim
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
self.norm = norm_layer(2 * dim)
def forward(self, x):
"""
x: B, C, H, W
"""
B, C, H, W = x.shape
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."
x = x.view(B, H, W, C)
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
x = self.reduction(x)
x = self.norm(x)
return x
def extra_repr(self) -> str:
return f"input_resolution={self.input_resolution}, dim={self.dim}"
def flops(self):
H, W = self.input_resolution
flops = (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim
flops += H * W * self.dim // 2
return flops
class FouriER(torch.nn.Module):
def __init__(self, params, hid_drop = None, embed_dim = None):
@ -488,9 +532,10 @@ class FouriER(torch.nn.Module):
self.patch_embed = PatchEmbed(in_chans=channels, patch_size=self.p.patch_size,
embed_dim=self.p.embed_dim, stride=4, padding=2)
network = []
layers = [4, 4, 12, 4]
embed_dims = [self.p.embed_dim, 128, 320, 128]
mlp_ratios = [4, 4, 4, 4]
layers = [2, 2, 6, 2]
embed_dims = [self.p.embed_dim, 320, 256, 128]
mlp_ratios = [4, 4, 8, 12]
num_heads = [4, 4, 4, 4]
downsamples = [True, True, True, True]
pool_size=3
act_layer=nn.GELU
@ -502,6 +547,7 @@ class FouriER(torch.nn.Module):
down_patch_size=3
down_stride=2
down_pad=1
window_size = 4
num_classes=self.p.embed_dim
for i in range(len(layers)):
stage = basic_blocks(embed_dims[i], i, layers,
@ -510,7 +556,9 @@ class FouriER(torch.nn.Module):
drop_rate=drop_rate,
drop_path_rate=drop_path_rate,
use_layer_scale=use_layer_scale,
layer_scale_init_value=layer_scale_init_value)
layer_scale_init_value=layer_scale_init_value,
num_heads=num_heads[i], input_resolution=(image_h // (2**i), image_w // (2**i)),
window_size=window_size, shift_size=0)
network.append(stage)
if i >= len(layers) - 1:
break
@ -522,6 +570,7 @@ class FouriER(torch.nn.Module):
padding=down_pad,
in_chans=embed_dims[i], embed_dim=embed_dims[i+1]
)
# PatchMerging(dim=embed_dims[i+1])
)
self.network = nn.ModuleList(network)
@ -687,7 +736,7 @@ def basic_blocks(dim, index, layers,
pool_size=3, mlp_ratio=4.,
act_layer=nn.GELU, norm_layer=GroupNorm,
drop_rate=.0, drop_path_rate=0.,
use_layer_scale=True, layer_scale_init_value=1e-5):
use_layer_scale=True, layer_scale_init_value=1e-5, num_heads = 4, input_resolution = None, window_size = 4, shift_size = 2):
"""
generate PoolFormer blocks for a stage
return: PoolFormer blocks
@ -702,11 +751,176 @@ def basic_blocks(dim, index, layers,
drop=drop_rate, drop_path=block_dpr,
use_layer_scale=use_layer_scale,
layer_scale_init_value=layer_scale_init_value,
num_heads=num_heads, input_resolution = input_resolution,
window_size=window_size, shift_size=shift_size
))
blocks = nn.Sequential(*blocks)
return blocks
def window_partition(x, window_size):
"""
Args:
x: (B, H, W, C)
window_size (int): window size
Returns:
windows: (num_windows*B, window_size, window_size, C)
"""
B, C, H, W = x.shape
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
return windows
class WindowAttention(nn.Module):
r""" Window based multi-head self attention (W-MSA) module with relative position bias.
It supports both of shifted and non-shifted window.
Args:
dim (int): Number of input channels.
window_size (tuple[int]): The height and width of the window.
num_heads (int): Number of attention heads.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
pretrained_window_size (tuple[int]): The height and width of the window in pre-training.
"""
def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0.,
pretrained_window_size=[0, 0]):
super().__init__()
self.dim = dim
self.window_size = window_size # Wh, Ww
self.pretrained_window_size = pretrained_window_size
self.num_heads = num_heads
self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True)
# mlp to generate continuous relative position bias
self.cpb_mlp = nn.Sequential(nn.Linear(2, 512, bias=True),
nn.ReLU(inplace=True),
nn.Linear(512, num_heads, bias=False))
# get relative_coords_table
relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0], dtype=torch.float32)
relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1], dtype=torch.float32)
relative_coords_table = torch.stack(
torch.meshgrid([relative_coords_h,
relative_coords_w])).permute(1, 2, 0).contiguous().unsqueeze(0) # 1, 2*Wh-1, 2*Ww-1, 2
if pretrained_window_size[0] > 0:
relative_coords_table[:, :, :, 0] /= (pretrained_window_size[0] - 1)
relative_coords_table[:, :, :, 1] /= (pretrained_window_size[1] - 1)
else:
relative_coords_table[:, :, :, 0] /= (self.window_size[0] - 1)
relative_coords_table[:, :, :, 1] /= (self.window_size[1] - 1)
relative_coords_table *= 8 # normalize to -8, 8
relative_coords_table = torch.sign(relative_coords_table) * torch.log2(
torch.abs(relative_coords_table) + 1.0) / np.log2(8)
self.register_buffer("relative_coords_table", relative_coords_table)
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(self.window_size[0])
coords_w = torch.arange(self.window_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += self.window_size[1] - 1
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
self.register_buffer("relative_position_index", relative_position_index)
self.qkv = nn.Linear(dim, dim * 3, bias=False)
if qkv_bias:
self.q_bias = nn.Parameter(torch.zeros(dim))
self.v_bias = nn.Parameter(torch.zeros(dim))
else:
self.q_bias = None
self.v_bias = None
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.softmax = nn.Softmax(dim=-1)
def forward(self, x, mask=None):
"""
Args:
x: input features with shape of (num_windows*B, N, C)
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
"""
B_, N, C = x.shape
qkv_bias = None
if self.q_bias is not None:
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
# cosine attention
attn = (F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1))
logit_scale = torch.clamp(self.logit_scale, max=torch.log(torch.tensor(1. / 0.01)).cuda()).exp()
attn = attn * logit_scale
relative_position_bias_table = self.cpb_mlp(self.relative_coords_table).view(-1, self.num_heads)
relative_position_bias = relative_position_bias_table[self.relative_position_index.view(-1)].view(
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
relative_position_bias = 16 * torch.sigmoid(relative_position_bias)
attn = attn + relative_position_bias.unsqueeze(0)
if mask is not None:
try:
nW = mask.shape[0]
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
attn = attn.view(-1, self.num_heads, N, N)
except:
pass
attn = self.softmax(attn)
else:
attn = self.softmax(attn)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
def extra_repr(self) -> str:
return f'dim={self.dim}, window_size={self.window_size}, ' \
f'pretrained_window_size={self.pretrained_window_size}, num_heads={self.num_heads}'
def flops(self, N):
# calculate flops for 1 window with token length of N
flops = 0
# qkv = self.qkv(x)
flops += N * self.dim * 3 * self.dim
# attn = (q @ k.transpose(-2, -1))
flops += self.num_heads * N * (self.dim // self.num_heads) * N
# x = (attn @ v)
flops += self.num_heads * N * N * (self.dim // self.num_heads)
# x = self.proj(x)
flops += N * self.dim * self.dim
return flops
def window_reverse(windows, window_size, H, W):
"""
Args:
windows: (num_windows*B, window_size, window_size, C)
window_size (int): Window size
H (int): Height of image
W (int): Width of image
Returns:
x: (B, H, W, C)
"""
B = int(windows.shape[0] / (H * W / window_size / window_size))
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, -1, H, W)
return x
class PoolFormerBlock(nn.Module):
"""
@ -724,14 +938,18 @@ class PoolFormerBlock(nn.Module):
"""
def __init__(self, dim, pool_size=3, mlp_ratio=4.,
act_layer=nn.GELU, norm_layer=GroupNorm,
drop=0., drop_path=0.,
use_layer_scale=True, layer_scale_init_value=1e-5):
drop=0., drop_path=0., num_heads=4,
use_layer_scale=True, layer_scale_init_value=1e-5, input_resolution = None, window_size = 4, shift_size = 2):
super().__init__()
self.norm1 = norm_layer(dim)
#self.token_mixer = Pooling(pool_size=pool_size)
self.token_mixer = FNetBlock()
# self.token_mixer = FNetBlock()
self.window_size = window_size
self.shift_size = shift_size
self.input_resolution = input_resolution
self.token_mixer = WindowAttention(dim=dim, window_size=to_2tuple(self.window_size), num_heads=num_heads, attn_drop=0.2, proj_drop=0.1)
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim,
@ -746,17 +964,52 @@ class PoolFormerBlock(nn.Module):
layer_scale_init_value * torch.ones((dim)), requires_grad=True)
self.layer_scale_2 = nn.Parameter(
layer_scale_init_value * torch.ones((dim)), requires_grad=True)
if self.shift_size > 0:
# calculate attention mask for SW-MSA
H, W = self.input_resolution
img_mask = torch.zeros((1, 1, H, W)) # 1 H W 1
h_slices = (slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None))
w_slices = (slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None))
cnt = 0
for h in h_slices:
for w in w_slices:
img_mask[:, :, h, w] = cnt
cnt += 1
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
else:
attn_mask = None
self.register_buffer("attn_mask", attn_mask)
def forward(self, x):
B, C, H, W = x.shape
x_windows = window_partition(x, self.window_size)
x_windows = x_windows.view(-1, self.window_size * self.window_size, C)
attn_windows = self.token_mixer(x_windows, mask=self.attn_mask)
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
x_attn = window_reverse(attn_windows, self.window_size, H, W)
if self.shift_size > 0:
x = torch.roll(x_attn, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
else:
x = x_attn
if self.use_layer_scale:
x = x + self.drop_path(
self.layer_scale_1.unsqueeze(-1).unsqueeze(-1)
* self.token_mixer(self.norm1(x)))
* x_attn)
x = x + self.drop_path(
self.layer_scale_2.unsqueeze(-1).unsqueeze(-1)
* self.mlp(self.norm2(x)))
else:
x = x + self.drop_path(self.token_mixer(self.norm1(x)))
x = x + self.drop_path(x_attn)
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class PatchEmbed(nn.Module):

View File

@ -1,4 +1,6 @@
torch==1.12.1+cu116
ordered-set==4.1.0
numpy==1.21.5
einops==0.4.1
einops==0.4.1
pandas
timm==0.9.16