Compare commits
1 Commits
tourier
...
tourier_sp
Author | SHA1 | Date | |
---|---|---|---|
45ce0c995b |
File diff suppressed because it is too large
Load Diff
504678
data/wikidata12k/train.txt
504678
data/wikidata12k/train.txt
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
15
data/wikidata12k_old/about.txt
Normal file
15
data/wikidata12k_old/about.txt
Normal file
@ -0,0 +1,15 @@
|
||||
# triples: 291818
|
||||
# entities: 12554
|
||||
# relations: 423
|
||||
# timesteps: 70
|
||||
# test triples: 19271
|
||||
# valid triples: 20208
|
||||
# train triples: 252339
|
||||
Measure method: N/A
|
||||
Target Size : 423
|
||||
Grow Factor: 0
|
||||
Shrink Factor: 4.0
|
||||
Epsilon Factor: 0
|
||||
Search method: N/A
|
||||
filter_dupes: inter
|
||||
nonames: False
|
12554
data/wikidata12k_old/entities.dict
Normal file
12554
data/wikidata12k_old/entities.dict
Normal file
File diff suppressed because it is too large
Load Diff
1820
data/wikidata12k_old/indices_test.txt
Normal file
1820
data/wikidata12k_old/indices_test.txt
Normal file
File diff suppressed because it is too large
Load Diff
13036
data/wikidata12k_old/indices_train.txt
Normal file
13036
data/wikidata12k_old/indices_train.txt
Normal file
File diff suppressed because it is too large
Load Diff
1796
data/wikidata12k_old/indices_valid.txt
Normal file
1796
data/wikidata12k_old/indices_valid.txt
Normal file
File diff suppressed because it is too large
Load Diff
12554
data/wikidata12k_old/raw_entity2id.txt
Normal file
12554
data/wikidata12k_old/raw_entity2id.txt
Normal file
File diff suppressed because it is too large
Load Diff
24
data/wikidata12k_old/raw_rel2id.txt
Normal file
24
data/wikidata12k_old/raw_rel2id.txt
Normal file
@ -0,0 +1,24 @@
|
||||
P1376 0
|
||||
P512 4
|
||||
P579 3
|
||||
P150 18
|
||||
P190 5
|
||||
P551 19
|
||||
P131 1
|
||||
P793 21
|
||||
P1435 13
|
||||
P39 14
|
||||
P17 6
|
||||
P54 22
|
||||
P31 15
|
||||
P6 7
|
||||
P1411 20
|
||||
P2962 2
|
||||
P463 9
|
||||
P1346 16
|
||||
P108 10
|
||||
P69 23
|
||||
P166 17
|
||||
P102 11
|
||||
P27 12
|
||||
P26 8
|
4062
data/wikidata12k_old/raw_test.txt
Normal file
4062
data/wikidata12k_old/raw_test.txt
Normal file
File diff suppressed because it is too large
Load Diff
423
data/wikidata12k_old/relations.dict
Normal file
423
data/wikidata12k_old/relations.dict
Normal file
@ -0,0 +1,423 @@
|
||||
0 P131[0-0]
|
||||
1 P131[1-1]
|
||||
2 P131[2-2]
|
||||
3 P131[3-3]
|
||||
4 P131[4-4]
|
||||
5 P131[5-5]
|
||||
6 P131[6-6]
|
||||
7 P131[7-7]
|
||||
8 P131[8-8]
|
||||
9 P131[9-9]
|
||||
10 P131[10-10]
|
||||
11 P131[11-11]
|
||||
12 P131[12-12]
|
||||
13 P131[13-13]
|
||||
14 P131[14-14]
|
||||
15 P131[15-15]
|
||||
16 P131[16-16]
|
||||
17 P131[17-17]
|
||||
18 P131[18-18]
|
||||
19 P131[19-19]
|
||||
20 P131[20-20]
|
||||
21 P131[21-21]
|
||||
22 P131[22-22]
|
||||
23 P131[23-23]
|
||||
24 P131[24-24]
|
||||
25 P131[25-25]
|
||||
26 P131[26-26]
|
||||
27 P131[27-27]
|
||||
28 P131[28-28]
|
||||
29 P131[29-29]
|
||||
30 P131[30-30]
|
||||
31 P131[31-31]
|
||||
32 P131[32-32]
|
||||
33 P131[33-33]
|
||||
34 P131[34-34]
|
||||
35 P131[35-35]
|
||||
36 P131[36-36]
|
||||
37 P131[37-37]
|
||||
38 P131[38-38]
|
||||
39 P131[39-39]
|
||||
40 P131[40-40]
|
||||
41 P131[41-41]
|
||||
42 P131[42-42]
|
||||
43 P131[43-43]
|
||||
44 P131[44-44]
|
||||
45 P131[45-45]
|
||||
46 P131[46-46]
|
||||
47 P131[47-47]
|
||||
48 P131[48-48]
|
||||
49 P131[49-49]
|
||||
50 P131[50-50]
|
||||
51 P131[51-51]
|
||||
52 P131[52-52]
|
||||
53 P131[53-53]
|
||||
54 P131[54-54]
|
||||
55 P131[55-55]
|
||||
56 P131[56-56]
|
||||
57 P131[57-57]
|
||||
58 P131[58-58]
|
||||
59 P131[59-59]
|
||||
60 P131[60-60]
|
||||
61 P131[61-61]
|
||||
62 P131[62-62]
|
||||
63 P131[63-63]
|
||||
64 P131[64-64]
|
||||
65 P131[65-65]
|
||||
66 P131[66-66]
|
||||
67 P131[67-67]
|
||||
68 P131[68-68]
|
||||
69 P131[69-69]
|
||||
70 P1435[65-65]
|
||||
71 P39[49-49]
|
||||
72 P39[50-50]
|
||||
73 P39[51-51]
|
||||
74 P39[52-52]
|
||||
75 P39[53-53]
|
||||
76 P39[54-54]
|
||||
77 P39[55-55]
|
||||
78 P39[56-56]
|
||||
79 P39[57-57]
|
||||
80 P39[58-58]
|
||||
81 P39[59-59]
|
||||
82 P39[60-60]
|
||||
83 P39[61-61]
|
||||
84 P39[62-62]
|
||||
85 P39[63-63]
|
||||
86 P39[64-64]
|
||||
87 P39[65-65]
|
||||
88 P39[66-66]
|
||||
89 P39[67-67]
|
||||
90 P39[68-68]
|
||||
91 P39[69-69]
|
||||
92 P54[40-40]
|
||||
93 P54[41-41]
|
||||
94 P54[42-42]
|
||||
95 P54[43-43]
|
||||
96 P54[44-44]
|
||||
97 P54[45-45]
|
||||
98 P54[46-46]
|
||||
99 P54[47-47]
|
||||
100 P54[48-48]
|
||||
101 P54[49-49]
|
||||
102 P54[50-50]
|
||||
103 P54[51-51]
|
||||
104 P54[52-52]
|
||||
105 P54[53-53]
|
||||
106 P54[54-54]
|
||||
107 P54[55-55]
|
||||
108 P54[56-56]
|
||||
109 P54[57-57]
|
||||
110 P54[58-58]
|
||||
111 P54[59-59]
|
||||
112 P54[60-60]
|
||||
113 P54[61-61]
|
||||
114 P54[62-62]
|
||||
115 P54[63-63]
|
||||
116 P54[64-64]
|
||||
117 P54[65-65]
|
||||
118 P54[66-66]
|
||||
119 P54[67-67]
|
||||
120 P54[68-68]
|
||||
121 P54[69-69]
|
||||
122 P31[0-0]
|
||||
123 P31[1-1]
|
||||
124 P31[2-2]
|
||||
125 P31[3-3]
|
||||
126 P31[4-4]
|
||||
127 P31[5-5]
|
||||
128 P31[6-6]
|
||||
129 P31[7-7]
|
||||
130 P31[8-8]
|
||||
131 P31[9-9]
|
||||
132 P31[10-10]
|
||||
133 P31[11-11]
|
||||
134 P31[12-12]
|
||||
135 P31[13-13]
|
||||
136 P31[14-14]
|
||||
137 P31[15-15]
|
||||
138 P31[16-16]
|
||||
139 P31[17-17]
|
||||
140 P31[18-18]
|
||||
141 P31[19-19]
|
||||
142 P31[20-20]
|
||||
143 P31[21-21]
|
||||
144 P31[22-22]
|
||||
145 P31[23-23]
|
||||
146 P31[24-24]
|
||||
147 P31[25-25]
|
||||
148 P31[26-26]
|
||||
149 P31[27-27]
|
||||
150 P31[28-28]
|
||||
151 P31[29-29]
|
||||
152 P31[30-30]
|
||||
153 P31[31-31]
|
||||
154 P31[32-32]
|
||||
155 P31[33-33]
|
||||
156 P31[34-34]
|
||||
157 P31[35-35]
|
||||
158 P31[36-36]
|
||||
159 P31[37-37]
|
||||
160 P31[38-38]
|
||||
161 P31[39-39]
|
||||
162 P31[40-40]
|
||||
163 P31[41-41]
|
||||
164 P31[42-42]
|
||||
165 P31[43-43]
|
||||
166 P31[44-44]
|
||||
167 P31[45-45]
|
||||
168 P31[46-46]
|
||||
169 P31[47-47]
|
||||
170 P31[48-48]
|
||||
171 P31[49-49]
|
||||
172 P31[50-50]
|
||||
173 P31[51-51]
|
||||
174 P31[52-52]
|
||||
175 P31[53-53]
|
||||
176 P31[54-54]
|
||||
177 P31[55-55]
|
||||
178 P31[56-56]
|
||||
179 P31[57-57]
|
||||
180 P31[58-58]
|
||||
181 P31[59-59]
|
||||
182 P31[60-60]
|
||||
183 P31[61-61]
|
||||
184 P31[62-62]
|
||||
185 P31[63-63]
|
||||
186 P31[64-64]
|
||||
187 P31[65-65]
|
||||
188 P31[66-66]
|
||||
189 P31[67-67]
|
||||
190 P31[68-68]
|
||||
191 P31[69-69]
|
||||
192 P463[26-26]
|
||||
193 P463[27-27]
|
||||
194 P463[28-28]
|
||||
195 P463[29-29]
|
||||
196 P463[30-30]
|
||||
197 P463[31-31]
|
||||
198 P463[32-32]
|
||||
199 P463[33-33]
|
||||
200 P463[34-34]
|
||||
201 P463[35-35]
|
||||
202 P463[36-36]
|
||||
203 P463[37-37]
|
||||
204 P463[38-38]
|
||||
205 P463[39-39]
|
||||
206 P463[40-40]
|
||||
207 P463[41-41]
|
||||
208 P463[42-42]
|
||||
209 P463[43-43]
|
||||
210 P463[44-44]
|
||||
211 P463[45-45]
|
||||
212 P463[46-46]
|
||||
213 P463[47-47]
|
||||
214 P463[48-48]
|
||||
215 P463[49-49]
|
||||
216 P463[50-50]
|
||||
217 P463[51-51]
|
||||
218 P463[52-52]
|
||||
219 P463[53-53]
|
||||
220 P463[54-54]
|
||||
221 P463[55-55]
|
||||
222 P463[56-56]
|
||||
223 P463[57-57]
|
||||
224 P463[58-58]
|
||||
225 P463[59-59]
|
||||
226 P463[60-60]
|
||||
227 P463[61-61]
|
||||
228 P463[62-62]
|
||||
229 P463[63-63]
|
||||
230 P463[64-64]
|
||||
231 P463[65-65]
|
||||
232 P463[66-66]
|
||||
233 P463[67-67]
|
||||
234 P463[68-68]
|
||||
235 P463[69-69]
|
||||
236 P512[4-69]
|
||||
237 P190[0-29]
|
||||
238 P150[0-3]
|
||||
239 P1376[39-47]
|
||||
240 P463[0-7]
|
||||
241 P166[0-7]
|
||||
242 P2962[18-30]
|
||||
243 P108[29-36]
|
||||
244 P39[0-3]
|
||||
245 P17[47-48]
|
||||
246 P166[21-23]
|
||||
247 P793[46-69]
|
||||
248 P69[32-41]
|
||||
249 P17[57-58]
|
||||
250 P190[42-45]
|
||||
251 P2962[39-42]
|
||||
252 P54[0-18]
|
||||
253 P26[56-61]
|
||||
254 P150[14-17]
|
||||
255 P463[16-17]
|
||||
256 P26[39-46]
|
||||
257 P579[36-43]
|
||||
258 P579[16-23]
|
||||
259 P2962[59-60]
|
||||
260 P1411[59-61]
|
||||
261 P26[20-27]
|
||||
262 P6[4-69]
|
||||
263 P1435[33-34]
|
||||
264 P166[52-53]
|
||||
265 P108[49-57]
|
||||
266 P150[10-13]
|
||||
267 P1346[47-68]
|
||||
268 P150[18-21]
|
||||
269 P1346[13-46]
|
||||
270 P69[20-23]
|
||||
271 P39[31-32]
|
||||
272 P1411[32-37]
|
||||
273 P166[62-63]
|
||||
274 P150[44-47]
|
||||
275 P2962[61-62]
|
||||
276 P150[48-51]
|
||||
277 P150[52-55]
|
||||
278 P1411[62-67]
|
||||
279 P1435[35-36]
|
||||
280 P1411[48-51]
|
||||
281 P150[22-25]
|
||||
282 P2962[63-64]
|
||||
283 P2962[65-66]
|
||||
284 P166[58-59]
|
||||
285 P190[46-49]
|
||||
286 P54[34-35]
|
||||
287 P1435[4-16]
|
||||
288 P463[18-19]
|
||||
289 P150[31-34]
|
||||
290 P150[35-38]
|
||||
291 P39[35-36]
|
||||
292 P26[62-69]
|
||||
293 P1411[56-58]
|
||||
294 P1435[37-38]
|
||||
295 P166[60-61]
|
||||
296 P39[33-34]
|
||||
297 P102[24-31]
|
||||
298 P2962[43-46]
|
||||
299 P108[37-48]
|
||||
300 P190[50-53]
|
||||
301 P39[4-6]
|
||||
302 P1435[39-40]
|
||||
303 P793[0-45]
|
||||
304 P150[64-69]
|
||||
305 P39[19-22]
|
||||
306 P27[30-38]
|
||||
307 P2962[31-38]
|
||||
308 P1411[24-31]
|
||||
309 P102[40-45]
|
||||
310 P39[37-38]
|
||||
311 P463[8-11]
|
||||
312 P1435[41-42]
|
||||
313 P27[52-59]
|
||||
314 P69[16-19]
|
||||
315 P17[16-18]
|
||||
316 P190[54-57]
|
||||
317 P1435[43-44]
|
||||
318 P166[8-15]
|
||||
319 P166[45-47]
|
||||
320 P2962[47-50]
|
||||
321 P39[39-40]
|
||||
322 P1411[52-55]
|
||||
323 P108[58-69]
|
||||
324 P463[20-21]
|
||||
325 P39[41-42]
|
||||
326 P150[26-30]
|
||||
327 P150[39-43]
|
||||
328 P1435[45-46]
|
||||
329 P26[28-38]
|
||||
330 P54[27-30]
|
||||
331 P190[58-61]
|
||||
332 P17[59-61]
|
||||
333 P54[36-37]
|
||||
334 P166[16-20]
|
||||
335 P166[37-40]
|
||||
336 P1435[47-48]
|
||||
337 P17[0-3]
|
||||
338 P26[47-55]
|
||||
339 P1435[49-50]
|
||||
340 P1435[25-28]
|
||||
341 P150[4-9]
|
||||
342 P102[63-69]
|
||||
343 P26[0-19]
|
||||
344 P1435[17-24]
|
||||
345 P39[23-26]
|
||||
346 P1435[51-52]
|
||||
347 P39[7-11]
|
||||
348 P69[12-15]
|
||||
349 P69[24-31]
|
||||
350 P102[0-23]
|
||||
351 P39[43-44]
|
||||
352 P579[24-35]
|
||||
353 P190[62-65]
|
||||
354 P1435[53-54]
|
||||
355 P1376[0-18]
|
||||
356 P27[0-14]
|
||||
357 P463[12-15]
|
||||
358 P166[33-36]
|
||||
359 P102[32-39]
|
||||
360 P17[4-7]
|
||||
361 P190[30-41]
|
||||
362 P166[24-28]
|
||||
363 P190[66-69]
|
||||
364 P69[42-69]
|
||||
365 P1435[55-56]
|
||||
366 P54[31-33]
|
||||
367 P39[45-46]
|
||||
368 P17[12-15]
|
||||
369 P1435[57-58]
|
||||
370 P54[19-26]
|
||||
371 P2962[51-54]
|
||||
372 P2962[67-69]
|
||||
373 P1435[59-60]
|
||||
374 P579[44-56]
|
||||
375 P1435[61-62]
|
||||
376 P166[41-44]
|
||||
377 P17[19-22]
|
||||
378 P1376[19-38]
|
||||
379 P17[23-26]
|
||||
380 P1376[48-69]
|
||||
381 P463[22-23]
|
||||
382 P17[27-30]
|
||||
383 P1435[63-64]
|
||||
384 P69[0-3]
|
||||
385 P1435[66-67]
|
||||
386 P17[35-38]
|
||||
387 P69[8-11]
|
||||
388 P1435[68-69]
|
||||
389 P17[31-34]
|
||||
390 P102[46-53]
|
||||
391 P27[60-69]
|
||||
392 P579[57-69]
|
||||
393 P69[4-7]
|
||||
394 P1411[7-14]
|
||||
395 P551[0-35]
|
||||
396 P108[0-28]
|
||||
397 P17[8-11]
|
||||
398 P1411[38-47]
|
||||
399 P17[43-46]
|
||||
400 P17[49-52]
|
||||
401 P166[64-69]
|
||||
402 P1435[29-32]
|
||||
403 P54[38-39]
|
||||
404 P39[27-30]
|
||||
405 P2962[55-58]
|
||||
406 P463[24-25]
|
||||
407 P17[39-42]
|
||||
408 P17[53-56]
|
||||
409 P17[66-69]
|
||||
410 P17[62-65]
|
||||
411 P1411[15-23]
|
||||
412 P166[48-51]
|
||||
413 P27[15-29]
|
||||
414 P150[56-63]
|
||||
415 P27[39-51]
|
||||
416 P39[47-48]
|
||||
417 P166[29-32]
|
||||
418 P39[12-18]
|
||||
419 P166[54-57]
|
||||
420 P551[36-69]
|
||||
421 P579[0-15]
|
||||
422 P102[54-62]
|
19271
data/wikidata12k_old/test.txt
Normal file
19271
data/wikidata12k_old/test.txt
Normal file
File diff suppressed because it is too large
Load Diff
71
data/wikidata12k_old/time_map.dict
Normal file
71
data/wikidata12k_old/time_map.dict
Normal file
@ -0,0 +1,71 @@
|
||||
0 19 19
|
||||
1 20 1643
|
||||
2 1644 1790
|
||||
3 1791 1816
|
||||
4 1817 1855
|
||||
5 1856 1871
|
||||
6 1872 1893
|
||||
7 1894 1905
|
||||
8 1906 1913
|
||||
9 1914 1918
|
||||
10 1919 1920
|
||||
11 1921 1924
|
||||
12 1925 1929
|
||||
13 1930 1933
|
||||
14 1934 1937
|
||||
15 1938 1941
|
||||
16 1942 1945
|
||||
17 1946 1948
|
||||
18 1949 1950
|
||||
19 1951 1953
|
||||
20 1954 1956
|
||||
21 1957 1959
|
||||
22 1960 1961
|
||||
23 1962 1963
|
||||
24 1964 1965
|
||||
25 1966 1967
|
||||
26 1968 1968
|
||||
27 1969 1970
|
||||
28 1971 1972
|
||||
29 1973 1974
|
||||
30 1975 1976
|
||||
31 1977 1978
|
||||
32 1979 1980
|
||||
33 1981 1982
|
||||
34 1983 1983
|
||||
35 1984 1984
|
||||
36 1985 1985
|
||||
37 1986 1986
|
||||
38 1987 1987
|
||||
39 1988 1988
|
||||
40 1989 1989
|
||||
41 1990 1990
|
||||
42 1991 1991
|
||||
43 1992 1992
|
||||
44 1993 1993
|
||||
45 1994 1994
|
||||
46 1995 1995
|
||||
47 1996 1996
|
||||
48 1997 1997
|
||||
49 1998 1998
|
||||
50 1999 1999
|
||||
51 2000 2000
|
||||
52 2001 2001
|
||||
53 2002 2002
|
||||
54 2003 2003
|
||||
55 2004 2004
|
||||
56 2005 2005
|
||||
57 2006 2006
|
||||
58 2007 2007
|
||||
59 2008 2008
|
||||
60 2009 2009
|
||||
61 2010 2010
|
||||
62 2011 2011
|
||||
63 2012 2012
|
||||
64 2013 2013
|
||||
65 2014 2014
|
||||
66 2015 2015
|
||||
67 2016 2016
|
||||
68 2017 2017
|
||||
69 2018 2020
|
||||
70 2021 2021
|
252339
data/wikidata12k_old/train.txt
Normal file
252339
data/wikidata12k_old/train.txt
Normal file
File diff suppressed because it is too large
Load Diff
20208
data/wikidata12k_old/valid.txt
Normal file
20208
data/wikidata12k_old/valid.txt
Normal file
File diff suppressed because it is too large
Load Diff
15
data/yago/about.txt
Normal file
15
data/yago/about.txt
Normal file
@ -0,0 +1,15 @@
|
||||
# triples: 78032
|
||||
# entities: 10526
|
||||
# relations: 177
|
||||
# timesteps: 46
|
||||
# test triples: 6909
|
||||
# valid triples: 7198
|
||||
# train triples: 63925
|
||||
Measure method: N/A
|
||||
Target Size : 0
|
||||
Grow Factor: 0
|
||||
Shrink Factor: 0
|
||||
Epsilon Factor: 5.0
|
||||
Search method: N/A
|
||||
filter_dupes: inter
|
||||
nonames: False
|
10526
data/yago/entities.dict
Normal file
10526
data/yago/entities.dict
Normal file
File diff suppressed because it is too large
Load Diff
177
data/yago/relations.dict
Normal file
177
data/yago/relations.dict
Normal file
@ -0,0 +1,177 @@
|
||||
0 <wasBornIn>[0-2]
|
||||
1 <wasBornIn>[2-5]
|
||||
2 <wasBornIn>[5-7]
|
||||
3 <wasBornIn>[7-10]
|
||||
4 <wasBornIn>[10-12]
|
||||
5 <wasBornIn>[12-15]
|
||||
6 <wasBornIn>[15-17]
|
||||
7 <wasBornIn>[17-20]
|
||||
8 <wasBornIn>[20-22]
|
||||
9 <wasBornIn>[22-25]
|
||||
10 <wasBornIn>[25-27]
|
||||
11 <wasBornIn>[27-30]
|
||||
12 <wasBornIn>[30-32]
|
||||
13 <wasBornIn>[32-35]
|
||||
14 <wasBornIn>[35-45]
|
||||
15 <wasBornIn>[52-52]
|
||||
16 <diedIn>[0-3]
|
||||
17 <diedIn>[3-5]
|
||||
18 <diedIn>[5-7]
|
||||
19 <diedIn>[7-10]
|
||||
20 <diedIn>[10-12]
|
||||
21 <diedIn>[12-14]
|
||||
22 <diedIn>[14-17]
|
||||
23 <diedIn>[17-19]
|
||||
24 <diedIn>[19-21]
|
||||
25 <diedIn>[21-23]
|
||||
26 <diedIn>[23-25]
|
||||
27 <diedIn>[25-27]
|
||||
28 <diedIn>[27-29]
|
||||
29 <diedIn>[29-32]
|
||||
30 <diedIn>[32-34]
|
||||
31 <diedIn>[34-36]
|
||||
32 <diedIn>[36-38]
|
||||
33 <diedIn>[38-40]
|
||||
34 <diedIn>[40-42]
|
||||
35 <diedIn>[42-44]
|
||||
36 <diedIn>[44-47]
|
||||
37 <diedIn>[47-49]
|
||||
38 <diedIn>[49-51]
|
||||
39 <diedIn>[51-53]
|
||||
40 <diedIn>[53-55]
|
||||
41 <diedIn>[55-57]
|
||||
42 <diedIn>[59-59]
|
||||
43 <worksAt>[0-3]
|
||||
44 <worksAt>[3-5]
|
||||
45 <worksAt>[5-7]
|
||||
46 <worksAt>[7-10]
|
||||
47 <worksAt>[10-12]
|
||||
48 <worksAt>[12-14]
|
||||
49 <worksAt>[14-17]
|
||||
50 <worksAt>[17-19]
|
||||
51 <worksAt>[19-21]
|
||||
52 <worksAt>[21-23]
|
||||
53 <worksAt>[23-25]
|
||||
54 <worksAt>[25-27]
|
||||
55 <worksAt>[27-29]
|
||||
56 <worksAt>[29-32]
|
||||
57 <worksAt>[32-34]
|
||||
58 <worksAt>[34-36]
|
||||
59 <worksAt>[36-40]
|
||||
60 <worksAt>[40-42]
|
||||
61 <worksAt>[42-47]
|
||||
62 <worksAt>[47-53]
|
||||
63 <worksAt>[59-59]
|
||||
64 <playsFor>[0-3]
|
||||
65 <playsFor>[3-5]
|
||||
66 <playsFor>[5-23]
|
||||
67 <playsFor>[23-25]
|
||||
68 <playsFor>[25-27]
|
||||
69 <playsFor>[27-29]
|
||||
70 <playsFor>[29-32]
|
||||
71 <playsFor>[32-34]
|
||||
72 <playsFor>[34-36]
|
||||
73 <playsFor>[36-38]
|
||||
74 <playsFor>[38-40]
|
||||
75 <playsFor>[40-42]
|
||||
76 <playsFor>[42-44]
|
||||
77 <playsFor>[44-47]
|
||||
78 <playsFor>[47-51]
|
||||
79 <playsFor>[59-59]
|
||||
80 <hasWonPrize>[1-4]
|
||||
81 <hasWonPrize>[4-6]
|
||||
82 <hasWonPrize>[6-8]
|
||||
83 <hasWonPrize>[8-11]
|
||||
84 <hasWonPrize>[11-15]
|
||||
85 <hasWonPrize>[15-18]
|
||||
86 <hasWonPrize>[18-22]
|
||||
87 <hasWonPrize>[22-26]
|
||||
88 <hasWonPrize>[26-30]
|
||||
89 <hasWonPrize>[30-33]
|
||||
90 <hasWonPrize>[33-37]
|
||||
91 <hasWonPrize>[37-47]
|
||||
92 <hasWonPrize>[47-53]
|
||||
93 <hasWonPrize>[59-59]
|
||||
94 <isMarriedTo>[0-3]
|
||||
95 <isMarriedTo>[3-5]
|
||||
96 <isMarriedTo>[5-7]
|
||||
97 <isMarriedTo>[7-10]
|
||||
98 <isMarriedTo>[10-12]
|
||||
99 <isMarriedTo>[12-14]
|
||||
100 <isMarriedTo>[14-17]
|
||||
101 <isMarriedTo>[17-19]
|
||||
102 <isMarriedTo>[19-21]
|
||||
103 <isMarriedTo>[21-23]
|
||||
104 <isMarriedTo>[23-25]
|
||||
105 <isMarriedTo>[25-27]
|
||||
106 <isMarriedTo>[27-29]
|
||||
107 <isMarriedTo>[29-32]
|
||||
108 <isMarriedTo>[32-34]
|
||||
109 <isMarriedTo>[34-38]
|
||||
110 <isMarriedTo>[38-42]
|
||||
111 <isMarriedTo>[42-47]
|
||||
112 <isMarriedTo>[47-51]
|
||||
113 <isMarriedTo>[51-55]
|
||||
114 <isMarriedTo>[59-59]
|
||||
115 <owns>[0-10]
|
||||
116 <owns>[10-17]
|
||||
117 <owns>[17-19]
|
||||
118 <owns>[19-23]
|
||||
119 <owns>[23-36]
|
||||
120 <owns>[36-38]
|
||||
121 <owns>[59-59]
|
||||
122 <graduatedFrom>[0-3]
|
||||
123 <graduatedFrom>[3-5]
|
||||
124 <graduatedFrom>[5-7]
|
||||
125 <graduatedFrom>[7-10]
|
||||
126 <graduatedFrom>[10-14]
|
||||
127 <graduatedFrom>[14-17]
|
||||
128 <graduatedFrom>[17-19]
|
||||
129 <graduatedFrom>[19-21]
|
||||
130 <graduatedFrom>[21-23]
|
||||
131 <graduatedFrom>[23-27]
|
||||
132 <graduatedFrom>[27-32]
|
||||
133 <graduatedFrom>[32-34]
|
||||
134 <graduatedFrom>[34-38]
|
||||
135 <graduatedFrom>[38-42]
|
||||
136 <graduatedFrom>[59-59]
|
||||
137 <isAffiliatedTo>[1-4]
|
||||
138 <isAffiliatedTo>[4-6]
|
||||
139 <isAffiliatedTo>[6-8]
|
||||
140 <isAffiliatedTo>[8-11]
|
||||
141 <isAffiliatedTo>[11-13]
|
||||
142 <isAffiliatedTo>[13-15]
|
||||
143 <isAffiliatedTo>[15-18]
|
||||
144 <isAffiliatedTo>[18-20]
|
||||
145 <isAffiliatedTo>[20-22]
|
||||
146 <isAffiliatedTo>[22-24]
|
||||
147 <isAffiliatedTo>[24-26]
|
||||
148 <isAffiliatedTo>[26-28]
|
||||
149 <isAffiliatedTo>[28-30]
|
||||
150 <isAffiliatedTo>[30-33]
|
||||
151 <isAffiliatedTo>[33-35]
|
||||
152 <isAffiliatedTo>[35-37]
|
||||
153 <isAffiliatedTo>[37-40]
|
||||
154 <isAffiliatedTo>[40-42]
|
||||
155 <isAffiliatedTo>[42-44]
|
||||
156 <isAffiliatedTo>[44-47]
|
||||
157 <isAffiliatedTo>[47-49]
|
||||
158 <isAffiliatedTo>[49-51]
|
||||
159 <isAffiliatedTo>[51-53]
|
||||
160 <isAffiliatedTo>[53-55]
|
||||
161 <isAffiliatedTo>[55-57]
|
||||
162 <isAffiliatedTo>[59-59]
|
||||
163 <created>[0-3]
|
||||
164 <created>[3-5]
|
||||
165 <created>[5-10]
|
||||
166 <created>[10-12]
|
||||
167 <created>[12-17]
|
||||
168 <created>[17-19]
|
||||
169 <created>[19-25]
|
||||
170 <created>[25-29]
|
||||
171 <created>[29-32]
|
||||
172 <created>[32-36]
|
||||
173 <created>[36-42]
|
||||
174 <created>[42-47]
|
||||
175 <created>[47-53]
|
||||
176 <created>[59-59]
|
6909
data/yago/test.txt
Normal file
6909
data/yago/test.txt
Normal file
File diff suppressed because it is too large
Load Diff
60
data/yago/time_map.dict
Normal file
60
data/yago/time_map.dict
Normal file
@ -0,0 +1,60 @@
|
||||
0 -431 1782
|
||||
1 1783 1848
|
||||
2 1849 1870
|
||||
3 1871 1888
|
||||
4 1889 1899
|
||||
5 1900 1906
|
||||
6 1907 1912
|
||||
7 1913 1917
|
||||
8 1918 1922
|
||||
9 1923 1926
|
||||
10 1927 1930
|
||||
11 1931 1934
|
||||
12 1935 1938
|
||||
13 1939 1941
|
||||
14 1942 1944
|
||||
15 1945 1947
|
||||
16 1948 1950
|
||||
17 1951 1953
|
||||
18 1954 1956
|
||||
19 1957 1959
|
||||
20 1960 1962
|
||||
21 1963 1965
|
||||
22 1966 1967
|
||||
23 1968 1969
|
||||
24 1970 1971
|
||||
25 1972 1973
|
||||
26 1974 1975
|
||||
27 1976 1977
|
||||
28 1978 1979
|
||||
29 1980 1981
|
||||
30 1982 1983
|
||||
31 1984 1985
|
||||
32 1986 1987
|
||||
33 1988 1989
|
||||
34 1990 1991
|
||||
35 1992 1993
|
||||
36 1994 1994
|
||||
37 1995 1996
|
||||
38 1997 1997
|
||||
39 1998 1998
|
||||
40 1999 1999
|
||||
41 2000 2000
|
||||
42 2001 2001
|
||||
43 2002 2002
|
||||
44 2003 2003
|
||||
45 2004 2004
|
||||
46 2005 2005
|
||||
47 2006 2006
|
||||
48 2007 2007
|
||||
49 2008 2008
|
||||
50 2009 2009
|
||||
51 2010 2010
|
||||
52 2011 2011
|
||||
53 2012 2012
|
||||
54 2013 2013
|
||||
55 2014 2014
|
||||
56 2015 2015
|
||||
57 2016 2016
|
||||
58 2017 2017
|
||||
59 2018 2018
|
63925
data/yago/train.txt
Normal file
63925
data/yago/train.txt
Normal file
File diff suppressed because it is too large
Load Diff
7198
data/yago/valid.txt
Normal file
7198
data/yago/valid.txt
Normal file
File diff suppressed because it is too large
Load Diff
793
data/yago11k/indices_test.txt
Normal file
793
data/yago11k/indices_test.txt
Normal file
@ -0,0 +1,793 @@
|
||||
0
|
||||
2
|
||||
4
|
||||
9
|
||||
11
|
||||
12
|
||||
16
|
||||
17
|
||||
19
|
||||
27
|
||||
29
|
||||
34
|
||||
35
|
||||
37
|
||||
38
|
||||
41
|
||||
42
|
||||
45
|
||||
49
|
||||
51
|
||||
52
|
||||
54
|
||||
56
|
||||
57
|
||||
61
|
||||
64
|
||||
65
|
||||
67
|
||||
69
|
||||
70
|
||||
72
|
||||
76
|
||||
78
|
||||
79
|
||||
83
|
||||
86
|
||||
87
|
||||
89
|
||||
101
|
||||
102
|
||||
103
|
||||
108
|
||||
111
|
||||
112
|
||||
119
|
||||
121
|
||||
122
|
||||
126
|
||||
128
|
||||
129
|
||||
132
|
||||
134
|
||||
138
|
||||
141
|
||||
144
|
||||
146
|
||||
153
|
||||
154
|
||||
155
|
||||
156
|
||||
158
|
||||
159
|
||||
160
|
||||
161
|
||||
162
|
||||
164
|
||||
165
|
||||
166
|
||||
168
|
||||
173
|
||||
175
|
||||
176
|
||||
177
|
||||
182
|
||||
184
|
||||
185
|
||||
186
|
||||
187
|
||||
188
|
||||
190
|
||||
192
|
||||
193
|
||||
201
|
||||
202
|
||||
208
|
||||
209
|
||||
211
|
||||
213
|
||||
215
|
||||
216
|
||||
217
|
||||
222
|
||||
227
|
||||
229
|
||||
235
|
||||
239
|
||||
240
|
||||
242
|
||||
243
|
||||
245
|
||||
246
|
||||
247
|
||||
251
|
||||
252
|
||||
254
|
||||
257
|
||||
261
|
||||
263
|
||||
266
|
||||
268
|
||||
271
|
||||
279
|
||||
282
|
||||
292
|
||||
300
|
||||
303
|
||||
305
|
||||
308
|
||||
309
|
||||
311
|
||||
313
|
||||
316
|
||||
319
|
||||
322
|
||||
324
|
||||
325
|
||||
329
|
||||
331
|
||||
332
|
||||
333
|
||||
334
|
||||
337
|
||||
339
|
||||
342
|
||||
343
|
||||
346
|
||||
347
|
||||
348
|
||||
349
|
||||
350
|
||||
352
|
||||
353
|
||||
355
|
||||
357
|
||||
361
|
||||
362
|
||||
363
|
||||
367
|
||||
371
|
||||
373
|
||||
378
|
||||
379
|
||||
383
|
||||
384
|
||||
385
|
||||
389
|
||||
392
|
||||
394
|
||||
395
|
||||
396
|
||||
397
|
||||
399
|
||||
400
|
||||
402
|
||||
403
|
||||
407
|
||||
409
|
||||
415
|
||||
416
|
||||
420
|
||||
421
|
||||
422
|
||||
428
|
||||
429
|
||||
432
|
||||
433
|
||||
440
|
||||
442
|
||||
443
|
||||
450
|
||||
452
|
||||
459
|
||||
463
|
||||
464
|
||||
466
|
||||
471
|
||||
472
|
||||
476
|
||||
480
|
||||
484
|
||||
489
|
||||
490
|
||||
493
|
||||
494
|
||||
495
|
||||
500
|
||||
503
|
||||
507
|
||||
509
|
||||
515
|
||||
519
|
||||
520
|
||||
521
|
||||
525
|
||||
528
|
||||
529
|
||||
533
|
||||
534
|
||||
539
|
||||
541
|
||||
542
|
||||
548
|
||||
550
|
||||
556
|
||||
559
|
||||
563
|
||||
566
|
||||
567
|
||||
569
|
||||
573
|
||||
575
|
||||
576
|
||||
579
|
||||
582
|
||||
585
|
||||
588
|
||||
592
|
||||
593
|
||||
594
|
||||
596
|
||||
597
|
||||
598
|
||||
599
|
||||
603
|
||||
604
|
||||
605
|
||||
606
|
||||
607
|
||||
613
|
||||
614
|
||||
616
|
||||
617
|
||||
618
|
||||
619
|
||||
621
|
||||
623
|
||||
624
|
||||
625
|
||||
628
|
||||
638
|
||||
641
|
||||
642
|
||||
648
|
||||
651
|
||||
659
|
||||
660
|
||||
661
|
||||
663
|
||||
664
|
||||
676
|
||||
677
|
||||
678
|
||||
680
|
||||
682
|
||||
686
|
||||
688
|
||||
689
|
||||
691
|
||||
694
|
||||
698
|
||||
704
|
||||
707
|
||||
708
|
||||
712
|
||||
713
|
||||
716
|
||||
719
|
||||
723
|
||||
724
|
||||
726
|
||||
728
|
||||
732
|
||||
741
|
||||
742
|
||||
743
|
||||
744
|
||||
745
|
||||
746
|
||||
750
|
||||
752
|
||||
755
|
||||
759
|
||||
762
|
||||
764
|
||||
767
|
||||
768
|
||||
770
|
||||
772
|
||||
775
|
||||
777
|
||||
780
|
||||
782
|
||||
785
|
||||
789
|
||||
799
|
||||
800
|
||||
801
|
||||
802
|
||||
804
|
||||
805
|
||||
810
|
||||
811
|
||||
816
|
||||
822
|
||||
823
|
||||
826
|
||||
829
|
||||
832
|
||||
834
|
||||
835
|
||||
838
|
||||
839
|
||||
842
|
||||
847
|
||||
848
|
||||
850
|
||||
851
|
||||
852
|
||||
856
|
||||
861
|
||||
862
|
||||
865
|
||||
867
|
||||
868
|
||||
869
|
||||
874
|
||||
876
|
||||
882
|
||||
883
|
||||
884
|
||||
885
|
||||
891
|
||||
893
|
||||
898
|
||||
899
|
||||
906
|
||||
909
|
||||
910
|
||||
911
|
||||
912
|
||||
920
|
||||
923
|
||||
924
|
||||
926
|
||||
928
|
||||
934
|
||||
938
|
||||
941
|
||||
942
|
||||
943
|
||||
944
|
||||
945
|
||||
951
|
||||
954
|
||||
956
|
||||
957
|
||||
958
|
||||
960
|
||||
961
|
||||
963
|
||||
964
|
||||
968
|
||||
970
|
||||
975
|
||||
976
|
||||
977
|
||||
979
|
||||
981
|
||||
988
|
||||
989
|
||||
992
|
||||
993
|
||||
995
|
||||
997
|
||||
1005
|
||||
1008
|
||||
1009
|
||||
1012
|
||||
1013
|
||||
1014
|
||||
1015
|
||||
1023
|
||||
1029
|
||||
1032
|
||||
1038
|
||||
1044
|
||||
1045
|
||||
1052
|
||||
1053
|
||||
1055
|
||||
1057
|
||||
1060
|
||||
1061
|
||||
1065
|
||||
1066
|
||||
1074
|
||||
1077
|
||||
1079
|
||||
1080
|
||||
1082
|
||||
1083
|
||||
1085
|
||||
1086
|
||||
1089
|
||||
1090
|
||||
1091
|
||||
1095
|
||||
1104
|
||||
1107
|
||||
1111
|
||||
1114
|
||||
1121
|
||||
1124
|
||||
1126
|
||||
1127
|
||||
1128
|
||||
1131
|
||||
1132
|
||||
1139
|
||||
1140
|
||||
1142
|
||||
1143
|
||||
1145
|
||||
1148
|
||||
1150
|
||||
1157
|
||||
1163
|
||||
1164
|
||||
1168
|
||||
1170
|
||||
1171
|
||||
1172
|
||||
1173
|
||||
1179
|
||||
1182
|
||||
1186
|
||||
1189
|
||||
1190
|
||||
1191
|
||||
1194
|
||||
1196
|
||||
1198
|
||||
1201
|
||||
1204
|
||||
1206
|
||||
1208
|
||||
1217
|
||||
1220
|
||||
1223
|
||||
1228
|
||||
1231
|
||||
1232
|
||||
1235
|
||||
1236
|
||||
1237
|
||||
1238
|
||||
1240
|
||||
1246
|
||||
1247
|
||||
1249
|
||||
1252
|
||||
1258
|
||||
1260
|
||||
1265
|
||||
1266
|
||||
1273
|
||||
1274
|
||||
1278
|
||||
1279
|
||||
1280
|
||||
1284
|
||||
1286
|
||||
1287
|
||||
1288
|
||||
1289
|
||||
1290
|
||||
1293
|
||||
1294
|
||||
1295
|
||||
1297
|
||||
1298
|
||||
1301
|
||||
1303
|
||||
1304
|
||||
1305
|
||||
1307
|
||||
1308
|
||||
1309
|
||||
1314
|
||||
1318
|
||||
1319
|
||||
1323
|
||||
1325
|
||||
1327
|
||||
1328
|
||||
1333
|
||||
1337
|
||||
1340
|
||||
1341
|
||||
1343
|
||||
1345
|
||||
1346
|
||||
1347
|
||||
1349
|
||||
1350
|
||||
1351
|
||||
1358
|
||||
1364
|
||||
1365
|
||||
1367
|
||||
1368
|
||||
1369
|
||||
1370
|
||||
1373
|
||||
1375
|
||||
1376
|
||||
1378
|
||||
1380
|
||||
1381
|
||||
1382
|
||||
1385
|
||||
1387
|
||||
1390
|
||||
1391
|
||||
1394
|
||||
1396
|
||||
1397
|
||||
1399
|
||||
1400
|
||||
1406
|
||||
1409
|
||||
1412
|
||||
1416
|
||||
1417
|
||||
1418
|
||||
1420
|
||||
1423
|
||||
1425
|
||||
1428
|
||||
1430
|
||||
1431
|
||||
1432
|
||||
1437
|
||||
1438
|
||||
1439
|
||||
1444
|
||||
1447
|
||||
1450
|
||||
1454
|
||||
1456
|
||||
1457
|
||||
1460
|
||||
1464
|
||||
1465
|
||||
1469
|
||||
1473
|
||||
1474
|
||||
1475
|
||||
1477
|
||||
1479
|
||||
1488
|
||||
1490
|
||||
1493
|
||||
1494
|
||||
1497
|
||||
1500
|
||||
1502
|
||||
1503
|
||||
1504
|
||||
1505
|
||||
1507
|
||||
1508
|
||||
1510
|
||||
1514
|
||||
1515
|
||||
1520
|
||||
1522
|
||||
1523
|
||||
1526
|
||||
1547
|
||||
1549
|
||||
1553
|
||||
1556
|
||||
1557
|
||||
1558
|
||||
1562
|
||||
1563
|
||||
1564
|
||||
1565
|
||||
1570
|
||||
1571
|
||||
1574
|
||||
1575
|
||||
1579
|
||||
1591
|
||||
1592
|
||||
1594
|
||||
1601
|
||||
1604
|
||||
1605
|
||||
1606
|
||||
1608
|
||||
1609
|
||||
1613
|
||||
1618
|
||||
1619
|
||||
1620
|
||||
1621
|
||||
1632
|
||||
1634
|
||||
1635
|
||||
1636
|
||||
1642
|
||||
1643
|
||||
1648
|
||||
1650
|
||||
1652
|
||||
1653
|
||||
1660
|
||||
1661
|
||||
1662
|
||||
1666
|
||||
1669
|
||||
1670
|
||||
1676
|
||||
1677
|
||||
1682
|
||||
1683
|
||||
1690
|
||||
1692
|
||||
1693
|
||||
1697
|
||||
1698
|
||||
1702
|
||||
1703
|
||||
1706
|
||||
1709
|
||||
1711
|
||||
1713
|
||||
1715
|
||||
1717
|
||||
1721
|
||||
1724
|
||||
1725
|
||||
1729
|
||||
1730
|
||||
1733
|
||||
1734
|
||||
1735
|
||||
1736
|
||||
1741
|
||||
1745
|
||||
1746
|
||||
1748
|
||||
1749
|
||||
1751
|
||||
1755
|
||||
1761
|
||||
1763
|
||||
1766
|
||||
1767
|
||||
1768
|
||||
1769
|
||||
1773
|
||||
1775
|
||||
1777
|
||||
1778
|
||||
1783
|
||||
1789
|
||||
1790
|
||||
1792
|
||||
1793
|
||||
1795
|
||||
1800
|
||||
1803
|
||||
1805
|
||||
1809
|
||||
1812
|
||||
1815
|
||||
1816
|
||||
1819
|
||||
1820
|
||||
1822
|
||||
1823
|
||||
1824
|
||||
1825
|
||||
1828
|
||||
1831
|
||||
1833
|
||||
1834
|
||||
1835
|
||||
1836
|
||||
1837
|
||||
1842
|
||||
1848
|
||||
1849
|
||||
1852
|
||||
1853
|
||||
1854
|
||||
1856
|
||||
1857
|
||||
1858
|
||||
1859
|
||||
1861
|
||||
1864
|
||||
1865
|
||||
1869
|
||||
1873
|
||||
1874
|
||||
1876
|
||||
1877
|
||||
1882
|
||||
1883
|
||||
1884
|
||||
1885
|
||||
1888
|
||||
1889
|
||||
1890
|
||||
1892
|
||||
1894
|
||||
1896
|
||||
1899
|
||||
1902
|
||||
1903
|
||||
1905
|
||||
1908
|
||||
1910
|
||||
1913
|
||||
1914
|
||||
1915
|
||||
1920
|
||||
1928
|
||||
1931
|
||||
1936
|
||||
1938
|
||||
1941
|
||||
1942
|
||||
1944
|
||||
1946
|
||||
1947
|
||||
1948
|
||||
1954
|
||||
1956
|
||||
1958
|
||||
1961
|
||||
1966
|
||||
1968
|
||||
1969
|
||||
1971
|
||||
1972
|
||||
1977
|
||||
1979
|
||||
1985
|
||||
1986
|
||||
1987
|
||||
1988
|
||||
1989
|
||||
1990
|
||||
1999
|
||||
2001
|
||||
2005
|
||||
2009
|
||||
2010
|
||||
2012
|
||||
2013
|
||||
2014
|
||||
2015
|
||||
2017
|
||||
2018
|
||||
2022
|
||||
2023
|
||||
2028
|
||||
2032
|
||||
2036
|
||||
2037
|
||||
2038
|
||||
2041
|
||||
2042
|
||||
2043
|
||||
2044
|
||||
2045
|
||||
2046
|
||||
2048
|
7395
data/yago11k/indices_train.txt
Normal file
7395
data/yago11k/indices_train.txt
Normal file
File diff suppressed because it is too large
Load Diff
809
data/yago11k/indices_valid.txt
Normal file
809
data/yago11k/indices_valid.txt
Normal file
@ -0,0 +1,809 @@
|
||||
7
|
||||
9
|
||||
12
|
||||
15
|
||||
17
|
||||
22
|
||||
24
|
||||
25
|
||||
28
|
||||
29
|
||||
32
|
||||
37
|
||||
38
|
||||
41
|
||||
43
|
||||
49
|
||||
52
|
||||
54
|
||||
57
|
||||
58
|
||||
59
|
||||
60
|
||||
66
|
||||
69
|
||||
72
|
||||
76
|
||||
78
|
||||
81
|
||||
83
|
||||
84
|
||||
85
|
||||
88
|
||||
89
|
||||
94
|
||||
100
|
||||
102
|
||||
105
|
||||
106
|
||||
107
|
||||
108
|
||||
109
|
||||
115
|
||||
116
|
||||
121
|
||||
123
|
||||
124
|
||||
127
|
||||
128
|
||||
133
|
||||
135
|
||||
137
|
||||
138
|
||||
141
|
||||
144
|
||||
156
|
||||
157
|
||||
159
|
||||
161
|
||||
168
|
||||
171
|
||||
172
|
||||
174
|
||||
175
|
||||
176
|
||||
181
|
||||
182
|
||||
186
|
||||
188
|
||||
189
|
||||
190
|
||||
191
|
||||
195
|
||||
197
|
||||
198
|
||||
200
|
||||
201
|
||||
204
|
||||
208
|
||||
212
|
||||
215
|
||||
216
|
||||
217
|
||||
218
|
||||
219
|
||||
220
|
||||
222
|
||||
224
|
||||
225
|
||||
227
|
||||
229
|
||||
230
|
||||
233
|
||||
236
|
||||
239
|
||||
240
|
||||
242
|
||||
243
|
||||
244
|
||||
246
|
||||
247
|
||||
250
|
||||
251
|
||||
253
|
||||
254
|
||||
255
|
||||
256
|
||||
257
|
||||
261
|
||||
265
|
||||
266
|
||||
271
|
||||
273
|
||||
274
|
||||
275
|
||||
276
|
||||
279
|
||||
280
|
||||
282
|
||||
284
|
||||
287
|
||||
289
|
||||
292
|
||||
296
|
||||
297
|
||||
299
|
||||
300
|
||||
302
|
||||
308
|
||||
311
|
||||
312
|
||||
315
|
||||
316
|
||||
317
|
||||
320
|
||||
321
|
||||
322
|
||||
326
|
||||
331
|
||||
333
|
||||
335
|
||||
336
|
||||
337
|
||||
339
|
||||
344
|
||||
345
|
||||
346
|
||||
347
|
||||
351
|
||||
352
|
||||
353
|
||||
354
|
||||
355
|
||||
358
|
||||
359
|
||||
362
|
||||
364
|
||||
366
|
||||
368
|
||||
373
|
||||
376
|
||||
388
|
||||
390
|
||||
392
|
||||
393
|
||||
394
|
||||
395
|
||||
397
|
||||
398
|
||||
401
|
||||
403
|
||||
406
|
||||
407
|
||||
409
|
||||
410
|
||||
412
|
||||
413
|
||||
415
|
||||
416
|
||||
418
|
||||
420
|
||||
421
|
||||
425
|
||||
435
|
||||
437
|
||||
443
|
||||
444
|
||||
445
|
||||
446
|
||||
448
|
||||
453
|
||||
455
|
||||
456
|
||||
462
|
||||
463
|
||||
468
|
||||
470
|
||||
471
|
||||
477
|
||||
478
|
||||
481
|
||||
485
|
||||
490
|
||||
491
|
||||
493
|
||||
498
|
||||
505
|
||||
510
|
||||
513
|
||||
514
|
||||
515
|
||||
516
|
||||
521
|
||||
523
|
||||
527
|
||||
529
|
||||
531
|
||||
534
|
||||
535
|
||||
536
|
||||
537
|
||||
538
|
||||
543
|
||||
547
|
||||
550
|
||||
555
|
||||
557
|
||||
558
|
||||
559
|
||||
560
|
||||
561
|
||||
565
|
||||
566
|
||||
567
|
||||
570
|
||||
575
|
||||
577
|
||||
580
|
||||
581
|
||||
582
|
||||
593
|
||||
594
|
||||
595
|
||||
597
|
||||
599
|
||||
602
|
||||
605
|
||||
609
|
||||
612
|
||||
614
|
||||
616
|
||||
618
|
||||
620
|
||||
625
|
||||
628
|
||||
632
|
||||
633
|
||||
635
|
||||
636
|
||||
643
|
||||
644
|
||||
645
|
||||
646
|
||||
647
|
||||
648
|
||||
652
|
||||
662
|
||||
663
|
||||
669
|
||||
670
|
||||
672
|
||||
673
|
||||
681
|
||||
682
|
||||
685
|
||||
687
|
||||
689
|
||||
693
|
||||
697
|
||||
700
|
||||
702
|
||||
707
|
||||
711
|
||||
716
|
||||
717
|
||||
719
|
||||
727
|
||||
728
|
||||
729
|
||||
730
|
||||
732
|
||||
733
|
||||
734
|
||||
738
|
||||
740
|
||||
744
|
||||
751
|
||||
754
|
||||
755
|
||||
756
|
||||
760
|
||||
761
|
||||
762
|
||||
763
|
||||
766
|
||||
768
|
||||
770
|
||||
771
|
||||
772
|
||||
773
|
||||
774
|
||||
775
|
||||
776
|
||||
777
|
||||
779
|
||||
781
|
||||
782
|
||||
784
|
||||
786
|
||||
788
|
||||
789
|
||||
792
|
||||
795
|
||||
799
|
||||
800
|
||||
805
|
||||
808
|
||||
810
|
||||
812
|
||||
815
|
||||
817
|
||||
820
|
||||
821
|
||||
825
|
||||
827
|
||||
829
|
||||
831
|
||||
832
|
||||
833
|
||||
834
|
||||
836
|
||||
837
|
||||
840
|
||||
841
|
||||
842
|
||||
848
|
||||
849
|
||||
850
|
||||
851
|
||||
852
|
||||
855
|
||||
858
|
||||
860
|
||||
861
|
||||
866
|
||||
869
|
||||
871
|
||||
872
|
||||
877
|
||||
878
|
||||
880
|
||||
881
|
||||
882
|
||||
884
|
||||
885
|
||||
886
|
||||
891
|
||||
893
|
||||
897
|
||||
899
|
||||
901
|
||||
908
|
||||
911
|
||||
913
|
||||
919
|
||||
921
|
||||
925
|
||||
927
|
||||
929
|
||||
934
|
||||
937
|
||||
938
|
||||
945
|
||||
947
|
||||
948
|
||||
950
|
||||
957
|
||||
962
|
||||
963
|
||||
965
|
||||
969
|
||||
971
|
||||
976
|
||||
977
|
||||
978
|
||||
985
|
||||
986
|
||||
989
|
||||
990
|
||||
991
|
||||
993
|
||||
996
|
||||
997
|
||||
998
|
||||
1003
|
||||
1005
|
||||
1006
|
||||
1007
|
||||
1010
|
||||
1011
|
||||
1013
|
||||
1014
|
||||
1019
|
||||
1022
|
||||
1024
|
||||
1025
|
||||
1028
|
||||
1031
|
||||
1032
|
||||
1034
|
||||
1038
|
||||
1040
|
||||
1042
|
||||
1043
|
||||
1048
|
||||
1049
|
||||
1050
|
||||
1051
|
||||
1056
|
||||
1057
|
||||
1059
|
||||
1062
|
||||
1063
|
||||
1065
|
||||
1066
|
||||
1071
|
||||
1072
|
||||
1074
|
||||
1075
|
||||
1076
|
||||
1080
|
||||
1081
|
||||
1082
|
||||
1085
|
||||
1086
|
||||
1087
|
||||
1090
|
||||
1095
|
||||
1096
|
||||
1098
|
||||
1099
|
||||
1101
|
||||
1105
|
||||
1108
|
||||
1109
|
||||
1110
|
||||
1112
|
||||
1117
|
||||
1119
|
||||
1121
|
||||
1122
|
||||
1123
|
||||
1125
|
||||
1129
|
||||
1133
|
||||
1139
|
||||
1143
|
||||
1145
|
||||
1147
|
||||
1151
|
||||
1153
|
||||
1154
|
||||
1158
|
||||
1159
|
||||
1162
|
||||
1165
|
||||
1167
|
||||
1169
|
||||
1171
|
||||
1175
|
||||
1177
|
||||
1178
|
||||
1180
|
||||
1181
|
||||
1182
|
||||
1185
|
||||
1187
|
||||
1188
|
||||
1193
|
||||
1197
|
||||
1199
|
||||
1217
|
||||
1218
|
||||
1220
|
||||
1221
|
||||
1225
|
||||
1227
|
||||
1230
|
||||
1232
|
||||
1233
|
||||
1235
|
||||
1236
|
||||
1237
|
||||
1238
|
||||
1239
|
||||
1244
|
||||
1246
|
||||
1247
|
||||
1248
|
||||
1262
|
||||
1263
|
||||
1264
|
||||
1266
|
||||
1267
|
||||
1269
|
||||
1271
|
||||
1272
|
||||
1273
|
||||
1276
|
||||
1277
|
||||
1278
|
||||
1280
|
||||
1284
|
||||
1291
|
||||
1292
|
||||
1293
|
||||
1295
|
||||
1296
|
||||
1297
|
||||
1299
|
||||
1300
|
||||
1301
|
||||
1305
|
||||
1307
|
||||
1309
|
||||
1312
|
||||
1322
|
||||
1325
|
||||
1330
|
||||
1334
|
||||
1335
|
||||
1337
|
||||
1338
|
||||
1340
|
||||
1342
|
||||
1346
|
||||
1347
|
||||
1350
|
||||
1351
|
||||
1356
|
||||
1357
|
||||
1358
|
||||
1359
|
||||
1366
|
||||
1368
|
||||
1370
|
||||
1371
|
||||
1373
|
||||
1376
|
||||
1379
|
||||
1382
|
||||
1383
|
||||
1384
|
||||
1385
|
||||
1386
|
||||
1387
|
||||
1389
|
||||
1393
|
||||
1394
|
||||
1398
|
||||
1403
|
||||
1404
|
||||
1409
|
||||
1411
|
||||
1413
|
||||
1415
|
||||
1420
|
||||
1421
|
||||
1423
|
||||
1426
|
||||
1429
|
||||
1431
|
||||
1433
|
||||
1434
|
||||
1439
|
||||
1444
|
||||
1446
|
||||
1447
|
||||
1456
|
||||
1457
|
||||
1461
|
||||
1467
|
||||
1469
|
||||
1472
|
||||
1477
|
||||
1481
|
||||
1493
|
||||
1494
|
||||
1496
|
||||
1498
|
||||
1499
|
||||
1501
|
||||
1503
|
||||
1506
|
||||
1507
|
||||
1508
|
||||
1510
|
||||
1511
|
||||
1512
|
||||
1516
|
||||
1521
|
||||
1523
|
||||
1527
|
||||
1528
|
||||
1529
|
||||
1530
|
||||
1535
|
||||
1537
|
||||
1540
|
||||
1541
|
||||
1542
|
||||
1546
|
||||
1552
|
||||
1559
|
||||
1562
|
||||
1563
|
||||
1564
|
||||
1567
|
||||
1572
|
||||
1574
|
||||
1577
|
||||
1581
|
||||
1587
|
||||
1589
|
||||
1594
|
||||
1601
|
||||
1603
|
||||
1613
|
||||
1614
|
||||
1616
|
||||
1617
|
||||
1618
|
||||
1619
|
||||
1620
|
||||
1621
|
||||
1623
|
||||
1624
|
||||
1625
|
||||
1626
|
||||
1631
|
||||
1632
|
||||
1634
|
||||
1635
|
||||
1636
|
||||
1638
|
||||
1640
|
||||
1642
|
||||
1643
|
||||
1645
|
||||
1647
|
||||
1648
|
||||
1650
|
||||
1651
|
||||
1652
|
||||
1655
|
||||
1656
|
||||
1658
|
||||
1661
|
||||
1662
|
||||
1663
|
||||
1665
|
||||
1666
|
||||
1667
|
||||
1668
|
||||
1669
|
||||
1674
|
||||
1675
|
||||
1685
|
||||
1686
|
||||
1695
|
||||
1697
|
||||
1698
|
||||
1699
|
||||
1706
|
||||
1713
|
||||
1716
|
||||
1717
|
||||
1718
|
||||
1723
|
||||
1724
|
||||
1725
|
||||
1729
|
||||
1730
|
||||
1731
|
||||
1732
|
||||
1733
|
||||
1734
|
||||
1738
|
||||
1741
|
||||
1744
|
||||
1749
|
||||
1761
|
||||
1762
|
||||
1769
|
||||
1772
|
||||
1774
|
||||
1776
|
||||
1777
|
||||
1781
|
||||
1784
|
||||
1787
|
||||
1789
|
||||
1790
|
||||
1791
|
||||
1798
|
||||
1804
|
||||
1805
|
||||
1807
|
||||
1808
|
||||
1811
|
||||
1812
|
||||
1816
|
||||
1821
|
||||
1824
|
||||
1827
|
||||
1831
|
||||
1834
|
||||
1835
|
||||
1836
|
||||
1842
|
||||
1847
|
||||
1852
|
||||
1855
|
||||
1856
|
||||
1859
|
||||
1861
|
||||
1862
|
||||
1865
|
||||
1866
|
||||
1871
|
||||
1872
|
||||
1874
|
||||
1876
|
||||
1877
|
||||
1878
|
||||
1879
|
||||
1880
|
||||
1881
|
||||
1885
|
||||
1887
|
||||
1888
|
||||
1889
|
||||
1891
|
||||
1892
|
||||
1894
|
||||
1895
|
||||
1899
|
||||
1900
|
||||
1907
|
||||
1911
|
||||
1913
|
||||
1914
|
||||
1915
|
||||
1917
|
||||
1919
|
||||
1920
|
||||
1923
|
||||
1924
|
||||
1925
|
||||
1927
|
||||
1934
|
||||
1939
|
||||
1940
|
||||
1941
|
||||
1948
|
||||
1951
|
||||
1953
|
||||
1957
|
||||
1958
|
||||
1959
|
||||
1961
|
||||
1962
|
||||
1965
|
||||
1966
|
||||
1967
|
||||
1971
|
||||
1973
|
||||
1975
|
||||
1979
|
||||
1981
|
||||
1983
|
||||
1989
|
||||
1996
|
||||
1997
|
||||
2000
|
||||
2004
|
||||
2007
|
||||
2009
|
||||
2011
|
||||
2012
|
||||
2016
|
||||
2017
|
||||
2019
|
||||
2021
|
||||
2024
|
||||
2029
|
||||
2040
|
||||
2042
|
||||
2044
|
||||
2048
|
@ -1,3 +0,0 @@
|
||||
nohup: ignoring input
|
||||
2023-06-20 09:22:51,618 - [INFO] - {'dataset': 'icews14_both', 'name': 'icews14_both', 'gpu': '2', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': False}
|
||||
2023-06-20 09:22:57,979 - [INFO] - [E:0| 0]: Train Loss:0.70005, Val MRR:0.0, icews14_both
|
14945
log/ice00001
14945
log/ice00001
File diff suppressed because it is too large
Load Diff
4904
log/ice0003
4904
log/ice0003
File diff suppressed because it is too large
Load Diff
6607
log/ice0003_2
6607
log/ice0003_2
File diff suppressed because it is too large
Load Diff
6205
log/ice001
6205
log/ice001
File diff suppressed because it is too large
Load Diff
9541
log/ice14ws_128
9541
log/ice14ws_128
File diff suppressed because it is too large
Load Diff
4154
log/iceboth
4154
log/iceboth
File diff suppressed because it is too large
Load Diff
9482
log/icews14
9482
log/icews14
File diff suppressed because it is too large
Load Diff
@ -1 +0,0 @@
|
||||
2023-05-13 03:52:44,141 - icews14_128 - [INFO] - {'dataset': 'icews14', 'name': 'icews14_128', 'gpu': '0', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': True, 'filtered': False}
|
10670
log/icews14_both
10670
log/icews14_both
File diff suppressed because it is too large
Load Diff
@ -1,2 +0,0 @@
|
||||
nohup: ignoring input
|
||||
python: can't open file 'run.py': [Errno 2] No such file or directory
|
@ -1 +0,0 @@
|
||||
2023-05-17 06:54:57,988 - testrun_227cb2f9 - [INFO] - {'dataset': 'icews14', 'name': 'testrun_227cb2f9', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
@ -1 +0,0 @@
|
||||
2023-05-17 06:23:34,181 - testrun_30d70322 - [INFO] - {'dataset': 'icews14', 'name': 'testrun_30d70322', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
@ -1 +0,0 @@
|
||||
2023-05-17 06:53:01,668 - testrun_3212b281 - [INFO] - {'dataset': 'icews14', 'name': 'testrun_3212b281', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
@ -1 +0,0 @@
|
||||
2023-05-06 08:35:38,753 - testrun_3dbc9e89 - [INFO] - {'dataset': 'wikidata12k', 'name': 'testrun_3dbc9e89', 'gpu': '0', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False}
|
@ -1 +0,0 @@
|
||||
2023-05-17 06:38:00,469 - testrun_43389ddf - [INFO] - {'dataset': 'icews14', 'name': 'testrun_43389ddf', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
@ -1 +0,0 @@
|
||||
2023-05-17 06:13:02,952 - testrun_47ede3b9 - [INFO] - {'dataset': 'FB15k-237', 'name': 'testrun_47ede3b9', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
@ -1 +0,0 @@
|
||||
2023-05-06 08:37:18,939 - testrun_49495af8 - [INFO] - {'dataset': 'wikidata12k', 'name': 'testrun_49495af8', 'gpu': '3', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False}
|
7877
log/testrun_4a235016
7877
log/testrun_4a235016
File diff suppressed because it is too large
Load Diff
@ -1 +0,0 @@
|
||||
2023-05-06 08:35:13,356 - testrun_4f5d8391 - [INFO] - {'dataset': 'wikidata12k', 'name': 'testrun_4f5d8391', 'gpu': '0', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False}
|
@ -1 +0,0 @@
|
||||
2023-05-06 08:34:55,992 - testrun_540f6a03 - [INFO] - {'dataset': 'wikidata12k', 'name': 'testrun_540f6a03', 'gpu': '0', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False}
|
@ -1 +0,0 @@
|
||||
2023-05-17 07:04:56,051 - testrun_5a901712 - [INFO] - {'dataset': 'icews14', 'name': 'testrun_5a901712', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
@ -1,44 +0,0 @@
|
||||
2023-05-17 06:48:57,396 - testrun_5cafe61a - [INFO] - {'dataset': 'icews14', 'name': 'testrun_5cafe61a', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
||||
2023-05-17 06:49:44,802 - concurrent.futures - [ERROR] - exception calling callback for <Future at 0x7efb51b74160 state=finished raised BrokenProcessPool>
|
||||
joblib.externals.loky.process_executor._RemoteTraceback:
|
||||
"""
|
||||
Traceback (most recent call last):
|
||||
File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/joblib/externals/loky/process_executor.py", line 391, in _process_worker
|
||||
call_item = call_queue.get(block=True, timeout=timeout)
|
||||
File "/opt/conda/envs/kgs2s/lib/python3.8/multiprocessing/queues.py", line 116, in get
|
||||
return _ForkingPickler.loads(res)
|
||||
File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/torch/storage.py", line 222, in _load_from_bytes
|
||||
return torch.load(io.BytesIO(b))
|
||||
File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/torch/serialization.py", line 713, in load
|
||||
return _legacy_load(opened_file, map_location, pickle_module, **pickle_load_args)
|
||||
File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/torch/serialization.py", line 930, in _legacy_load
|
||||
result = unpickler.load()
|
||||
File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/torch/serialization.py", line 876, in persistent_load
|
||||
wrap_storage=restore_location(obj, location),
|
||||
File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/torch/serialization.py", line 175, in default_restore_location
|
||||
result = fn(storage, location)
|
||||
File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/torch/serialization.py", line 155, in _cuda_deserialize
|
||||
return torch._UntypedStorage(obj.nbytes(), device=torch.device(location))
|
||||
RuntimeError: CUDA out of memory. Tried to allocate 678.00 MiB (GPU 0; 31.72 GiB total capacity; 0 bytes already allocated; 593.94 MiB free; 0 bytes reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
||||
"""
|
||||
|
||||
The above exception was the direct cause of the following exception:
|
||||
|
||||
Traceback (most recent call last):
|
||||
File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/joblib/externals/loky/_base.py", line 26, in _invoke_callbacks
|
||||
callback(self)
|
||||
File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/joblib/parallel.py", line 385, in __call__
|
||||
self.parallel.dispatch_next()
|
||||
File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/joblib/parallel.py", line 834, in dispatch_next
|
||||
if not self.dispatch_one_batch(self._original_iterator):
|
||||
File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/joblib/parallel.py", line 901, in dispatch_one_batch
|
||||
self._dispatch(tasks)
|
||||
File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/joblib/parallel.py", line 819, in _dispatch
|
||||
job = self._backend.apply_async(batch, callback=cb)
|
||||
File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/joblib/_parallel_backends.py", line 556, in apply_async
|
||||
future = self._workers.submit(SafeFunction(func))
|
||||
File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/joblib/externals/loky/reusable_executor.py", line 176, in submit
|
||||
return super().submit(fn, *args, **kwargs)
|
||||
File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/joblib/externals/loky/process_executor.py", line 1129, in submit
|
||||
raise self._flags.broken
|
||||
joblib.externals.loky.process_executor.BrokenProcessPool: A task has failed to un-serialize. Please ensure that the arguments of the function are all picklable.
|
@ -1 +0,0 @@
|
||||
2023-05-06 08:34:33,652 - testrun_6fd94d59 - [INFO] - {'dataset': 'wikidata12k', 'name': 'testrun_6fd94d59', 'gpu': '3', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False}
|
@ -1 +0,0 @@
|
||||
2023-05-17 06:56:35,124 - testrun_7c096a18 - [INFO] - {'dataset': 'icews14', 'name': 'testrun_7c096a18', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
@ -1 +0,0 @@
|
||||
2023-05-17 07:13:14,777 - testrun_7fb885ee - [INFO] - {'dataset': 'icews14', 'name': 'testrun_7fb885ee', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
@ -1 +0,0 @@
|
||||
2023-05-17 06:59:35,220 - testrun_8f32040f - [INFO] - {'dataset': 'icews14', 'name': 'testrun_8f32040f', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
@ -1 +0,0 @@
|
||||
2023-05-17 06:16:45,427 - testrun_958ef154 - [INFO] - {'dataset': 'icews14', 'name': 'testrun_958ef154', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
@ -1,2 +0,0 @@
|
||||
2023-05-06 08:36:46,668 - testrun_9acdfb58 - [INFO] - {'dataset': 'wikidata12k', 'name': 'testrun_9acdfb58', 'gpu': '3', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False}
|
||||
2023-05-06 08:36:57,409 - testrun_9acdfb58 - [INFO] - [E:0| 0]: Train Loss:0.69813, Val MRR:0.0, testrun_9acdfb58
|
@ -1 +0,0 @@
|
||||
2023-05-17 06:36:14,606 - testrun_a051cf32 - [INFO] - {'dataset': 'icews14', 'name': 'testrun_a051cf32', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
@ -1 +0,0 @@
|
||||
2023-05-17 06:13:16,274 - testrun_a06d39d0 - [INFO] - {'dataset': 'icews14', 'name': 'testrun_a06d39d0', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
@ -1 +0,0 @@
|
||||
2023-05-17 06:41:20,654 - testrun_aca2b734 - [INFO] - {'dataset': 'icews14', 'name': 'testrun_aca2b734', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
@ -1 +0,0 @@
|
||||
2023-05-17 06:45:54,332 - testrun_ad7a0edb - [INFO] - {'dataset': 'icews14', 'name': 'testrun_ad7a0edb', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
7958
log/testrun_ae6f81ee
7958
log/testrun_ae6f81ee
File diff suppressed because it is too large
Load Diff
@ -1 +0,0 @@
|
||||
2023-05-30 17:54:20,857 - testrun_b381870f - [INFO] - {'dataset': 'wikidata12k', 'name': 'testrun_b381870f', 'gpu': '0', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0003, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': False}
|
@ -1,2 +0,0 @@
|
||||
2023-05-30 17:56:25,430 - testrun_b396dcde - [INFO] - {'dataset': 'wikidata12k', 'name': 'testrun_b396dcde', 'gpu': '0', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0003, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': False}
|
||||
2023-05-30 17:57:00,673 - testrun_b396dcde - [INFO] - {'dataset': 'wikidata12k', 'name': 'testrun_b396dcde', 'gpu': '0', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0003, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': False, 'num_ent': 12554, 'num_rel': 423}
|
@ -1 +0,0 @@
|
||||
2023-05-17 06:21:14,228 - testrun_bbf65ab5 - [INFO] - {'dataset': 'icews14', 'name': 'testrun_bbf65ab5', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
@ -1 +0,0 @@
|
||||
2023-05-17 06:50:58,251 - testrun_bfaa042b - [INFO] - {'dataset': 'icews14', 'name': 'testrun_bfaa042b', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
@ -1 +0,0 @@
|
||||
2023-05-17 06:37:11,288 - testrun_c77a8ec3 - [INFO] - {'dataset': 'icews14', 'name': 'testrun_c77a8ec3', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
@ -1 +0,0 @@
|
||||
2023-05-17 07:08:13,688 - testrun_cb3528f3 - [INFO] - {'dataset': 'icews14', 'name': 'testrun_cb3528f3', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
@ -1 +0,0 @@
|
||||
2023-05-17 06:25:12,047 - testrun_cd333c33 - [INFO] - {'dataset': 'icews14', 'name': 'testrun_cd333c33', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
@ -1,2 +0,0 @@
|
||||
2023-05-06 08:37:25,129 - testrun_d0367b19 - [INFO] - {'dataset': 'wikidata12k', 'name': 'testrun_d0367b19', 'gpu': '3', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False}
|
||||
2023-05-06 08:37:36,239 - testrun_d0367b19 - [INFO] - [E:0| 0]: Train Loss:0.69813, Val MRR:0.0, testrun_d0367b19
|
9001
log/testrun_d2ab6391
9001
log/testrun_d2ab6391
File diff suppressed because it is too large
Load Diff
11836
log/testrun_e1726b98
11836
log/testrun_e1726b98
File diff suppressed because it is too large
Load Diff
@ -1 +0,0 @@
|
||||
2023-05-17 06:47:48,537 - testrun_f0394b3c - [INFO] - {'dataset': 'icews14', 'name': 'testrun_f0394b3c', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
@ -1 +0,0 @@
|
||||
2023-05-30 17:55:52,461 - testrun_f42f568c - [INFO] - {'dataset': 'wikidata12k', 'name': 'testrun_f42f568c', 'gpu': '0', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0003, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': False}
|
@ -1 +0,0 @@
|
||||
2023-05-17 06:39:01,301 - testrun_fdb0e82c - [INFO] - {'dataset': 'icews14', 'name': 'testrun_fdb0e82c', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
1116
log/wikidata12k
1116
log/wikidata12k
File diff suppressed because it is too large
Load Diff
@ -1,2 +0,0 @@
|
||||
2023-06-04 17:05:45,012 - wikidata12k_0.00003 - [INFO] - {'dataset': 'wikidata12k', 'name': 'wikidata12k_0.00003', 'gpu': '2', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': False}
|
||||
2023-06-04 17:06:06,702 - wikidata12k_0.00003 - [INFO] - [E:0| 0]: Train Loss:0.69813, Val MRR:0.0, wikidata12k_0.00003
|
File diff suppressed because it is too large
Load Diff
15357
log/wikidata12k_1n
15357
log/wikidata12k_1n
File diff suppressed because it is too large
Load Diff
11565
log/wikidata12k_both
11565
log/wikidata12k_both
File diff suppressed because it is too large
Load Diff
9241
log/yago11k
9241
log/yago11k
File diff suppressed because it is too large
Load Diff
9654
log/yago11k_0.00003
9654
log/yago11k_0.00003
File diff suppressed because it is too large
Load Diff
9599
log/yago11k_0.0003
9599
log/yago11k_0.0003
File diff suppressed because it is too large
Load Diff
7233
log/yago11k_0.001
7233
log/yago11k_0.001
File diff suppressed because it is too large
Load Diff
18847
log/yago11k_0.001.log
18847
log/yago11k_0.001.log
File diff suppressed because it is too large
Load Diff
9169
log/yago11k_both
9169
log/yago11k_both
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
60
main.py
60
main.py
@ -3,12 +3,10 @@ import uuid
|
||||
import argparse
|
||||
import logging
|
||||
import logging.config
|
||||
import pandas as pd
|
||||
import sys
|
||||
import time
|
||||
|
||||
import torch
|
||||
import numpy as np
|
||||
import time
|
||||
|
||||
from collections import defaultdict as ddict
|
||||
from pprint import pprint
|
||||
@ -24,7 +22,7 @@ from models import ComplEx, ConvE, HypER, InteractE, FouriER, TuckER
|
||||
|
||||
class Main(object):
|
||||
|
||||
def __init__(self, params, logger):
|
||||
def __init__(self, params):
|
||||
"""
|
||||
Constructor of the runner class
|
||||
Parameters
|
||||
@ -37,9 +35,11 @@ class Main(object):
|
||||
|
||||
"""
|
||||
self.p = params
|
||||
self.logger = logger
|
||||
self.logger = get_logger(
|
||||
self.p.name, self.p.log_dir, self.p.config_dir)
|
||||
|
||||
self.logger.info(vars(self.p))
|
||||
pprint(vars(self.p))
|
||||
|
||||
if self.p.gpu != '-1' and torch.cuda.is_available():
|
||||
self.device = torch.device('cuda')
|
||||
@ -84,7 +84,7 @@ class Main(object):
|
||||
|
||||
self.ent2id = {}
|
||||
for line in open('./data/{}/{}'.format(self.p.dataset, "entities.dict")):
|
||||
id, ent = map(str.lower, line.replace('\xa0', '').strip().split('\t'))
|
||||
id, ent = map(str.lower, line.strip().split('\t'))
|
||||
self.ent2id[ent] = int(id)
|
||||
self.rel2id = {}
|
||||
for line in open('./data/{}/{}'.format(self.p.dataset, "relations.dict")):
|
||||
@ -108,14 +108,20 @@ class Main(object):
|
||||
sr2o = ddict(set)
|
||||
|
||||
for split in ['train', 'test', 'valid']:
|
||||
for line in open('./data/{}/{}.txt'.format(self.p.dataset, split)):
|
||||
sub, rel, obj, *_ = map(str.lower, line.replace('\xa0', '').strip().split('\t'))
|
||||
samples = 0
|
||||
for i, line in enumerate(open('./data/{}/{}.txt'.format(self.p.dataset, split))):
|
||||
sub, rel, obj, rel_type, *_ = map(str.lower, line.strip().split('\t'))
|
||||
if (split == 'test' and self.p.rel_type is not None):
|
||||
if rel_type != self.p.rel_type:
|
||||
continue
|
||||
sub, rel, obj = self.ent2id[sub], self.rel2id[rel], self.ent2id[obj]
|
||||
self.data[split].append((sub, rel, obj))
|
||||
|
||||
if split == 'train':
|
||||
sr2o[(sub, rel)].add(obj)
|
||||
sr2o[(obj, rel+self.p.num_rel)].add(sub)
|
||||
samples += 1
|
||||
print(split.capitalize() + ': ' + str(samples) + ' samples')
|
||||
self.data = dict(self.data)
|
||||
|
||||
self.sr2o = {k: list(v) for k, v in sr2o.items()}
|
||||
@ -153,6 +159,8 @@ class Main(object):
|
||||
{'triple': (obj, rel_inv, sub), 'label': self.sr2o_all[(obj, rel_inv)]})
|
||||
|
||||
self.triples = dict(self.triples)
|
||||
print(len(self.triples['test_head']))
|
||||
print(len(self.triples['test_tail']))
|
||||
|
||||
def get_data_loader(dataset_class, split, batch_size, shuffle=True):
|
||||
return DataLoader(
|
||||
@ -407,13 +415,6 @@ class Main(object):
|
||||
train_iter = iter(
|
||||
self.data_iter['{}_{}'.format(split, mode.split('_')[0])])
|
||||
|
||||
sub_all = []
|
||||
obj_all = []
|
||||
rel_all = []
|
||||
target_score = []
|
||||
target_rank = []
|
||||
obj_pred = []
|
||||
obj_pred_score = []
|
||||
for step, batch in enumerate(train_iter):
|
||||
sub, rel, obj, label = self.read_batch(batch, split)
|
||||
pred = self.model.forward(sub, rel, None, 'one_to_n')
|
||||
@ -421,21 +422,9 @@ class Main(object):
|
||||
target_pred = pred[b_range, obj]
|
||||
pred = torch.where(label.byte(), torch.zeros_like(pred), pred)
|
||||
pred[b_range, obj] = target_pred
|
||||
|
||||
highest = torch.argsort(pred, dim=1, descending=True)[:,0]
|
||||
highest_score = pred[b_range, highest]
|
||||
|
||||
ranks = 1 + torch.argsort(torch.argsort(pred, dim=1,
|
||||
descending=True), dim=1, descending=False)[b_range, obj]
|
||||
|
||||
sub_all.extend(sub.cpu().numpy())
|
||||
obj_all.extend(obj.cpu().numpy())
|
||||
rel_all.extend(rel.cpu().numpy())
|
||||
target_score.extend(target_pred.cpu().numpy())
|
||||
target_rank.extend(ranks.cpu().numpy())
|
||||
obj_pred.extend(highest.cpu().numpy())
|
||||
obj_pred_score.extend(highest_score.cpu().numpy())
|
||||
|
||||
ranks = ranks.float()
|
||||
results['count'] = torch.numel(
|
||||
ranks) + results.get('count', 0.0)
|
||||
@ -450,8 +439,7 @@ class Main(object):
|
||||
if step % 100 == 0:
|
||||
self.logger.info('[{}, {} Step {}]\t{}'.format(
|
||||
split.title(), mode.title(), step, self.p.name))
|
||||
df = pd.DataFrame({"sub":sub_all,"rel":rel_all,"obj":obj_all, "rank": target_rank,"score":target_score, "pred":obj_pred,"pred_score":obj_pred_score})
|
||||
df.to_csv(f"{self.p.name}_result.csv",header=True, index=False)
|
||||
|
||||
return results
|
||||
|
||||
def run_epoch(self, epoch):
|
||||
@ -647,6 +635,7 @@ if __name__ == "__main__":
|
||||
|
||||
parser.add_argument('--test_only', action='store_true', default=False)
|
||||
parser.add_argument('--grid_search', action='store_true', default=False)
|
||||
parser.add_argument('--rel_type', default=None, type=str)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
@ -655,10 +644,9 @@ if __name__ == "__main__":
|
||||
set_gpu(args.gpu)
|
||||
set_seed(args.seed)
|
||||
|
||||
model = Main(args)
|
||||
|
||||
if (args.grid_search):
|
||||
|
||||
model = Main(args)
|
||||
from sklearn.model_selection import GridSearchCV
|
||||
from skorch import NeuralNet
|
||||
|
||||
@ -707,24 +695,18 @@ if __name__ == "__main__":
|
||||
search = grid.fit(inputs, label)
|
||||
print("BEST SCORE: ", search.best_score_)
|
||||
print("BEST PARAMS: ", search.best_params_)
|
||||
logger = get_logger(
|
||||
args.name, args.log_dir, args.config_dir)
|
||||
if (args.test_only):
|
||||
model = Main(args, logger)
|
||||
save_path = os.path.join('./torch_saved', args.name)
|
||||
model.load_model(save_path)
|
||||
model.evaluate('test')
|
||||
else:
|
||||
while True:
|
||||
try:
|
||||
model = Main(args, logger)
|
||||
model.fit()
|
||||
except Exception as e:
|
||||
print(e)
|
||||
try:
|
||||
del model
|
||||
except Exception:
|
||||
pass
|
||||
time.sleep(30)
|
||||
del model
|
||||
model = Main(args)
|
||||
continue
|
||||
break
|
||||
|
3
run.sh
3
run.sh
@ -38,6 +38,3 @@ PID:
|
||||
|
||||
___
|
||||
nohup python main.py --name ice001 --lr 0.001 --data icews14 --gpu 3 >run_log/0.001.log 2>&1 &
|
||||
___
|
||||
nohup python main.py --name iceboth --data icews14_both --gpu 0 >run_log/iceboth.log 2>&1 &
|
||||
PID: 21984
|
10708
run_log/icews14/0.00001.log
Normal file
10708
run_log/icews14/0.00001.log
Normal file
File diff suppressed because it is too large
Load Diff
6653
run_log/icews14/0.00003.log
Normal file
6653
run_log/icews14/0.00003.log
Normal file
File diff suppressed because it is too large
Load Diff
9511
run_log/icews14/0.0001.out
Normal file
9511
run_log/icews14/0.0001.out
Normal file
File diff suppressed because it is too large
Load Diff
4950
run_log/icews14/0.0003.log
Normal file
4950
run_log/icews14/0.0003.log
Normal file
File diff suppressed because it is too large
Load Diff
6249
run_log/icews14/0.001.log
Normal file
6249
run_log/icews14/0.001.log
Normal file
File diff suppressed because it is too large
Load Diff
425
run_log/wikidata12k/0.001.log
Normal file
425
run_log/wikidata12k/0.001.log
Normal file
@ -0,0 +1,425 @@
|
||||
nohup: ignoring input
|
||||
2023-05-27 04:41:18,497 - [INFO] - {'dataset': 'wikidata12k', 'name': 'wikidata12k_0.001', 'gpu': '3', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': False}
|
||||
{'batch_size': 128,
|
||||
'bias': False,
|
||||
'config_dir': './config/',
|
||||
'dataset': 'wikidata12k',
|
||||
'drop': 0.0,
|
||||
'drop_path': 0.0,
|
||||
'embed_dim': 400,
|
||||
'ent_vec_dim': 400,
|
||||
'expansion_factor': 4,
|
||||
'expansion_factor_token': 0.5,
|
||||
'feat_drop': 0.2,
|
||||
'filt_h': 1,
|
||||
'filt_w': 9,
|
||||
'form': 'plain',
|
||||
'gpu': '3',
|
||||
'grid_search': False,
|
||||
'hid_drop': 0.5,
|
||||
'image_h': 128,
|
||||
'image_w': 128,
|
||||
'in_channels': 1,
|
||||
'inp_drop': 0.2,
|
||||
'k_h': 20,
|
||||
'k_w': 10,
|
||||
'ker_sz': 9,
|
||||
'l2': 0.0,
|
||||
'lbl_smooth': 0.1,
|
||||
'log_dir': './log/',
|
||||
'lr': 0.001,
|
||||
'max_epochs': 500,
|
||||
'mixer_depth': 16,
|
||||
'mixer_dim': 256,
|
||||
'mixer_dropout': 0.2,
|
||||
'name': 'wikidata12k_0.001',
|
||||
'neg_num': 1000,
|
||||
'num_filt': 96,
|
||||
'num_workers': 0,
|
||||
'opt': 'adam',
|
||||
'out_channels': 32,
|
||||
'patch_size': 8,
|
||||
'perm': 1,
|
||||
'rel_vec_dim': 400,
|
||||
'restore': False,
|
||||
'seed': 42,
|
||||
'test_only': False,
|
||||
'train_strategy': 'one_to_n'}
|
||||
2023-05-27 04:41:28,635 - [INFO] - [E:0| 0]: Train Loss:0.69813, Val MRR:0.0, wikidata12k_0.001
|
||||
2023-05-27 04:42:32,570 - [INFO] - [E:0| 100]: Train Loss:0.053587, Val MRR:0.0, wikidata12k_0.001
|
||||
2023-05-27 04:43:36,618 - [INFO] - [E:0| 200]: Train Loss:0.028724, Val MRR:0.0, wikidata12k_0.001
|
||||
2023-05-27 04:44:40,687 - [INFO] - [E:0| 300]: Train Loss:0.020033, Val MRR:0.0, wikidata12k_0.001
|
||||
2023-05-27 04:45:44,799 - [INFO] - [E:0| 400]: Train Loss:0.015589, Val MRR:0.0, wikidata12k_0.001
|
||||
2023-05-27 04:46:48,901 - [INFO] - [E:0| 500]: Train Loss:0.012878, Val MRR:0.0, wikidata12k_0.001
|
||||
2023-05-27 04:47:53,124 - [INFO] - [E:0| 600]: Train Loss:0.011054, Val MRR:0.0, wikidata12k_0.001
|
||||
2023-05-27 04:48:57,224 - [INFO] - [E:0| 700]: Train Loss:0.0097532, Val MRR:0.0, wikidata12k_0.001
|
||||
2023-05-27 04:50:01,352 - [INFO] - [E:0| 800]: Train Loss:0.008763, Val MRR:0.0, wikidata12k_0.001
|
||||
2023-05-27 04:51:05,445 - [INFO] - [E:0| 900]: Train Loss:0.0079929, Val MRR:0.0, wikidata12k_0.001
|
||||
2023-05-27 04:52:09,559 - [INFO] - [E:0| 1000]: Train Loss:0.0073745, Val MRR:0.0, wikidata12k_0.001
|
||||
2023-05-27 04:53:13,624 - [INFO] - [E:0| 1100]: Train Loss:0.0068693, Val MRR:0.0, wikidata12k_0.001
|
||||
2023-05-27 04:54:17,823 - [INFO] - [E:0| 1200]: Train Loss:0.0064497, Val MRR:0.0, wikidata12k_0.001
|
||||
2023-05-27 04:55:21,967 - [INFO] - [E:0| 1300]: Train Loss:0.0060945, Val MRR:0.0, wikidata12k_0.001
|
||||
2023-05-27 04:56:26,129 - [INFO] - [E:0| 1400]: Train Loss:0.0057879, Val MRR:0.0, wikidata12k_0.001
|
||||
2023-05-27 04:57:30,256 - [INFO] - [E:0| 1500]: Train Loss:0.0055195, Val MRR:0.0, wikidata12k_0.001
|
||||
2023-05-27 04:58:34,350 - [INFO] - [E:0| 1600]: Train Loss:0.0052845, Val MRR:0.0, wikidata12k_0.001
|
||||
2023-05-27 04:59:16,259 - [INFO] - [Epoch:0]: Training Loss:0.005147
|
||||
|
||||
2023-05-27 04:59:16,481 - [INFO] - [Valid, Tail_Batch Step 0] wikidata12k_0.001
|
||||
2023-05-27 04:59:38,187 - [INFO] - [Valid, Tail_Batch Step 100] wikidata12k_0.001
|
||||
2023-05-27 04:59:50,745 - [INFO] - [Valid, Head_Batch Step 0] wikidata12k_0.001
|
||||
2023-05-27 05:00:12,609 - [INFO] - [Valid, Head_Batch Step 100] wikidata12k_0.001
|
||||
2023-05-27 05:00:25,062 - [INFO] - [Evaluating Epoch 0 valid]:
|
||||
MRR: Tail : 0.08049, Head : 0.01947, Avg : 0.04998
|
||||
|
||||
2023-05-27 05:00:26,469 - [INFO] - [Epoch 0]: Training Loss: 0.0051469, Valid MRR: 0.04998,
|
||||
|
||||
|
||||
|
||||
2023-05-27 05:00:27,127 - [INFO] - [E:1| 0]: Train Loss:0.0016275, Val MRR:0.04998, wikidata12k_0.001
|
||||
2023-05-27 05:01:31,277 - [INFO] - [E:1| 100]: Train Loss:0.0017991, Val MRR:0.04998, wikidata12k_0.001
|
||||
2023-05-27 05:02:35,390 - [INFO] - [E:1| 200]: Train Loss:0.0017846, Val MRR:0.04998, wikidata12k_0.001
|
||||
2023-05-27 05:03:39,590 - [INFO] - [E:1| 300]: Train Loss:0.0017789, Val MRR:0.04998, wikidata12k_0.001
|
||||
2023-05-27 05:04:43,748 - [INFO] - [E:1| 400]: Train Loss:0.001772, Val MRR:0.04998, wikidata12k_0.001
|
||||
2023-05-27 05:05:47,967 - [INFO] - [E:1| 500]: Train Loss:0.0017692, Val MRR:0.04998, wikidata12k_0.001
|
||||
2023-05-27 05:06:52,036 - [INFO] - [E:1| 600]: Train Loss:0.0017597, Val MRR:0.04998, wikidata12k_0.001
|
||||
2023-05-27 05:07:56,215 - [INFO] - [E:1| 700]: Train Loss:0.0017589, Val MRR:0.04998, wikidata12k_0.001
|
||||
2023-05-27 05:09:00,363 - [INFO] - [E:1| 800]: Train Loss:0.0017555, Val MRR:0.04998, wikidata12k_0.001
|
||||
2023-05-27 05:10:04,516 - [INFO] - [E:1| 900]: Train Loss:0.0017507, Val MRR:0.04998, wikidata12k_0.001
|
||||
2023-05-27 05:11:08,719 - [INFO] - [E:1| 1000]: Train Loss:0.0017476, Val MRR:0.04998, wikidata12k_0.001
|
||||
2023-05-27 05:12:12,940 - [INFO] - [E:1| 1100]: Train Loss:0.0017427, Val MRR:0.04998, wikidata12k_0.001
|
||||
2023-05-27 05:13:17,076 - [INFO] - [E:1| 1200]: Train Loss:0.0017384, Val MRR:0.04998, wikidata12k_0.001
|
||||
2023-05-27 05:14:21,295 - [INFO] - [E:1| 1300]: Train Loss:0.0017345, Val MRR:0.04998, wikidata12k_0.001
|
||||
2023-05-27 05:15:25,462 - [INFO] - [E:1| 1400]: Train Loss:0.0017307, Val MRR:0.04998, wikidata12k_0.001
|
||||
2023-05-27 05:16:29,614 - [INFO] - [E:1| 1500]: Train Loss:0.0017243, Val MRR:0.04998, wikidata12k_0.001
|
||||
2023-05-27 05:17:33,705 - [INFO] - [E:1| 1600]: Train Loss:0.001719, Val MRR:0.04998, wikidata12k_0.001
|
||||
2023-05-27 05:18:15,618 - [INFO] - [Epoch:1]: Training Loss:0.001714
|
||||
|
||||
2023-05-27 05:18:15,839 - [INFO] - [Valid, Tail_Batch Step 0] wikidata12k_0.001
|
||||
2023-05-27 05:18:37,583 - [INFO] - [Valid, Tail_Batch Step 100] wikidata12k_0.001
|
||||
2023-05-27 05:18:50,191 - [INFO] - [Valid, Head_Batch Step 0] wikidata12k_0.001
|
||||
2023-05-27 05:19:12,067 - [INFO] - [Valid, Head_Batch Step 100] wikidata12k_0.001
|
||||
2023-05-27 05:19:24,503 - [INFO] - [Evaluating Epoch 1 valid]:
|
||||
MRR: Tail : 0.1748, Head : 0.04108, Avg : 0.10794
|
||||
|
||||
2023-05-27 05:19:25,566 - [INFO] - [Epoch 1]: Training Loss: 0.0017143, Valid MRR: 0.10794,
|
||||
|
||||
|
||||
|
||||
2023-05-27 05:19:26,219 - [INFO] - [E:2| 0]: Train Loss:0.0016961, Val MRR:0.10794, wikidata12k_0.001
|
||||
2023-05-27 05:20:30,344 - [INFO] - [E:2| 100]: Train Loss:0.0016227, Val MRR:0.10794, wikidata12k_0.001
|
||||
2023-05-27 05:21:34,535 - [INFO] - [E:2| 200]: Train Loss:0.0016161, Val MRR:0.10794, wikidata12k_0.001
|
||||
2023-05-27 05:22:38,770 - [INFO] - [E:2| 300]: Train Loss:0.0016161, Val MRR:0.10794, wikidata12k_0.001
|
||||
2023-05-27 05:23:43,004 - [INFO] - [E:2| 400]: Train Loss:0.0016106, Val MRR:0.10794, wikidata12k_0.001
|
||||
2023-05-27 05:24:47,137 - [INFO] - [E:2| 500]: Train Loss:0.0016058, Val MRR:0.10794, wikidata12k_0.001
|
||||
2023-05-27 05:25:51,362 - [INFO] - [E:2| 600]: Train Loss:0.0016067, Val MRR:0.10794, wikidata12k_0.001
|
||||
2023-05-27 05:26:55,499 - [INFO] - [E:2| 700]: Train Loss:0.0016013, Val MRR:0.10794, wikidata12k_0.001
|
||||
2023-05-27 05:27:59,761 - [INFO] - [E:2| 800]: Train Loss:0.0015978, Val MRR:0.10794, wikidata12k_0.001
|
||||
2023-05-27 05:29:03,935 - [INFO] - [E:2| 900]: Train Loss:0.0015935, Val MRR:0.10794, wikidata12k_0.001
|
||||
2023-05-27 05:30:08,210 - [INFO] - [E:2| 1000]: Train Loss:0.0015896, Val MRR:0.10794, wikidata12k_0.001
|
||||
2023-05-27 05:31:12,398 - [INFO] - [E:2| 1100]: Train Loss:0.0015856, Val MRR:0.10794, wikidata12k_0.001
|
||||
2023-05-27 05:32:16,608 - [INFO] - [E:2| 1200]: Train Loss:0.0015814, Val MRR:0.10794, wikidata12k_0.001
|
||||
2023-05-27 05:33:20,836 - [INFO] - [E:2| 1300]: Train Loss:0.0015758, Val MRR:0.10794, wikidata12k_0.001
|
||||
2023-05-27 05:34:25,014 - [INFO] - [E:2| 1400]: Train Loss:0.001571, Val MRR:0.10794, wikidata12k_0.001
|
||||
2023-05-27 05:35:29,265 - [INFO] - [E:2| 1500]: Train Loss:0.001565, Val MRR:0.10794, wikidata12k_0.001
|
||||
2023-05-27 05:36:33,450 - [INFO] - [E:2| 1600]: Train Loss:0.0015589, Val MRR:0.10794, wikidata12k_0.001
|
||||
2023-05-27 05:37:15,383 - [INFO] - [Epoch:2]: Training Loss:0.001556
|
||||
|
||||
2023-05-27 05:37:15,603 - [INFO] - [Valid, Tail_Batch Step 0] wikidata12k_0.001
|
||||
2023-05-27 05:37:37,308 - [INFO] - [Valid, Tail_Batch Step 100] wikidata12k_0.001
|
||||
2023-05-27 05:37:49,874 - [INFO] - [Valid, Head_Batch Step 0] wikidata12k_0.001
|
||||
2023-05-27 05:38:11,738 - [INFO] - [Valid, Head_Batch Step 100] wikidata12k_0.001
|
||||
2023-05-27 05:38:24,173 - [INFO] - [Evaluating Epoch 2 valid]:
|
||||
MRR: Tail : 0.28305, Head : 0.07818, Avg : 0.18062
|
||||
|
||||
2023-05-27 05:38:25,157 - [INFO] - [Epoch 2]: Training Loss: 0.001556, Valid MRR: 0.18062,
|
||||
|
||||
|
||||
|
||||
2023-05-27 05:38:25,813 - [INFO] - [E:3| 0]: Train Loss:0.0013897, Val MRR:0.18062, wikidata12k_0.001
|
||||
2023-05-27 05:39:30,024 - [INFO] - [E:3| 100]: Train Loss:0.0014599, Val MRR:0.18062, wikidata12k_0.001
|
||||
2023-05-27 05:40:34,122 - [INFO] - [E:3| 200]: Train Loss:0.0014516, Val MRR:0.18062, wikidata12k_0.001
|
||||
2023-05-27 05:41:38,261 - [INFO] - [E:3| 300]: Train Loss:0.0014552, Val MRR:0.18062, wikidata12k_0.001
|
||||
2023-05-27 05:42:42,459 - [INFO] - [E:3| 400]: Train Loss:0.0014541, Val MRR:0.18062, wikidata12k_0.001
|
||||
2023-05-27 05:43:46,707 - [INFO] - [E:3| 500]: Train Loss:0.0014521, Val MRR:0.18062, wikidata12k_0.001
|
||||
2023-05-27 05:44:50,829 - [INFO] - [E:3| 600]: Train Loss:0.0014476, Val MRR:0.18062, wikidata12k_0.001
|
||||
2023-05-27 05:45:54,979 - [INFO] - [E:3| 700]: Train Loss:0.0014439, Val MRR:0.18062, wikidata12k_0.001
|
||||
2023-05-27 05:46:59,115 - [INFO] - [E:3| 800]: Train Loss:0.0014396, Val MRR:0.18062, wikidata12k_0.001
|
||||
2023-05-27 05:48:03,341 - [INFO] - [E:3| 900]: Train Loss:0.0014367, Val MRR:0.18062, wikidata12k_0.001
|
||||
2023-05-27 05:49:07,419 - [INFO] - [E:3| 1000]: Train Loss:0.0014329, Val MRR:0.18062, wikidata12k_0.001
|
||||
2023-05-27 05:50:11,647 - [INFO] - [E:3| 1100]: Train Loss:0.0014308, Val MRR:0.18062, wikidata12k_0.001
|
||||
2023-05-27 05:51:15,783 - [INFO] - [E:3| 1200]: Train Loss:0.0014276, Val MRR:0.18062, wikidata12k_0.001
|
||||
2023-05-27 05:52:19,915 - [INFO] - [E:3| 1300]: Train Loss:0.0014245, Val MRR:0.18062, wikidata12k_0.001
|
||||
2023-05-27 05:53:24,121 - [INFO] - [E:3| 1400]: Train Loss:0.0014212, Val MRR:0.18062, wikidata12k_0.001
|
||||
2023-05-27 05:54:28,236 - [INFO] - [E:3| 1500]: Train Loss:0.0014184, Val MRR:0.18062, wikidata12k_0.001
|
||||
2023-05-27 05:55:32,482 - [INFO] - [E:3| 1600]: Train Loss:0.0014147, Val MRR:0.18062, wikidata12k_0.001
|
||||
2023-05-27 05:56:14,438 - [INFO] - [Epoch:3]: Training Loss:0.001413
|
||||
|
||||
2023-05-27 05:56:14,658 - [INFO] - [Valid, Tail_Batch Step 0] wikidata12k_0.001
|
||||
2023-05-27 05:56:36,372 - [INFO] - [Valid, Tail_Batch Step 100] wikidata12k_0.001
|
||||
2023-05-27 05:56:48,954 - [INFO] - [Valid, Head_Batch Step 0] wikidata12k_0.001
|
||||
2023-05-27 05:57:10,881 - [INFO] - [Valid, Head_Batch Step 100] wikidata12k_0.001
|
||||
2023-05-27 05:57:23,328 - [INFO] - [Evaluating Epoch 3 valid]:
|
||||
MRR: Tail : 0.31549, Head : 0.09979, Avg : 0.20764
|
||||
|
||||
2023-05-27 05:57:24,420 - [INFO] - [Epoch 3]: Training Loss: 0.001413, Valid MRR: 0.20764,
|
||||
|
||||
|
||||
|
||||
2023-05-27 05:57:25,077 - [INFO] - [E:4| 0]: Train Loss:0.0014323, Val MRR:0.20764, wikidata12k_0.001
|
||||
2023-05-27 05:58:29,238 - [INFO] - [E:4| 100]: Train Loss:0.0013524, Val MRR:0.20764, wikidata12k_0.001
|
||||
2023-05-27 05:59:33,410 - [INFO] - [E:4| 200]: Train Loss:0.0013439, Val MRR:0.20764, wikidata12k_0.001
|
||||
2023-05-27 06:00:37,566 - [INFO] - [E:4| 300]: Train Loss:0.0013507, Val MRR:0.20764, wikidata12k_0.001
|
||||
2023-05-27 06:01:41,692 - [INFO] - [E:4| 400]: Train Loss:0.0013525, Val MRR:0.20764, wikidata12k_0.001
|
||||
2023-05-27 06:02:45,877 - [INFO] - [E:4| 500]: Train Loss:0.0013497, Val MRR:0.20764, wikidata12k_0.001
|
||||
2023-05-27 06:03:50,088 - [INFO] - [E:4| 600]: Train Loss:0.0013468, Val MRR:0.20764, wikidata12k_0.001
|
||||
2023-05-27 06:04:54,238 - [INFO] - [E:4| 700]: Train Loss:0.0013447, Val MRR:0.20764, wikidata12k_0.001
|
||||
2023-05-27 06:05:58,490 - [INFO] - [E:4| 800]: Train Loss:0.0013417, Val MRR:0.20764, wikidata12k_0.001
|
||||
2023-05-27 06:07:02,645 - [INFO] - [E:4| 900]: Train Loss:0.001339, Val MRR:0.20764, wikidata12k_0.001
|
||||
2023-05-27 06:08:06,755 - [INFO] - [E:4| 1000]: Train Loss:0.0013377, Val MRR:0.20764, wikidata12k_0.001
|
||||
2023-05-27 06:09:10,902 - [INFO] - [E:4| 1100]: Train Loss:0.0013348, Val MRR:0.20764, wikidata12k_0.001
|
||||
2023-05-27 06:10:15,038 - [INFO] - [E:4| 1200]: Train Loss:0.0013326, Val MRR:0.20764, wikidata12k_0.001
|
||||
2023-05-27 06:11:19,143 - [INFO] - [E:4| 1300]: Train Loss:0.0013302, Val MRR:0.20764, wikidata12k_0.001
|
||||
2023-05-27 06:12:23,347 - [INFO] - [E:4| 1400]: Train Loss:0.0013283, Val MRR:0.20764, wikidata12k_0.001
|
||||
2023-05-27 06:13:27,477 - [INFO] - [E:4| 1500]: Train Loss:0.0013269, Val MRR:0.20764, wikidata12k_0.001
|
||||
2023-05-27 06:14:31,542 - [INFO] - [E:4| 1600]: Train Loss:0.0013247, Val MRR:0.20764, wikidata12k_0.001
|
||||
2023-05-27 06:15:13,457 - [INFO] - [Epoch:4]: Training Loss:0.001323
|
||||
|
||||
2023-05-27 06:15:13,677 - [INFO] - [Valid, Tail_Batch Step 0] wikidata12k_0.001
|
||||
2023-05-27 06:15:35,362 - [INFO] - [Valid, Tail_Batch Step 100] wikidata12k_0.001
|
||||
2023-05-27 06:15:47,916 - [INFO] - [Valid, Head_Batch Step 0] wikidata12k_0.001
|
||||
2023-05-27 06:16:09,784 - [INFO] - [Valid, Head_Batch Step 100] wikidata12k_0.001
|
||||
2023-05-27 06:16:22,221 - [INFO] - [Evaluating Epoch 4 valid]:
|
||||
MRR: Tail : 0.36022, Head : 0.1037, Avg : 0.23196
|
||||
|
||||
2023-05-27 06:16:23,220 - [INFO] - [Epoch 4]: Training Loss: 0.0013235, Valid MRR: 0.23196,
|
||||
|
||||
|
||||
|
||||
2023-05-27 06:16:23,875 - [INFO] - [E:5| 0]: Train Loss:0.0013387, Val MRR:0.23196, wikidata12k_0.001
|
||||
2023-05-27 06:17:28,154 - [INFO] - [E:5| 100]: Train Loss:0.0012781, Val MRR:0.23196, wikidata12k_0.001
|
||||
2023-05-27 06:18:32,286 - [INFO] - [E:5| 200]: Train Loss:0.0012786, Val MRR:0.23196, wikidata12k_0.001
|
||||
2023-05-27 06:19:36,495 - [INFO] - [E:5| 300]: Train Loss:0.0012809, Val MRR:0.23196, wikidata12k_0.001
|
||||
2023-05-27 06:20:40,588 - [INFO] - [E:5| 400]: Train Loss:0.0012857, Val MRR:0.23196, wikidata12k_0.001
|
||||
2023-05-27 06:21:44,792 - [INFO] - [E:5| 500]: Train Loss:0.0012853, Val MRR:0.23196, wikidata12k_0.001
|
||||
2023-05-27 06:22:49,006 - [INFO] - [E:5| 600]: Train Loss:0.0012833, Val MRR:0.23196, wikidata12k_0.001
|
||||
2023-05-27 06:23:53,190 - [INFO] - [E:5| 700]: Train Loss:0.0012812, Val MRR:0.23196, wikidata12k_0.001
|
||||
2023-05-27 06:24:57,311 - [INFO] - [E:5| 800]: Train Loss:0.0012813, Val MRR:0.23196, wikidata12k_0.001
|
||||
2023-05-27 06:26:01,510 - [INFO] - [E:5| 900]: Train Loss:0.0012801, Val MRR:0.23196, wikidata12k_0.001
|
||||
2023-05-27 06:27:05,756 - [INFO] - [E:5| 1000]: Train Loss:0.0012789, Val MRR:0.23196, wikidata12k_0.001
|
||||
2023-05-27 06:28:09,936 - [INFO] - [E:5| 1100]: Train Loss:0.0012769, Val MRR:0.23196, wikidata12k_0.001
|
||||
2023-05-27 06:29:14,145 - [INFO] - [E:5| 1200]: Train Loss:0.0012746, Val MRR:0.23196, wikidata12k_0.001
|
||||
2023-05-27 06:30:18,293 - [INFO] - [E:5| 1300]: Train Loss:0.0012721, Val MRR:0.23196, wikidata12k_0.001
|
||||
2023-05-27 06:31:22,538 - [INFO] - [E:5| 1400]: Train Loss:0.0012703, Val MRR:0.23196, wikidata12k_0.001
|
||||
2023-05-27 06:32:26,694 - [INFO] - [E:5| 1500]: Train Loss:0.0012689, Val MRR:0.23196, wikidata12k_0.001
|
||||
2023-05-27 06:33:30,913 - [INFO] - [E:5| 1600]: Train Loss:0.0012677, Val MRR:0.23196, wikidata12k_0.001
|
||||
2023-05-27 06:34:12,771 - [INFO] - [Epoch:5]: Training Loss:0.001267
|
||||
|
||||
2023-05-27 06:34:12,992 - [INFO] - [Valid, Tail_Batch Step 0] wikidata12k_0.001
|
||||
2023-05-27 06:34:34,725 - [INFO] - [Valid, Tail_Batch Step 100] wikidata12k_0.001
|
||||
2023-05-27 06:34:47,309 - [INFO] - [Valid, Head_Batch Step 0] wikidata12k_0.001
|
||||
2023-05-27 06:35:09,233 - [INFO] - [Valid, Head_Batch Step 100] wikidata12k_0.001
|
||||
2023-05-27 06:35:21,676 - [INFO] - [Evaluating Epoch 5 valid]:
|
||||
MRR: Tail : 0.39017, Head : 0.12832, Avg : 0.25924
|
||||
|
||||
2023-05-27 06:35:22,811 - [INFO] - [Epoch 5]: Training Loss: 0.0012668, Valid MRR: 0.25924,
|
||||
|
||||
|
||||
|
||||
2023-05-27 06:35:23,469 - [INFO] - [E:6| 0]: Train Loss:0.0011894, Val MRR:0.25924, wikidata12k_0.001
|
||||
2023-05-27 06:36:27,594 - [INFO] - [E:6| 100]: Train Loss:0.0012342, Val MRR:0.25924, wikidata12k_0.001
|
||||
2023-05-27 06:37:31,786 - [INFO] - [E:6| 200]: Train Loss:0.0012378, Val MRR:0.25924, wikidata12k_0.001
|
||||
2023-05-27 06:38:35,956 - [INFO] - [E:6| 300]: Train Loss:0.0012388, Val MRR:0.25924, wikidata12k_0.001
|
||||
2023-05-27 06:39:40,226 - [INFO] - [E:6| 400]: Train Loss:0.0012378, Val MRR:0.25924, wikidata12k_0.001
|
||||
2023-05-27 06:40:44,423 - [INFO] - [E:6| 500]: Train Loss:0.0012438, Val MRR:0.25924, wikidata12k_0.001
|
||||
2023-05-27 06:41:48,645 - [INFO] - [E:6| 600]: Train Loss:0.0012421, Val MRR:0.25924, wikidata12k_0.001
|
||||
2023-05-27 06:42:52,773 - [INFO] - [E:6| 700]: Train Loss:0.0012408, Val MRR:0.25924, wikidata12k_0.001
|
||||
2023-05-27 06:43:56,948 - [INFO] - [E:6| 800]: Train Loss:0.0012416, Val MRR:0.25924, wikidata12k_0.001
|
||||
2023-05-27 06:45:01,063 - [INFO] - [E:6| 900]: Train Loss:0.001242, Val MRR:0.25924, wikidata12k_0.001
|
||||
2023-05-27 06:46:05,216 - [INFO] - [E:6| 1000]: Train Loss:0.0012397, Val MRR:0.25924, wikidata12k_0.001
|
||||
2023-05-27 06:47:09,350 - [INFO] - [E:6| 1100]: Train Loss:0.0012386, Val MRR:0.25924, wikidata12k_0.001
|
||||
2023-05-27 06:48:13,445 - [INFO] - [E:6| 1200]: Train Loss:0.0012373, Val MRR:0.25924, wikidata12k_0.001
|
||||
2023-05-27 06:49:17,622 - [INFO] - [E:6| 1300]: Train Loss:0.0012363, Val MRR:0.25924, wikidata12k_0.001
|
||||
2023-05-27 06:50:21,832 - [INFO] - [E:6| 1400]: Train Loss:0.0012346, Val MRR:0.25924, wikidata12k_0.001
|
||||
2023-05-27 06:51:26,056 - [INFO] - [E:6| 1500]: Train Loss:0.0012342, Val MRR:0.25924, wikidata12k_0.001
|
||||
2023-05-27 06:52:30,214 - [INFO] - [E:6| 1600]: Train Loss:0.001233, Val MRR:0.25924, wikidata12k_0.001
|
||||
2023-05-27 06:53:12,160 - [INFO] - [Epoch:6]: Training Loss:0.001232
|
||||
|
||||
2023-05-27 06:53:12,380 - [INFO] - [Valid, Tail_Batch Step 0] wikidata12k_0.001
|
||||
2023-05-27 06:53:34,088 - [INFO] - [Valid, Tail_Batch Step 100] wikidata12k_0.001
|
||||
2023-05-27 06:53:46,650 - [INFO] - [Valid, Head_Batch Step 0] wikidata12k_0.001
|
||||
2023-05-27 06:54:08,519 - [INFO] - [Valid, Head_Batch Step 100] wikidata12k_0.001
|
||||
2023-05-27 06:54:20,952 - [INFO] - [Evaluating Epoch 6 valid]:
|
||||
MRR: Tail : 0.37877, Head : 0.18554, Avg : 0.28215
|
||||
|
||||
2023-05-27 06:54:22,025 - [INFO] - [Epoch 6]: Training Loss: 0.0012324, Valid MRR: 0.28215,
|
||||
|
||||
|
||||
|
||||
2023-05-27 06:54:22,682 - [INFO] - [E:7| 0]: Train Loss:0.0011315, Val MRR:0.28215, wikidata12k_0.001
|
||||
2023-05-27 06:55:26,826 - [INFO] - [E:7| 100]: Train Loss:0.001205, Val MRR:0.28215, wikidata12k_0.001
|
||||
2023-05-27 06:56:30,996 - [INFO] - [E:7| 200]: Train Loss:0.0012037, Val MRR:0.28215, wikidata12k_0.001
|
||||
2023-05-27 06:57:35,173 - [INFO] - [E:7| 300]: Train Loss:0.0012034, Val MRR:0.28215, wikidata12k_0.001
|
||||
2023-05-27 06:58:39,365 - [INFO] - [E:7| 400]: Train Loss:0.0012073, Val MRR:0.28215, wikidata12k_0.001
|
||||
2023-05-27 06:59:43,659 - [INFO] - [E:7| 500]: Train Loss:0.0012094, Val MRR:0.28215, wikidata12k_0.001
|
||||
2023-05-27 07:00:47,839 - [INFO] - [E:7| 600]: Train Loss:0.0012093, Val MRR:0.28215, wikidata12k_0.001
|
||||
2023-05-27 07:01:51,994 - [INFO] - [E:7| 700]: Train Loss:0.0012077, Val MRR:0.28215, wikidata12k_0.001
|
||||
2023-05-27 07:02:56,159 - [INFO] - [E:7| 800]: Train Loss:0.0012085, Val MRR:0.28215, wikidata12k_0.001
|
||||
2023-05-27 07:04:00,272 - [INFO] - [E:7| 900]: Train Loss:0.0012086, Val MRR:0.28215, wikidata12k_0.001
|
||||
2023-05-27 07:05:04,432 - [INFO] - [E:7| 1000]: Train Loss:0.0012104, Val MRR:0.28215, wikidata12k_0.001
|
||||
2023-05-27 07:06:08,565 - [INFO] - [E:7| 1100]: Train Loss:0.00121, Val MRR:0.28215, wikidata12k_0.001
|
||||
2023-05-27 07:07:12,766 - [INFO] - [E:7| 1200]: Train Loss:0.0012097, Val MRR:0.28215, wikidata12k_0.001
|
||||
2023-05-27 07:08:16,920 - [INFO] - [E:7| 1300]: Train Loss:0.0012101, Val MRR:0.28215, wikidata12k_0.001
|
||||
2023-05-27 07:09:21,081 - [INFO] - [E:7| 1400]: Train Loss:0.0012095, Val MRR:0.28215, wikidata12k_0.001
|
||||
2023-05-27 07:10:25,247 - [INFO] - [E:7| 1500]: Train Loss:0.0012082, Val MRR:0.28215, wikidata12k_0.001
|
||||
2023-05-27 07:11:29,494 - [INFO] - [E:7| 1600]: Train Loss:0.0012075, Val MRR:0.28215, wikidata12k_0.001
|
||||
2023-05-27 07:12:11,381 - [INFO] - [Epoch:7]: Training Loss:0.001208
|
||||
|
||||
2023-05-27 07:12:11,602 - [INFO] - [Valid, Tail_Batch Step 0] wikidata12k_0.001
|
||||
2023-05-27 07:12:33,359 - [INFO] - [Valid, Tail_Batch Step 100] wikidata12k_0.001
|
||||
2023-05-27 07:12:45,946 - [INFO] - [Valid, Head_Batch Step 0] wikidata12k_0.001
|
||||
2023-05-27 07:13:07,852 - [INFO] - [Valid, Head_Batch Step 100] wikidata12k_0.001
|
||||
2023-05-27 07:13:20,334 - [INFO] - [Evaluating Epoch 7 valid]:
|
||||
MRR: Tail : 0.40626, Head : 0.21375, Avg : 0.31001
|
||||
|
||||
2023-05-27 07:13:21,326 - [INFO] - [Epoch 7]: Training Loss: 0.0012077, Valid MRR: 0.31001,
|
||||
|
||||
|
||||
|
||||
2023-05-27 07:13:21,980 - [INFO] - [E:8| 0]: Train Loss:0.0012363, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:14:26,096 - [INFO] - [E:8| 100]: Train Loss:0.0011868, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:15:30,354 - [INFO] - [E:8| 200]: Train Loss:0.0011847, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:16:34,466 - [INFO] - [E:8| 300]: Train Loss:0.0011814, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:17:38,565 - [INFO] - [E:8| 400]: Train Loss:0.0011847, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:18:42,799 - [INFO] - [E:8| 500]: Train Loss:0.0011887, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:19:46,964 - [INFO] - [E:8| 600]: Train Loss:0.0011901, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:20:51,144 - [INFO] - [E:8| 700]: Train Loss:0.0011897, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:21:55,282 - [INFO] - [E:8| 800]: Train Loss:0.0011913, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:22:59,411 - [INFO] - [E:8| 900]: Train Loss:0.0011918, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:24:03,538 - [INFO] - [E:8| 1000]: Train Loss:0.0011908, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:25:07,761 - [INFO] - [E:8| 1100]: Train Loss:0.0011915, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:26:11,872 - [INFO] - [E:8| 1200]: Train Loss:0.0011925, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:27:16,041 - [INFO] - [E:8| 1300]: Train Loss:0.0011918, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:28:20,210 - [INFO] - [E:8| 1400]: Train Loss:0.0011905, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:29:24,336 - [INFO] - [E:8| 1500]: Train Loss:0.0011898, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:30:28,566 - [INFO] - [E:8| 1600]: Train Loss:0.0011888, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:31:10,538 - [INFO] - [Epoch:8]: Training Loss:0.001189
|
||||
|
||||
2023-05-27 07:31:10,758 - [INFO] - [Valid, Tail_Batch Step 0] wikidata12k_0.001
|
||||
2023-05-27 07:31:32,478 - [INFO] - [Valid, Tail_Batch Step 100] wikidata12k_0.001
|
||||
2023-05-27 07:31:45,038 - [INFO] - [Valid, Head_Batch Step 0] wikidata12k_0.001
|
||||
2023-05-27 07:32:06,913 - [INFO] - [Valid, Head_Batch Step 100] wikidata12k_0.001
|
||||
2023-05-27 07:32:19,354 - [INFO] - [Evaluating Epoch 8 valid]:
|
||||
MRR: Tail : 0.41408, Head : 0.20141, Avg : 0.30774
|
||||
|
||||
2023-05-27 07:32:19,354 - [INFO] - [Epoch 8]: Training Loss: 0.0011888, Valid MRR: 0.31001,
|
||||
|
||||
|
||||
|
||||
2023-05-27 07:32:20,011 - [INFO] - [E:9| 0]: Train Loss:0.0011748, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:33:24,159 - [INFO] - [E:9| 100]: Train Loss:0.0011746, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:34:28,351 - [INFO] - [E:9| 200]: Train Loss:0.0011787, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:35:32,472 - [INFO] - [E:9| 300]: Train Loss:0.0011761, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:36:36,656 - [INFO] - [E:9| 400]: Train Loss:0.0011729, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:37:40,796 - [INFO] - [E:9| 500]: Train Loss:0.0011725, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:38:44,981 - [INFO] - [E:9| 600]: Train Loss:0.0011741, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:39:49,133 - [INFO] - [E:9| 700]: Train Loss:0.001173, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:40:53,329 - [INFO] - [E:9| 800]: Train Loss:0.0011736, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:41:57,558 - [INFO] - [E:9| 900]: Train Loss:0.0011731, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:43:01,737 - [INFO] - [E:9| 1000]: Train Loss:0.0011729, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:44:05,854 - [INFO] - [E:9| 1100]: Train Loss:0.001173, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:45:10,080 - [INFO] - [E:9| 1200]: Train Loss:0.0011727, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:46:14,191 - [INFO] - [E:9| 1300]: Train Loss:0.0011718, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:47:18,385 - [INFO] - [E:9| 1400]: Train Loss:0.001171, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:48:22,543 - [INFO] - [E:9| 1500]: Train Loss:0.0011709, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:49:26,748 - [INFO] - [E:9| 1600]: Train Loss:0.0011712, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:50:08,734 - [INFO] - [Epoch:9]: Training Loss:0.001171
|
||||
|
||||
2023-05-27 07:50:08,954 - [INFO] - [Valid, Tail_Batch Step 0] wikidata12k_0.001
|
||||
2023-05-27 07:50:30,672 - [INFO] - [Valid, Tail_Batch Step 100] wikidata12k_0.001
|
||||
2023-05-27 07:50:43,251 - [INFO] - [Valid, Head_Batch Step 0] wikidata12k_0.001
|
||||
2023-05-27 07:51:05,138 - [INFO] - [Valid, Head_Batch Step 100] wikidata12k_0.001
|
||||
2023-05-27 07:51:17,628 - [INFO] - [Evaluating Epoch 9 valid]:
|
||||
MRR: Tail : 0.42849, Head : 0.23814, Avg : 0.33331
|
||||
MR: Tail : 655.47, Head : 840.42, Avg : 747.94
|
||||
Hit-1: Tail : 0.35832, Head : 0.15504, Avg : 0.25668
|
||||
Hit-3: Tail : 0.45838, Head : 0.2739, Avg : 0.36614
|
||||
Hit-10: Tail : 0.55785, Head : 0.39074, Avg : 0.47429
|
||||
2023-05-27 07:51:18,545 - [INFO] - [Epoch 9]: Training Loss: 0.0011709, Valid MRR: 0.33331,
|
||||
|
||||
|
||||
|
||||
2023-05-27 07:51:19,204 - [INFO] - [E:10| 0]: Train Loss:0.00113, Val MRR:0.33331, wikidata12k_0.001
|
||||
2023-05-27 07:52:23,358 - [INFO] - [E:10| 100]: Train Loss:0.0011531, Val MRR:0.33331, wikidata12k_0.001
|
||||
2023-05-27 07:53:27,523 - [INFO] - [E:10| 200]: Train Loss:0.0011557, Val MRR:0.33331, wikidata12k_0.001
|
||||
2023-05-27 07:54:31,758 - [INFO] - [E:10| 300]: Train Loss:0.0011545, Val MRR:0.33331, wikidata12k_0.001
|
||||
2023-05-27 07:55:36,004 - [INFO] - [E:10| 400]: Train Loss:0.0011554, Val MRR:0.33331, wikidata12k_0.001
|
||||
2023-05-27 07:56:40,140 - [INFO] - [E:10| 500]: Train Loss:0.001154, Val MRR:0.33331, wikidata12k_0.001
|
||||
2023-05-27 07:57:44,301 - [INFO] - [E:10| 600]: Train Loss:0.0011525, Val MRR:0.33331, wikidata12k_0.001
|
||||
2023-05-27 07:58:48,517 - [INFO] - [E:10| 700]: Train Loss:0.0011538, Val MRR:0.33331, wikidata12k_0.001
|
||||
2023-05-27 07:59:52,698 - [INFO] - [E:10| 800]: Train Loss:0.0011536, Val MRR:0.33331, wikidata12k_0.001
|
||||
2023-05-27 08:00:56,912 - [INFO] - [E:10| 900]: Train Loss:0.0011541, Val MRR:0.33331, wikidata12k_0.001
|
||||
2023-05-27 08:02:01,143 - [INFO] - [E:10| 1000]: Train Loss:0.0011546, Val MRR:0.33331, wikidata12k_0.001
|
||||
2023-05-27 08:03:05,293 - [INFO] - [E:10| 1100]: Train Loss:0.0011542, Val MRR:0.33331, wikidata12k_0.001
|
||||
2023-05-27 08:04:09,471 - [INFO] - [E:10| 1200]: Train Loss:0.0011539, Val MRR:0.33331, wikidata12k_0.001
|
||||
2023-05-27 08:05:13,701 - [INFO] - [E:10| 1300]: Train Loss:0.0011531, Val MRR:0.33331, wikidata12k_0.001
|
||||
2023-05-27 08:06:17,887 - [INFO] - [E:10| 1400]: Train Loss:0.0011534, Val MRR:0.33331, wikidata12k_0.001
|
||||
2023-05-27 08:07:22,089 - [INFO] - [E:10| 1500]: Train Loss:0.0011546, Val MRR:0.33331, wikidata12k_0.001
|
||||
2023-05-27 08:08:26,239 - [INFO] - [E:10| 1600]: Train Loss:0.0011552, Val MRR:0.33331, wikidata12k_0.001
|
||||
2023-05-27 08:09:08,153 - [INFO] - [Epoch:10]: Training Loss:0.001156
|
||||
|
||||
2023-05-27 08:09:08,373 - [INFO] - [Valid, Tail_Batch Step 0] wikidata12k_0.001
|
||||
2023-05-27 08:09:30,456 - [INFO] - [Valid, Tail_Batch Step 100] wikidata12k_0.001
|
||||
2023-05-27 08:09:43,084 - [INFO] - [Valid, Head_Batch Step 0] wikidata12k_0.001
|
||||
2023-05-27 08:10:05,005 - [INFO] - [Valid, Head_Batch Step 100] wikidata12k_0.001
|
||||
2023-05-27 08:10:17,448 - [INFO] - [Evaluating Epoch 10 valid]:
|
||||
MRR: Tail : 0.45191, Head : 0.21626, Avg : 0.33409
|
||||
|
||||
2023-05-27 08:10:18,436 - [INFO] - [Epoch 10]: Training Loss: 0.0011556, Valid MRR: 0.33409,
|
||||
|
||||
|
||||
|
||||
2023-05-27 08:10:19,090 - [INFO] - [E:11| 0]: Train Loss:0.0011363, Val MRR:0.33409, wikidata12k_0.001
|
||||
2023-05-27 08:11:23,530 - [INFO] - [E:11| 100]: Train Loss:0.0011426, Val MRR:0.33409, wikidata12k_0.001
|
||||
2023-05-27 08:12:27,950 - [INFO] - [E:11| 200]: Train Loss:0.0011483, Val MRR:0.33409, wikidata12k_0.001
|
||||
2023-05-27 08:13:32,143 - [INFO] - [E:11| 300]: Train Loss:0.0011472, Val MRR:0.33409, wikidata12k_0.001
|
||||
2023-05-27 08:14:36,469 - [INFO] - [E:11| 400]: Train Loss:0.0011477, Val MRR:0.33409, wikidata12k_0.001
|
||||
2023-05-27 08:15:40,641 - [INFO] - [E:11| 500]: Train Loss:0.0011474, Val MRR:0.33409, wikidata12k_0.001
|
||||
2023-05-27 08:16:44,731 - [INFO] - [E:11| 600]: Train Loss:0.0011465, Val MRR:0.33409, wikidata12k_0.001
|
||||
2023-05-27 08:17:48,900 - [INFO] - [E:11| 700]: Train Loss:0.0011469, Val MRR:0.33409, wikidata12k_0.001
|
||||
2023-05-27 08:18:53,113 - [INFO] - [E:11| 800]: Train Loss:0.0011469, Val MRR:0.33409, wikidata12k_0.001
|
||||
2023-05-27 08:19:57,285 - [INFO] - [E:11| 900]: Train Loss:0.0011457, Val MRR:0.33409, wikidata12k_0.001
|
||||
2023-05-27 08:21:01,406 - [INFO] - [E:11| 1000]: Train Loss:0.0011445, Val MRR:0.33409, wikidata12k_0.001
|
||||
2023-05-27 08:22:05,596 - [INFO] - [E:11| 1100]: Train Loss:0.0011434, Val MRR:0.33409, wikidata12k_0.001
|
||||
2023-05-27 08:23:09,693 - [INFO] - [E:11| 1200]: Train Loss:0.0011431, Val MRR:0.33409, wikidata12k_0.001
|
||||
2023-05-27 08:24:13,830 - [INFO] - [E:11| 1300]: Train Loss:0.001143, Val MRR:0.33409, wikidata12k_0.001
|
||||
2023-05-27 08:25:18,076 - [INFO] - [E:11| 1400]: Train Loss:0.0011426, Val MRR:0.33409, wikidata12k_0.001
|
||||
2023-05-27 08:26:22,160 - [INFO] - [E:11| 1500]: Train Loss:0.0011422, Val MRR:0.33409, wikidata12k_0.001
|
||||
2023-05-27 08:27:26,373 - [INFO] - [E:11| 1600]: Train Loss:0.0011418, Val MRR:0.33409, wikidata12k_0.001
|
||||
2023-05-27 08:28:08,368 - [INFO] - [Epoch:11]: Training Loss:0.001142
|
||||
|
||||
2023-05-27 08:28:08,589 - [INFO] - [Valid, Tail_Batch Step 0] wikidata12k_0.001
|
||||
2023-05-27 08:28:30,301 - [INFO] - [Valid, Tail_Batch Step 100] wikidata12k_0.001
|
||||
2023-05-27 08:28:42,888 - [INFO] - [Valid, Head_Batch Step 0] wikidata12k_0.001
|
||||
2023-05-27 08:29:04,760 - [INFO] - [Valid, Head_Batch Step 100] wikidata12k_0.001
|
||||
2023-05-27 08:29:17,200 - [INFO] - [Evaluating Epoch 11 valid]:
|
||||
MRR: Tail : 0.4433, Head : 0.23916, Avg : 0.34123
|
||||
|
||||
2023-05-27 08:29:18,266 - [INFO] - [Epoch 11]: Training Loss: 0.0011416, Valid MRR: 0.34123,
|
||||
|
||||
|
||||
|
||||
2023-05-27 08:29:18,927 - [INFO] - [E:12| 0]: Train Loss:0.0010957, Val MRR:0.34123, wikidata12k_0.001
|
||||
2023-05-27 08:30:23,063 - [INFO] - [E:12| 100]: Train Loss:0.0011303, Val MRR:0.34123, wikidata12k_0.001
|
||||
2023-05-27 08:31:27,243 - [INFO] - [E:12| 200]: Train Loss:0.001132, Val MRR:0.34123, wikidata12k_0.001
|
||||
2023-05-27 08:32:31,360 - [INFO] - [E:12| 300]: Train Loss:0.0011321, Val MRR:0.34123, wikidata12k_0.001
|
||||
2023-05-27 08:33:35,484 - [INFO] - [E:12| 400]: Train Loss:0.0011313, Val MRR:0.34123, wikidata12k_0.001
|
||||
2023-05-27 08:34:39,656 - [INFO] - [E:12| 500]: Train Loss:0.0011302, Val MRR:0.34123, wikidata12k_0.001
|
||||
2023-05-27 08:35:43,783 - [INFO] - [E:12| 600]: Train Loss:0.0011318, Val MRR:0.34123, wikidata12k_0.001
|
||||
2023-05-27 08:36:47,900 - [INFO] - [E:12| 700]: Train Loss:0.0011316, Val MRR:0.34123, wikidata12k_0.001
|
||||
2023-05-27 08:37:52,082 - [INFO] - [E:12| 800]: Train Loss:0.0011323, Val MRR:0.34123, wikidata12k_0.001
|
||||
2023-05-27 08:38:56,174 - [INFO] - [E:12| 900]: Train Loss:0.001132, Val MRR:0.34123, wikidata12k_0.001
|
||||
2023-05-27 08:40:00,316 - [INFO] - [E:12| 1000]: Train Loss:0.0011317, Val MRR:0.34123, wikidata12k_0.001
|
||||
2023-05-27 08:41:04,530 - [INFO] - [E:12| 1100]: Train Loss:0.0011322, Val MRR:0.34123, wikidata12k_0.001
|
||||
2023-05-27 08:42:08,648 - [INFO] - [E:12| 1200]: Train Loss:0.0011318, Val MRR:0.34123, wikidata12k_0.001
|
||||
2023-05-27 08:43:12,819 - [INFO] - [E:12| 1300]: Train Loss:0.0011314, Val MRR:0.34123, wikidata12k_0.001
|
||||
2023-05-27 08:44:18,052 - [INFO] - [E:12| 1400]: Train Loss:0.0011312, Val MRR:0.34123, wikidata12k_0.001
|
@ -10,36 +10,15 @@ def extract_learning_curves(args):
|
||||
if len(paths) == 1 and os.path.isdir(paths[0]):
|
||||
paths = [os.path.join(paths[0], f) for f in os.listdir(paths[0]) if os.path.isfile(os.path.join(paths[0], f))]
|
||||
learning_curves = {}
|
||||
print(paths)
|
||||
for path in paths:
|
||||
print(path)
|
||||
learning_curve = []
|
||||
lines = open(path, 'r').readlines()
|
||||
last_epoch = -1
|
||||
stacked_epoch = -1
|
||||
max_epoch = -1
|
||||
for line in lines:
|
||||
matched = re.match(r'[0-9\- :,]*\[INFO\] - \[Epoch ([0-9]+)\].*Valid MRR: ([0-9\.]+).*', line)
|
||||
# matched = re.match(r'\tMRR: Tail : [0-9\.]+, Head : [0-9\.]+, Avg : ([0-9\.]+)', line)
|
||||
if matched:
|
||||
this_epoch = int(matched.group(1))
|
||||
if (this_epoch > max_epoch):
|
||||
learning_curve.append(float(matched.group(2)))
|
||||
max_epoch = this_epoch
|
||||
stacked_epoch = this_epoch
|
||||
elif (this_epoch < max_epoch and this_epoch > last_epoch):
|
||||
last_epoch = this_epoch
|
||||
max_epoch = stacked_epoch + 1 + this_epoch
|
||||
learning_curve.append(float(matched.group(2)))
|
||||
if max_epoch >= args.num_epochs:
|
||||
if int(matched.group(1)) >= args.num_epochs:
|
||||
break
|
||||
# if matched:
|
||||
# max_epoch += 1
|
||||
# learning_curve.append(float(matched.group(1)))
|
||||
# if max_epoch >= args.num_epochs:
|
||||
# break
|
||||
while len(learning_curve) < args.num_epochs:
|
||||
learning_curve.append(learning_curve[-1])
|
||||
learning_curves[os.path.basename(path)] = learning_curve
|
||||
return learning_curves
|
||||
|
||||
@ -53,7 +32,7 @@ def draw_learning_curves(args, learning_curves):
|
||||
label = name
|
||||
plt.plot(epochs, learning_curves[name], label = label)
|
||||
plt.xlabel("Epochs")
|
||||
plt.ylabel("Best Valid MRR")
|
||||
plt.ylabel("MRR")
|
||||
plt.legend(title=args.legend_title)
|
||||
plt.savefig(os.path.join(args.out_path, str(round(datetime.utcnow().timestamp() * 1000)) + '.' + args.fig_filetype))
|
||||
|
||||
|
75
wikidata12k_at.out
Normal file
75
wikidata12k_at.out
Normal file
@ -0,0 +1,75 @@
|
||||
nohup: ignoring input
|
||||
2023-05-27 08:51:48,116 - [INFO] - {'dataset': 'wikidata12k', 'name': 'wikidata12k_at', 'gpu': '3', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': False}
|
||||
{'batch_size': 128,
|
||||
'bias': False,
|
||||
'config_dir': './config/',
|
||||
'dataset': 'wikidata12k',
|
||||
'drop': 0.0,
|
||||
'drop_path': 0.0,
|
||||
'embed_dim': 400,
|
||||
'ent_vec_dim': 400,
|
||||
'expansion_factor': 4,
|
||||
'expansion_factor_token': 0.5,
|
||||
'feat_drop': 0.2,
|
||||
'filt_h': 1,
|
||||
'filt_w': 9,
|
||||
'form': 'plain',
|
||||
'gpu': '3',
|
||||
'grid_search': False,
|
||||
'hid_drop': 0.5,
|
||||
'image_h': 128,
|
||||
'image_w': 128,
|
||||
'in_channels': 1,
|
||||
'inp_drop': 0.2,
|
||||
'k_h': 20,
|
||||
'k_w': 10,
|
||||
'ker_sz': 9,
|
||||
'l2': 0.0,
|
||||
'lbl_smooth': 0.1,
|
||||
'log_dir': './log/',
|
||||
'lr': 0.0001,
|
||||
'max_epochs': 500,
|
||||
'mixer_depth': 16,
|
||||
'mixer_dim': 256,
|
||||
'mixer_dropout': 0.2,
|
||||
'name': 'wikidata12k_at',
|
||||
'neg_num': 1000,
|
||||
'num_filt': 96,
|
||||
'num_workers': 0,
|
||||
'opt': 'adam',
|
||||
'out_channels': 32,
|
||||
'patch_size': 8,
|
||||
'perm': 1,
|
||||
'rel_vec_dim': 400,
|
||||
'restore': False,
|
||||
'seed': 42,
|
||||
'test_only': False,
|
||||
'train_strategy': 'one_to_n'}
|
||||
Traceback (most recent call last):
|
||||
File "main.py", line 693, in <module>
|
||||
model.fit()
|
||||
File "main.py", line 492, in fit
|
||||
train_loss = self.run_epoch(epoch)
|
||||
File "main.py", line 458, in run_epoch
|
||||
pred = self.model.forward(sub, rel, neg_ent, self.p.train_strategy)
|
||||
File "/root/kg_374/Thesis_split/models.py", line 558, in forward
|
||||
z = self.forward_tokens(z)
|
||||
File "/root/kg_374/Thesis_split/models.py", line 547, in forward_tokens
|
||||
x = block(x)
|
||||
File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
|
||||
return forward_call(*input, **kwargs)
|
||||
File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/torch/nn/modules/container.py", line 139, in forward
|
||||
input = module(input)
|
||||
File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
|
||||
return forward_call(*input, **kwargs)
|
||||
File "/root/kg_374/Thesis_split/models.py", line 757, in forward
|
||||
* self.mlp(self.norm2(x)))
|
||||
File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
|
||||
return forward_call(*input, **kwargs)
|
||||
File "/root/kg_374/Thesis_split/models.py", line 821, in forward
|
||||
x = self.act(x)
|
||||
File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
|
||||
return forward_call(*input, **kwargs)
|
||||
File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/torch/nn/modules/activation.py", line 681, in forward
|
||||
return F.gelu(input, approximate=self.approximate)
|
||||
RuntimeError: CUDA out of memory. Tried to allocate 800.00 MiB (GPU 0; 31.72 GiB total capacity; 10.92 GiB already allocated; 669.94 MiB free; 10.98 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
Reference in New Issue
Block a user