Compare commits
16 Commits
Author | SHA1 | Date | |
---|---|---|---|
47bc661a91 | |||
3b6db89be1 | |||
352f5f9da9 | |||
b9273b6696 | |||
d0e4630dd6 | |||
08a3780ba6 | |||
6fc56b920f | |||
fddea4769f | |||
d9209a7ef1 | |||
0f986d7517 | |||
4daa40527b | |||
541c4fa2b3 | |||
68a94bd1e2 | |||
b01e504874 | |||
23c44d3582 | |||
41a5c7b05a |
@ -12407,233 +12407,3 @@
|
||||
12406 Carry out roadside bombing[65]
|
||||
12407 Appeal for target to allow international involvement (non-mediation)[1]
|
||||
12408 Reject request for change in leadership[179]
|
||||
12409 Criticize or denounce
|
||||
12410 Express intent to meet or negotiate
|
||||
12411 Consult
|
||||
12412 Make an appeal or request
|
||||
12413 Abduct, hijack, or take hostage
|
||||
12414 Praise or endorse
|
||||
12415 Engage in negotiation
|
||||
12416 Use unconventional violence
|
||||
12417 Make statement
|
||||
12418 Arrest, detain, or charge with legal action
|
||||
12419 Use conventional military force
|
||||
12420 Complain officially
|
||||
12421 Impose administrative sanctions
|
||||
12422 Express intent to cooperate
|
||||
12423 Make a visit
|
||||
12424 Appeal for de-escalation of military engagement
|
||||
12425 Sign formal agreement
|
||||
12426 Attempt to assassinate
|
||||
12427 Host a visit
|
||||
12428 Increase military alert status
|
||||
12429 Impose embargo, boycott, or sanctions
|
||||
12430 Provide economic aid
|
||||
12431 Demonstrate or rally
|
||||
12432 Express intent to engage in diplomatic cooperation (such as policy support)
|
||||
12433 Appeal for intelligence
|
||||
12434 Demand
|
||||
12435 Carry out suicide bombing
|
||||
12436 Threaten
|
||||
12437 Express intent to provide material aid
|
||||
12438 Grant diplomatic recognition
|
||||
12439 Meet at a 'third' location
|
||||
12440 Accuse
|
||||
12441 Investigate
|
||||
12442 Reject
|
||||
12443 Appeal for diplomatic cooperation (such as policy support)
|
||||
12444 Engage in symbolic act
|
||||
12445 Defy norms, law
|
||||
12446 Consider policy option
|
||||
12447 Provide aid
|
||||
12448 Sexually assault
|
||||
12449 Make empathetic comment
|
||||
12450 Bring lawsuit against
|
||||
12451 Impose blockade, restrict movement
|
||||
12452 Make pessimistic comment
|
||||
12453 Protest violently, riot
|
||||
12454 Reduce or break diplomatic relations
|
||||
12455 Grant asylum
|
||||
12456 Engage in diplomatic cooperation
|
||||
12457 Make optimistic comment
|
||||
12458 Torture
|
||||
12459 Refuse to yield
|
||||
12460 Appeal for change in leadership
|
||||
12461 Cooperate militarily
|
||||
12462 Mobilize or increase armed forces
|
||||
12463 fight with small arms and light weapons
|
||||
12464 Ease administrative sanctions
|
||||
12465 Appeal for political reform
|
||||
12466 Return, release person(s)
|
||||
12467 Discuss by telephone
|
||||
12468 Demonstrate for leadership change
|
||||
12469 Impose restrictions on political freedoms
|
||||
12470 Reduce relations
|
||||
12471 Investigate crime, corruption
|
||||
12472 Engage in material cooperation
|
||||
12473 Appeal to others to meet or negotiate
|
||||
12474 Provide humanitarian aid
|
||||
12475 Use tactics of violent repression
|
||||
12476 Occupy territory
|
||||
12477 Demand humanitarian aid
|
||||
12478 Threaten non-force
|
||||
12479 Express intent to cooperate economically
|
||||
12480 Conduct suicide, car, or other non-military bombing
|
||||
12481 Demand diplomatic cooperation (such as policy support)
|
||||
12482 Demand meeting, negotiation
|
||||
12483 Deny responsibility
|
||||
12484 Express intent to change institutions, regime
|
||||
12485 Give ultimatum
|
||||
12486 Appeal for judicial cooperation
|
||||
12487 Rally support on behalf of
|
||||
12488 Obstruct passage, block
|
||||
12489 Share intelligence or information
|
||||
12490 Expel or deport individuals
|
||||
12491 Confiscate property
|
||||
12492 Accuse of aggression
|
||||
12493 Physically assault
|
||||
12494 Retreat or surrender militarily
|
||||
12495 Veto
|
||||
12496 Kill by physical assault
|
||||
12497 Assassinate
|
||||
12498 Appeal for change in institutions, regime
|
||||
12499 Forgive
|
||||
12500 Reject proposal to meet, discuss, or negotiate
|
||||
12501 Express intent to provide humanitarian aid
|
||||
12502 Appeal for release of persons or property
|
||||
12503 Acknowledge or claim responsibility
|
||||
12504 Ease economic sanctions, boycott, embargo
|
||||
12505 Express intent to cooperate militarily
|
||||
12506 Cooperate economically
|
||||
12507 Express intent to provide economic aid
|
||||
12508 Mobilize or increase police power
|
||||
12509 Employ aerial weapons
|
||||
12510 Accuse of human rights abuses
|
||||
12511 Conduct strike or boycott
|
||||
12512 Appeal for policy change
|
||||
12513 Demonstrate military or police power
|
||||
12514 Provide military aid
|
||||
12515 Reject plan, agreement to settle dispute
|
||||
12516 Yield
|
||||
12517 Appeal for easing of administrative sanctions
|
||||
12518 Mediate
|
||||
12519 Apologize
|
||||
12520 Express intent to release persons or property
|
||||
12521 Express intent to de-escalate military engagement
|
||||
12522 Accede to demands for rights
|
||||
12523 Demand economic aid
|
||||
12524 Impose state of emergency or martial law
|
||||
12525 Receive deployment of peacekeepers
|
||||
12526 Demand de-escalation of military engagement
|
||||
12527 Declare truce, ceasefire
|
||||
12528 Reduce or stop humanitarian assistance
|
||||
12529 Appeal to others to settle dispute
|
||||
12530 Reject request for military aid
|
||||
12531 Threaten with political dissent, protest
|
||||
12532 Appeal to engage in or accept mediation
|
||||
12533 Express intent to ease economic sanctions, boycott, or embargo
|
||||
12534 Coerce
|
||||
12535 fight with artillery and tanks
|
||||
12536 Express intent to cooperate on intelligence
|
||||
12537 Express intent to settle dispute
|
||||
12538 Express accord
|
||||
12539 Decline comment
|
||||
12540 Rally opposition against
|
||||
12541 Halt negotiations
|
||||
12542 Demand that target yields
|
||||
12543 Appeal for military aid
|
||||
12544 Threaten with military force
|
||||
12545 Express intent to provide military protection or peacekeeping
|
||||
12546 Threaten with sanctions, boycott, embargo
|
||||
12547 Express intent to provide military aid
|
||||
12548 Demand change in leadership
|
||||
12549 Appeal for economic aid
|
||||
12550 Refuse to de-escalate military engagement
|
||||
12551 Refuse to release persons or property
|
||||
12552 Increase police alert status
|
||||
12553 Return, release property
|
||||
12554 Ease military blockade
|
||||
12555 Appeal for material cooperation
|
||||
12556 Express intent to cooperate on judicial matters
|
||||
12557 Appeal for economic cooperation
|
||||
12558 Demand settling of dispute
|
||||
12559 Accuse of crime, corruption
|
||||
12560 Defend verbally
|
||||
12561 Provide military protection or peacekeeping
|
||||
12562 Accuse of espionage, treason
|
||||
12563 Seize or damage property
|
||||
12564 Accede to requests or demands for political reform
|
||||
12565 Appeal for easing of economic sanctions, boycott, or embargo
|
||||
12566 Threaten to reduce or stop aid
|
||||
12567 Engage in judicial cooperation
|
||||
12568 Appeal to yield
|
||||
12569 Demand military aid
|
||||
12570 Refuse to ease administrative sanctions
|
||||
12571 Demand release of persons or property
|
||||
12572 Accede to demands for change in leadership
|
||||
12573 Appeal for humanitarian aid
|
||||
12574 Threaten with repression
|
||||
12575 Demand change in institutions, regime
|
||||
12576 Demonstrate for policy change
|
||||
12577 Appeal for aid
|
||||
12578 Appeal for rights
|
||||
12579 Engage in violent protest for rights
|
||||
12580 Express intent to mediate
|
||||
12581 Expel or withdraw peacekeepers
|
||||
12582 Appeal for military protection or peacekeeping
|
||||
12583 Engage in mass killings
|
||||
12584 Accuse of war crimes
|
||||
12585 Reject military cooperation
|
||||
12586 Threaten to halt negotiations
|
||||
12587 Ban political parties or politicians
|
||||
12588 Express intent to change leadership
|
||||
12589 Demand material cooperation
|
||||
12590 Express intent to institute political reform
|
||||
12591 Demand easing of administrative sanctions
|
||||
12592 Express intent to engage in material cooperation
|
||||
12593 Reduce or stop economic assistance
|
||||
12594 Express intent to ease administrative sanctions
|
||||
12595 Demand intelligence cooperation
|
||||
12596 Ease curfew
|
||||
12597 Receive inspectors
|
||||
12598 Demand rights
|
||||
12599 Demand political reform
|
||||
12600 Demand judicial cooperation
|
||||
12601 Engage in political dissent
|
||||
12602 Detonate nuclear weapons
|
||||
12603 Violate ceasefire
|
||||
12604 Express intent to accept mediation
|
||||
12605 Refuse to ease economic sanctions, boycott, or embargo
|
||||
12606 Demand mediation
|
||||
12607 Obstruct passage to demand leadership change
|
||||
12608 Express intent to yield
|
||||
12609 Conduct hunger strike
|
||||
12610 Threaten to halt mediation
|
||||
12611 Reject judicial cooperation
|
||||
12612 Reduce or stop military assistance
|
||||
12613 Ease political dissent
|
||||
12614 Threaten to reduce or break relations
|
||||
12615 Demobilize armed forces
|
||||
12616 Use as human shield
|
||||
12617 Demand policy change
|
||||
12618 Accede to demands for change in institutions, regime
|
||||
12619 Reject economic cooperation
|
||||
12620 Reject material cooperation
|
||||
12621 Halt mediation
|
||||
12622 Accede to demands for change in policy
|
||||
12623 Investigate war crimes
|
||||
12624 Threaten with administrative sanctions
|
||||
12625 Reduce or stop material aid
|
||||
12626 Destroy property
|
||||
12627 Express intent to change policy
|
||||
12628 Use chemical, biological, or radiological weapons
|
||||
12629 Reject request for military protection or peacekeeping
|
||||
12630 Demand material aid
|
||||
12631 Engage in mass expulsion
|
||||
12632 Investigate human rights abuses
|
||||
12633 Carry out car bombing
|
||||
12634 Expel or withdraw
|
||||
12635 Ease state of emergency or martial law
|
||||
12636 Carry out roadside bombing
|
||||
12637 Appeal for target to allow international involvement (non-mediation)
|
||||
12638 Reject request for change in leadership
|
@ -421,27 +421,3 @@
|
||||
420 P551[36-69]
|
||||
421 P579[0-15]
|
||||
422 P102[54-62]
|
||||
423 P131
|
||||
424 P1435
|
||||
425 P39
|
||||
426 P54
|
||||
427 P31
|
||||
428 P463
|
||||
429 P512
|
||||
430 P190
|
||||
431 P150
|
||||
432 P1376
|
||||
433 P166
|
||||
434 P2962
|
||||
435 P108
|
||||
436 P17
|
||||
437 P793
|
||||
438 P69
|
||||
439 P26
|
||||
440 P579
|
||||
441 P1411
|
||||
442 P6
|
||||
443 P1346
|
||||
444 P102
|
||||
445 P27
|
||||
446 P551
|
||||
|
53
main.py
53
main.py
@ -91,11 +91,9 @@ class Main(object):
|
||||
for line in open('./data/{}/{}'.format(self.p.dataset, "relations.dict")):
|
||||
id, rel = map(str.lower, line.strip().split('\t'))
|
||||
self.rel2id[rel] = int(id)
|
||||
rel_set.add(rel)
|
||||
|
||||
# self.ent2id = {ent: idx for idx, ent in enumerate(ent_set)}
|
||||
# self.rel2id = {rel: idx for idx, rel in enumerate(rel_set)}
|
||||
|
||||
self.rel2id.update({rel+'_reverse': idx+len(self.rel2id)
|
||||
for idx, rel in enumerate(rel_set)})
|
||||
|
||||
@ -113,48 +111,47 @@ class Main(object):
|
||||
for split in ['train', 'test', 'valid']:
|
||||
for line in open('./data/{}/{}.txt'.format(self.p.dataset, split)):
|
||||
sub, rel, obj, *_ = map(str.lower, line.replace('\xa0', '').strip().split('\t'))
|
||||
nt_rel = rel.split('[')[0]
|
||||
sub, rel, obj, nt_rel = self.ent2id[sub], self.rel2id[rel], self.ent2id[obj], self.rel2id[nt_rel]
|
||||
self.data[split].append((sub, rel, obj, nt_rel))
|
||||
sub, rel, obj = self.ent2id[sub], self.rel2id[rel], self.ent2id[obj]
|
||||
self.data[split].append((sub, rel, obj))
|
||||
|
||||
if split == 'train':
|
||||
sr2o[(sub, rel, nt_rel)].add(obj)
|
||||
sr2o[(obj, rel+self.p.num_rel, nt_rel + self.p.num_rel)].add(sub)
|
||||
sr2o[(sub, rel)].add(obj)
|
||||
sr2o[(obj, rel+self.p.num_rel)].add(sub)
|
||||
self.data = dict(self.data)
|
||||
|
||||
self.sr2o = {k: list(v) for k, v in sr2o.items()}
|
||||
for split in ['test', 'valid']:
|
||||
for sub, rel, obj, nt_rel in self.data[split]:
|
||||
sr2o[(sub, rel, nt_rel)].add(obj)
|
||||
sr2o[(obj, rel+self.p.num_rel, nt_rel + self.p.num_rel)].add(sub)
|
||||
for sub, rel, obj in self.data[split]:
|
||||
sr2o[(sub, rel)].add(obj)
|
||||
sr2o[(obj, rel+self.p.num_rel)].add(sub)
|
||||
|
||||
self.sr2o_all = {k: list(v) for k, v in sr2o.items()}
|
||||
|
||||
self.triples = ddict(list)
|
||||
|
||||
if self.p.train_strategy == 'one_to_n':
|
||||
for (sub, rel, nt_rel), obj in self.sr2o.items():
|
||||
for (sub, rel), obj in self.sr2o.items():
|
||||
self.triples['train'].append(
|
||||
{'triple': (sub, rel, -1, nt_rel), 'label': self.sr2o[(sub, rel, nt_rel)], 'sub_samp': 1})
|
||||
{'triple': (sub, rel, -1), 'label': self.sr2o[(sub, rel)], 'sub_samp': 1})
|
||||
else:
|
||||
for sub, rel, obj, nt_rel in self.data['train']:
|
||||
for sub, rel, obj in self.data['train']:
|
||||
rel_inv = rel + self.p.num_rel
|
||||
sub_samp = len(self.sr2o[(sub, rel, nt_rel)]) + \
|
||||
len(self.sr2o[(obj, rel_inv, nt_rel + self.p.num_rel)])
|
||||
sub_samp = len(self.sr2o[(sub, rel)]) + \
|
||||
len(self.sr2o[(obj, rel_inv)])
|
||||
sub_samp = np.sqrt(1/sub_samp)
|
||||
|
||||
self.triples['train'].append({'triple': (
|
||||
sub, rel, obj, nt_rel), 'label': self.sr2o[(sub, rel, nt_rel)], 'sub_samp': sub_samp})
|
||||
sub, rel, obj), 'label': self.sr2o[(sub, rel)], 'sub_samp': sub_samp})
|
||||
self.triples['train'].append({'triple': (
|
||||
obj, rel_inv, sub, nt_rel + self.p.num_rel), 'label': self.sr2o[(obj, rel_inv, nt_rel + self.p.num_rel)], 'sub_samp': sub_samp})
|
||||
obj, rel_inv, sub), 'label': self.sr2o[(obj, rel_inv)], 'sub_samp': sub_samp})
|
||||
|
||||
for split in ['test', 'valid']:
|
||||
for sub, rel, obj, nt_rel in self.data[split]:
|
||||
for sub, rel, obj in self.data[split]:
|
||||
rel_inv = rel + self.p.num_rel
|
||||
self.triples['{}_{}'.format(split, 'tail')].append(
|
||||
{'triple': (sub, rel, obj, nt_rel), 'label': self.sr2o_all[(sub, rel, nt_rel)]})
|
||||
{'triple': (sub, rel, obj), 'label': self.sr2o_all[(sub, rel)]})
|
||||
self.triples['{}_{}'.format(split, 'head')].append(
|
||||
{'triple': (obj, rel_inv, sub, nt_rel + self.p.num_rel), 'label': self.sr2o_all[(obj, rel_inv, nt_rel + self.p.num_rel)]})
|
||||
{'triple': (obj, rel_inv, sub), 'label': self.sr2o_all[(obj, rel_inv)]})
|
||||
|
||||
self.triples = dict(self.triples)
|
||||
|
||||
@ -278,13 +275,13 @@ class Main(object):
|
||||
if self.p.train_strategy == 'one_to_x':
|
||||
triple, label, neg_ent, sub_samp = [
|
||||
_.to(self.device) for _ in batch]
|
||||
return triple[:, 0], triple[:, 1], triple[:, 2], triple[:, 3], label, neg_ent, sub_samp
|
||||
return triple[:, 0], triple[:, 1], triple[:, 2], label, neg_ent, sub_samp
|
||||
else:
|
||||
triple, label = [_.to(self.device) for _ in batch]
|
||||
return triple[:, 0], triple[:, 1], triple[:, 2], triple[:, 3], label, None, None
|
||||
return triple[:, 0], triple[:, 1], triple[:, 2], label, None, None
|
||||
else:
|
||||
triple, label = [_.to(self.device) for _ in batch]
|
||||
return triple[:, 0], triple[:, 1], triple[:, 2], triple[:, 3], label
|
||||
return triple[:, 0], triple[:, 1], triple[:, 2], label
|
||||
|
||||
def save_model(self, save_path):
|
||||
"""
|
||||
@ -419,8 +416,8 @@ class Main(object):
|
||||
obj_pred = []
|
||||
obj_pred_score = []
|
||||
for step, batch in enumerate(train_iter):
|
||||
sub, rel, obj, nt_rel, label = self.read_batch(batch, split)
|
||||
pred = self.model.forward(sub, rel, nt_rel, None, 'one_to_n')
|
||||
sub, rel, obj, label = self.read_batch(batch, split)
|
||||
pred = self.model.forward(sub, rel, None, 'one_to_n')
|
||||
b_range = torch.arange(pred.size()[0], device=self.device)
|
||||
target_pred = pred[b_range, obj]
|
||||
pred = torch.where(label.byte(), torch.zeros_like(pred), pred)
|
||||
@ -477,10 +474,10 @@ class Main(object):
|
||||
for step, batch in enumerate(train_iter):
|
||||
self.optimizer.zero_grad()
|
||||
|
||||
sub, rel, obj, nt_rel, label, neg_ent, sub_samp = self.read_batch(
|
||||
sub, rel, obj, label, neg_ent, sub_samp = self.read_batch(
|
||||
batch, 'train')
|
||||
|
||||
pred = self.model.forward(sub, rel, nt_rel, neg_ent, self.p.train_strategy)
|
||||
pred = self.model.forward(sub, rel, neg_ent, self.p.train_strategy)
|
||||
loss = self.model.loss(pred, label, sub_samp)
|
||||
|
||||
loss.backward()
|
||||
@ -693,7 +690,7 @@ if __name__ == "__main__":
|
||||
collate_fn=TrainDataset.collate_fn
|
||||
))
|
||||
for step, batch in enumerate(dataloader):
|
||||
sub, rel, obj, nt_rel, label, neg_ent, sub_samp = model.read_batch(
|
||||
sub, rel, obj, label, neg_ent, sub_samp = model.read_batch(
|
||||
batch, 'train')
|
||||
|
||||
if (neg_ent is None):
|
||||
|
363
models.py
363
models.py
@ -10,6 +10,8 @@ from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
||||
from timm.models.layers import DropPath, trunc_normal_
|
||||
from timm.models.registry import register_model
|
||||
from timm.layers.helpers import to_2tuple
|
||||
from typing import *
|
||||
import math
|
||||
|
||||
|
||||
class ConvE(torch.nn.Module):
|
||||
@ -466,10 +468,6 @@ class FouriER(torch.nn.Module):
|
||||
self.p.ent_vec_dim, image_h*image_w)
|
||||
torch.nn.init.xavier_normal_(self.ent_fusion.weight)
|
||||
|
||||
self.ent_attn = torch.nn.Linear(
|
||||
128, 128)
|
||||
torch.nn.init.xavier_normal_(self.ent_attn.weight)
|
||||
|
||||
self.rel_fusion = torch.nn.Linear(
|
||||
self.p.rel_vec_dim, image_h*image_w)
|
||||
torch.nn.init.xavier_normal_(self.rel_fusion.weight)
|
||||
@ -530,6 +528,22 @@ class FouriER(torch.nn.Module):
|
||||
|
||||
self.network = nn.ModuleList(network)
|
||||
self.norm = norm_layer(embed_dims[-1])
|
||||
self.graph_type = 'Spatial'
|
||||
N = (image_h // patch_size)**2
|
||||
if self.graph_type in ["Spatial", "Mixed"]:
|
||||
# Create a range tensor of node indices
|
||||
indices = torch.arange(N)
|
||||
# Reshape the indices tensor to create a grid of row and column indices
|
||||
row_indices = indices.view(-1, 1).expand(-1, N)
|
||||
col_indices = indices.view(1, -1).expand(N, -1)
|
||||
# Compute the adjacency matrix
|
||||
row1, col1 = row_indices // int(math.sqrt(N)), row_indices % int(math.sqrt(N))
|
||||
row2, col2 = col_indices // int(math.sqrt(N)), col_indices % int(math.sqrt(N))
|
||||
graph = ((abs(row1 - row2) <= 1).float() * (abs(col1 - col2) <= 1).float())
|
||||
graph = graph - torch.eye(N)
|
||||
self.spatial_graph = graph.cuda() # comment .to("cuda") if the environment is cpu
|
||||
self.class_token = False
|
||||
self.token_scale = False
|
||||
self.head = nn.Linear(
|
||||
embed_dims[-1], num_classes) if num_classes > 0 \
|
||||
else nn.Identity()
|
||||
@ -547,19 +561,49 @@ class FouriER(torch.nn.Module):
|
||||
|
||||
def forward_tokens(self, x):
|
||||
outs = []
|
||||
B, C, H, W = x.shape
|
||||
N = H*W
|
||||
if self.graph_type in ["Semantic", "Mixed"]:
|
||||
# Generate the semantic graph w.r.t. the cosine similarity between tokens
|
||||
# Compute cosine similarity
|
||||
if self.class_token:
|
||||
x_normed = x[:, 1:] / x[:, 1:].norm(dim=-1, keepdim=True)
|
||||
else:
|
||||
x_normed = x / x.norm(dim=-1, keepdim=True)
|
||||
x_cossim = x_normed @ x_normed.transpose(-1, -2)
|
||||
threshold = torch.kthvalue(x_cossim, N-1-self.num_neighbours, dim=-1, keepdim=True)[0] # B,H,1,1
|
||||
semantic_graph = torch.where(x_cossim>=threshold, 1.0, 0.0)
|
||||
if self.class_token:
|
||||
semantic_graph = semantic_graph - torch.eye(N-1, device=semantic_graph.device).unsqueeze(0)
|
||||
else:
|
||||
semantic_graph = semantic_graph - torch.eye(N, device=semantic_graph.device).unsqueeze(0)
|
||||
|
||||
if self.graph_type == "None":
|
||||
graph = None
|
||||
else:
|
||||
if self.graph_type == "Spatial":
|
||||
graph = self.spatial_graph.unsqueeze(0).expand(B,-1,-1)#.to(x.device)
|
||||
elif self.graph_type == "Semantic":
|
||||
graph = semantic_graph
|
||||
elif self.graph_type == "Mixed":
|
||||
# Integrate the spatial graph and semantic graph
|
||||
spatial_graph = self.spatial_graph.unsqueeze(0).expand(B,-1,-1).to(x.device)
|
||||
graph = torch.bitwise_or(semantic_graph.int(), spatial_graph.int()).float()
|
||||
|
||||
# Symmetrically normalize the graph
|
||||
degree = graph.sum(-1) # B, N
|
||||
degree = torch.diag_embed(degree**(-1/2))
|
||||
graph = degree @ graph @ degree
|
||||
|
||||
for idx, block in enumerate(self.network):
|
||||
try:
|
||||
x = block(x, graph)
|
||||
except:
|
||||
x = block(x)
|
||||
# output only the features of last layer for image classification
|
||||
return x
|
||||
|
||||
def fuse_attention(self, s_embedding, l_embedding):
|
||||
w1 = self.ent_attn(torch.tanh(s_embedding))
|
||||
w2 = self.ent_attn(torch.tanh(l_embedding))
|
||||
aff = F.softmax(torch.cat((w1,w2),1), 1)
|
||||
en_embedding = aff[:,0].unsqueeze(1) * s_embedding + aff[:, 1].unsqueeze(1) * l_embedding
|
||||
return en_embedding
|
||||
|
||||
def forward(self, sub, rel, nt_rel, neg_ents, strategy='one_to_x'):
|
||||
def forward(self, sub, rel, neg_ents, strategy='one_to_x'):
|
||||
sub_emb = self.ent_fusion(self.ent_embed(sub))
|
||||
rel_emb = self.rel_fusion(self.rel_embed(rel))
|
||||
comb_emb = torch.stack([sub_emb.view(-1, self.p.image_h, self.p.image_w), rel_emb.view(-1, self.p.image_h, self.p.image_w)], dim=1)
|
||||
@ -568,17 +612,6 @@ class FouriER(torch.nn.Module):
|
||||
z = self.forward_embeddings(y)
|
||||
z = self.forward_tokens(z)
|
||||
z = z.mean([-2, -1])
|
||||
|
||||
nt_rel_emb = self.rel_fusion(self.rel_embed(nt_rel))
|
||||
comb_emb_1 = torch.stack([sub_emb.view(-1, self.p.image_h, self.p.image_w), nt_rel_emb.view(-1, self.p.image_h, self.p.image_w)], dim=1)
|
||||
y_1 = comb_emb_1.view(-1, 2, self.p.image_h, self.p.image_w)
|
||||
y_1 = self.bn0(y_1)
|
||||
z_1 = self.forward_embeddings(y_1)
|
||||
z_1 = self.forward_tokens(z_1)
|
||||
z_1 = z_1.mean([-2, -1])
|
||||
|
||||
z = self.fuse_attention(z, z_1)
|
||||
|
||||
z = self.norm(z)
|
||||
x = self.head(z)
|
||||
x = self.hidden_drop(x)
|
||||
@ -725,7 +758,7 @@ def basic_blocks(dim, index, layers,
|
||||
use_layer_scale=use_layer_scale,
|
||||
layer_scale_init_value=layer_scale_init_value,
|
||||
))
|
||||
blocks = nn.Sequential(*blocks)
|
||||
blocks = SeqModel(*blocks)
|
||||
|
||||
return blocks
|
||||
|
||||
@ -890,6 +923,279 @@ def window_reverse(windows, window_size, H, W):
|
||||
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, -1, H, W)
|
||||
return x
|
||||
|
||||
class SeqModel(nn.Sequential):
|
||||
def forward(self, *inputs):
|
||||
for module in self._modules.values():
|
||||
if type(inputs) == tuple:
|
||||
inputs = module(*inputs)
|
||||
else:
|
||||
inputs = module(inputs)
|
||||
return inputs
|
||||
|
||||
def propagate(x: torch.Tensor, weight: torch.Tensor,
|
||||
index_kept: torch.Tensor, index_prop: torch.Tensor,
|
||||
standard: str = "None", alpha: Optional[float] = 0,
|
||||
token_scales: Optional[torch.Tensor] = None,
|
||||
cls_token=True):
|
||||
"""
|
||||
Propagate tokens based on the selection results.
|
||||
================================================
|
||||
Args:
|
||||
- x: Tensor([B, N, C]): the feature map of N tokens, including the [CLS] token.
|
||||
|
||||
- weight: Tensor([B, N-1, N-1]): the weight of each token propagated to the other tokens,
|
||||
excluding the [CLS] token. weight could be a pre-defined
|
||||
graph of the current feature map (by default) or the
|
||||
attention map (need to manually modify the Block Module).
|
||||
|
||||
- index_kept: Tensor([B, N-1-num_prop]): the index of kept image tokens in the feature map X
|
||||
|
||||
- index_prop: Tensor([B, num_prop]): the index of propagated image tokens in the feature map X
|
||||
|
||||
- standard: str: the method applied to propagate the tokens, including "None", "Mean" and
|
||||
"GraphProp"
|
||||
|
||||
- alpha: float: the coefficient of propagated features
|
||||
|
||||
- token_scales: Tensor([B, N]): the scale of tokens, including the [CLS] token. token_scales
|
||||
is None by default. If it is not None, then token_scales
|
||||
represents the scales of each token and should sum up to N.
|
||||
|
||||
Return:
|
||||
- x: Tensor([B, N-1-num_prop, C]): the feature map after propagation
|
||||
|
||||
- weight: Tensor([B, N-1-num_prop, N-1-num_prop]): the graph of feature map after propagation
|
||||
|
||||
- token_scales: Tensor([B, N-1-num_prop]): the scale of tokens after propagation
|
||||
"""
|
||||
|
||||
B, N, C = x.shape
|
||||
|
||||
# Step 1: divide tokens
|
||||
if cls_token:
|
||||
x_cls = x[:, 0:1] # B, 1, C
|
||||
x_kept = x.gather(dim=1, index=index_kept.unsqueeze(-1).expand(-1,-1,C)) # B, N-1-num_prop, C
|
||||
x_prop = x.gather(dim=1, index=index_prop.unsqueeze(-1).expand(-1,-1,C)) # B, num_prop, C
|
||||
|
||||
# Step 2: divide token_scales if it is not None
|
||||
if token_scales is not None:
|
||||
if cls_token:
|
||||
token_scales_cls = token_scales[:, 0:1] # B, 1
|
||||
token_scales_kept = token_scales.gather(dim=1, index=index_kept) # B, N-1-num_prop
|
||||
token_scales_prop = token_scales.gather(dim=1, index=index_prop) # B, num_prop
|
||||
|
||||
# Step 3: propagate tokens
|
||||
if standard == "None":
|
||||
"""
|
||||
No further propagation
|
||||
"""
|
||||
pass
|
||||
|
||||
elif standard == "Mean":
|
||||
"""
|
||||
Calculate the mean of all the propagated tokens,
|
||||
and concatenate the result token back to kept tokens.
|
||||
"""
|
||||
# naive average
|
||||
x_prop = x_prop.mean(1, keepdim=True) # B, 1, C
|
||||
# Concatenate the average token
|
||||
x_kept = torch.cat((x_kept, x_prop), dim=1) # B, N-num_prop, C
|
||||
|
||||
elif standard == "GraphProp":
|
||||
"""
|
||||
Propagate all the propagated token to kept token
|
||||
with respect to the weights and token scales.
|
||||
"""
|
||||
assert weight is not None, "The graph weight is needed for graph propagation"
|
||||
|
||||
# Step 3.1: divide propagation weights.
|
||||
if cls_token:
|
||||
index_kept = index_kept - 1 # since weights do not include the [CLS] token
|
||||
index_prop = index_prop - 1 # since weights do not include the [CLS] token
|
||||
weight = weight.gather(dim=1, index=index_kept.unsqueeze(-1).expand(-1,-1,N-1)) # B, N-1-num_prop, N-1
|
||||
weight_prop = weight.gather(dim=2, index=index_prop.unsqueeze(1).expand(-1,weight.shape[1],-1)) # B, N-1-num_prop, num_prop
|
||||
weight = weight.gather(dim=2, index=index_kept.unsqueeze(1).expand(-1,weight.shape[1],-1)) # B, N-1-num_prop, N-1-num_prop
|
||||
else:
|
||||
weight = weight.gather(dim=1, index=index_kept.unsqueeze(-1).expand(-1,-1,N)) # B, N-1-num_prop, N-1
|
||||
weight_prop = weight.gather(dim=2, index=index_prop.unsqueeze(1).expand(-1,weight.shape[1],-1)) # B, N-1-num_prop, num_prop
|
||||
weight = weight.gather(dim=2, index=index_kept.unsqueeze(1).expand(-1,weight.shape[1],-1)) # B, N-1-num_prop, N-1-num_prop
|
||||
|
||||
# Step 3.2: generate the broadcast message and propagate the message to corresponding kept tokens
|
||||
# Simple implementation
|
||||
x_prop = weight_prop @ x_prop # B, N-1-num_prop, C
|
||||
x_kept = x_kept + alpha * x_prop # B, N-1-num_prop, C
|
||||
|
||||
""" scatter_reduce implementation for batched inputs
|
||||
# Get the non-zero values
|
||||
non_zero_indices = torch.nonzero(weight_prop, as_tuple=True)
|
||||
non_zero_values = weight_prop[non_zero_indices]
|
||||
|
||||
# Sparse multiplication
|
||||
batch_indices, row_indices, col_indices = non_zero_indices
|
||||
sparse_matmul = alpha * non_zero_values[:, None] * x_prop[batch_indices, col_indices, :]
|
||||
reduce_indices = batch_indices * x_kept.shape[1] + row_indices
|
||||
|
||||
x_kept = x_kept.reshape(-1, C).scatter_reduce(dim=0,
|
||||
index=reduce_indices[:, None],
|
||||
src=sparse_matmul,
|
||||
reduce="sum",
|
||||
include_self=True)
|
||||
x_kept = x_kept.reshape(B, -1, C)
|
||||
"""
|
||||
|
||||
# Step 3.3: calculate the scale of each token if token_scales is not None
|
||||
if token_scales is not None:
|
||||
if cls_token:
|
||||
token_scales_cls = token_scales[:, 0:1] # B, 1
|
||||
token_scales = token_scales[:, 1:]
|
||||
token_scales_kept = token_scales.gather(dim=1, index=index_kept) # B, N-1-num_prop
|
||||
token_scales_prop = token_scales.gather(dim=1, index=index_prop) # B, num_prop
|
||||
token_scales_prop = weight_prop @ token_scales_prop.unsqueeze(-1) # B, N-1-num_prop, 1
|
||||
token_scales = token_scales_kept + alpha * token_scales_prop.squeeze(-1) # B, N-1-num_prop
|
||||
if cls_token:
|
||||
token_scales = torch.cat((token_scales_cls, token_scales), dim=1) # B, N-num_prop
|
||||
else:
|
||||
assert False, "Propagation method \'%f\' has not been supported yet." % standard
|
||||
|
||||
|
||||
if cls_token:
|
||||
# Step 4: concatenate the [CLS] token and generate returned value
|
||||
x = torch.cat((x_cls, x_kept), dim=1) # B, N-num_prop, C
|
||||
else:
|
||||
x = x_kept
|
||||
return x, weight, token_scales
|
||||
|
||||
|
||||
|
||||
def select(weight: torch.Tensor, standard: str = "None", num_prop: int = 0, cls_token = True):
|
||||
"""
|
||||
Select image tokens to be propagated. The [CLS] token will be ignored.
|
||||
======================================================================
|
||||
Args:
|
||||
- weight: Tensor([B, H, N, N]): used for selecting the kept tokens. Only support the
|
||||
attention map of tokens at the moment.
|
||||
|
||||
- standard: str: the method applied to select the tokens
|
||||
|
||||
- num_prop: int: the number of tokens to be propagated
|
||||
|
||||
Return:
|
||||
- index_kept: Tensor([B, N-1-num_prop]): the index of kept tokens
|
||||
|
||||
- index_prop: Tensor([B, num_prop]): the index of propagated tokens
|
||||
"""
|
||||
|
||||
assert len(weight.shape) == 4, "Selection methods on tensors other than the attention map haven't been supported yet."
|
||||
B, H, N1, N2 = weight.shape
|
||||
assert N1 == N2, "Selection methods on tensors other than the attention map haven't been supported yet."
|
||||
N = N1
|
||||
assert num_prop >= 0, "The number of propagated/pruned tokens must be non-negative."
|
||||
|
||||
if cls_token:
|
||||
if standard == "CLSAttnMean":
|
||||
token_rank = weight[:,:,0,1:].mean(1)
|
||||
|
||||
elif standard == "CLSAttnMax":
|
||||
token_rank = weight[:,:,0,1:].max(1)[0]
|
||||
|
||||
elif standard == "IMGAttnMean":
|
||||
token_rank = weight[:,:,:,1:].sum(-2).mean(1)
|
||||
|
||||
elif standard == "IMGAttnMax":
|
||||
token_rank = weight[:,:,:,1:].sum(-2).max(1)[0]
|
||||
|
||||
elif standard == "DiagAttnMean":
|
||||
token_rank = torch.diagonal(weight, dim1=-2, dim2=-1)[:,:,1:].mean(1)
|
||||
|
||||
elif standard == "DiagAttnMax":
|
||||
token_rank = torch.diagonal(weight, dim1=-2, dim2=-1)[:,:,1:].max(1)[0]
|
||||
|
||||
elif standard == "MixedAttnMean":
|
||||
token_rank_1 = torch.diagonal(weight, dim1=-2, dim2=-1)[:,:,1:].mean(1)
|
||||
token_rank_2 = weight[:,:,:,1:].sum(-2).mean(1)
|
||||
token_rank = token_rank_1 * token_rank_2
|
||||
|
||||
elif standard == "MixedAttnMax":
|
||||
token_rank_1 = torch.diagonal(weight, dim1=-2, dim2=-1)[:,:,1:].max(1)[0]
|
||||
token_rank_2 = weight[:,:,:,1:].sum(-2).max(1)[0]
|
||||
token_rank = token_rank_1 * token_rank_2
|
||||
|
||||
elif standard == "SumAttnMax":
|
||||
token_rank_1 = torch.diagonal(weight, dim1=-2, dim2=-1)[:,:,1:].max(1)[0]
|
||||
token_rank_2 = weight[:,:,:,1:].sum(-2).max(1)[0]
|
||||
token_rank = token_rank_1 + token_rank_2
|
||||
|
||||
elif standard == "CosSimMean":
|
||||
weight = weight[:,:,1:,:].mean(1)
|
||||
weight = weight / weight.norm(dim=-1, keepdim=True)
|
||||
token_rank = -(weight @ weight.transpose(-1, -2)).sum(-1)
|
||||
|
||||
elif standard == "CosSimMax":
|
||||
weight = weight[:,:,1:,:].max(1)[0]
|
||||
weight = weight / weight.norm(dim=-1, keepdim=True)
|
||||
token_rank = -(weight @ weight.transpose(-1, -2)).sum(-1)
|
||||
|
||||
elif standard == "Random":
|
||||
token_rank = torch.randn((B, N-1), device=weight.device)
|
||||
|
||||
else:
|
||||
print("Type\'", standard, "\' selection not supported.")
|
||||
assert False
|
||||
|
||||
token_rank = torch.argsort(token_rank, dim=1, descending=True) # B, N-1
|
||||
index_kept = token_rank[:, :-num_prop]+1 # B, N-1-num_prop
|
||||
index_prop = token_rank[:, -num_prop:]+1 # B, num_prop
|
||||
|
||||
else:
|
||||
if standard == "IMGAttnMean":
|
||||
token_rank = weight.sum(-2).mean(1)
|
||||
|
||||
elif standard == "IMGAttnMax":
|
||||
token_rank = weight.sum(-2).max(1)[0]
|
||||
|
||||
elif standard == "DiagAttnMean":
|
||||
token_rank = torch.diagonal(weight, dim1=-2, dim2=-1).mean(1)
|
||||
|
||||
elif standard == "DiagAttnMax":
|
||||
token_rank = torch.diagonal(weight, dim1=-2, dim2=-1).max(1)[0]
|
||||
|
||||
elif standard == "MixedAttnMean":
|
||||
token_rank_1 = torch.diagonal(weight, dim1=-2, dim2=-1).mean(1)
|
||||
token_rank_2 = weight.sum(-2).mean(1)
|
||||
token_rank = token_rank_1 * token_rank_2
|
||||
|
||||
elif standard == "MixedAttnMax":
|
||||
token_rank_1 = torch.diagonal(weight, dim1=-2, dim2=-1).max(1)[0]
|
||||
token_rank_2 = weight.sum(-2).max(1)[0]
|
||||
token_rank = token_rank_1 * token_rank_2
|
||||
|
||||
elif standard == "SumAttnMax":
|
||||
token_rank_1 = torch.diagonal(weight, dim1=-2, dim2=-1).max(1)[0]
|
||||
token_rank_2 = weight.sum(-2).max(1)[0]
|
||||
token_rank = token_rank_1 + token_rank_2
|
||||
|
||||
elif standard == "CosSimMean":
|
||||
weight = weight.mean(1)
|
||||
weight = weight / weight.norm(dim=-1, keepdim=True)
|
||||
token_rank = -(weight @ weight.transpose(-1, -2)).sum(-1)
|
||||
|
||||
elif standard == "CosSimMax":
|
||||
weight = weight.max(1)[0]
|
||||
weight = weight / weight.norm(dim=-1, keepdim=True)
|
||||
token_rank = -(weight @ weight.transpose(-1, -2)).sum(-1)
|
||||
|
||||
elif standard == "Random":
|
||||
token_rank = torch.randn((B, N-1), device=weight.device)
|
||||
|
||||
else:
|
||||
print("Type\'", standard, "\' selection not supported.")
|
||||
assert False
|
||||
|
||||
token_rank = torch.argsort(token_rank, dim=1, descending=True) # B, N-1
|
||||
index_kept = token_rank[:, :-num_prop] # B, N-1-num_prop
|
||||
index_prop = token_rank[:, -num_prop:] # B, num_prop
|
||||
return index_kept, index_prop
|
||||
|
||||
class PoolFormerBlock(nn.Module):
|
||||
"""
|
||||
Implementation of one PoolFormer block.
|
||||
@ -932,13 +1238,20 @@ class PoolFormerBlock(nn.Module):
|
||||
self.layer_scale_2 = nn.Parameter(
|
||||
layer_scale_init_value * torch.ones((dim)), requires_grad=True)
|
||||
|
||||
def forward(self, x):
|
||||
def forward(self, x, weight, token_scales = None):
|
||||
B, C, H, W = x.shape
|
||||
x_windows = window_partition(x, self.window_size)
|
||||
x_windows = x_windows.view(-1, self.window_size * self.window_size, C)
|
||||
attn_windows = self.token_mixer(x_windows, mask=self.attn_mask)
|
||||
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
||||
x_attn = window_reverse(attn_windows, self.window_size, H, W)
|
||||
index_kept, index_prop = select(x_attn, standard="MixedAttnMax", num_prop=0,
|
||||
cls_token=False)
|
||||
original_shape = x_attn.shape
|
||||
x_attn = x_attn.view(-1, self.window_size * self.window_size, C)
|
||||
x_attn, weight, token_scales = propagate(x_attn, weight, index_kept, index_prop, standard="GraphProp",
|
||||
alpha=0.1, token_scales=token_scales, cls_token=False)
|
||||
x_attn = x_attn.view(*original_shape)
|
||||
if self.use_layer_scale:
|
||||
x = x + self.drop_path(
|
||||
self.layer_scale_1.unsqueeze(-1).unsqueeze(-1)
|
||||
|
Reference in New Issue
Block a user