Compare commits
	
		
			26 Commits
		
	
	
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
|  | 9075b53be6 | ||
|  | ab5c1d0b4b | ||
|  | 3243b1d963 | ||
|  | 37b01708b4 | ||
|  | a246d2bb64 | ||
|  | 4a962a02ad | ||
|  | f8e969cbd1 | ||
|  | ae0f43ab4d | ||
|  | dda7f13dbd | ||
|  | 1dd423edf0 | ||
|  | a1bf2d7389 | ||
|  | c31588cc5f | ||
|  | c03e24f4c2 | ||
|  | a47a60f6a1 | ||
|  | ba388148d4 | ||
|  | 1b816fed50 | ||
|  | 32962bf421 | ||
|  | b9efe68d3c | ||
|  | 465f98bef8 | ||
|  | d4ac470c54 | ||
|  | 28a8352044 | ||
|  | b77c79708e | ||
|  | 22d44d1a99 | ||
|  | 63ccb4ec75 | ||
|  | 6ec566505f | ||
|  | 30805a0af9 | 
							
								
								
									
										36
									
								
								main.py
									
									
									
									
									
								
							
							
						
						
									
										36
									
								
								main.py
									
									
									
									
									
								
							| @@ -20,6 +20,7 @@ from data_loader import TrainDataset, TestDataset | ||||
| from utils import get_logger, get_combined_results, set_gpu, prepare_env, set_seed | ||||
|  | ||||
| from models import ComplEx, ConvE, HypER, InteractE, FouriER, TuckER | ||||
| import traceback | ||||
|  | ||||
|  | ||||
| class Main(object): | ||||
| @@ -477,7 +478,11 @@ class Main(object): | ||||
|                 batch, 'train') | ||||
|  | ||||
|             pred = self.model.forward(sub, rel, neg_ent, self.p.train_strategy) | ||||
|             loss = self.model.loss(pred, label, sub_samp) | ||||
|             try: | ||||
|                 loss = self.model.loss(pred, label, sub_samp) | ||||
|             except Exception as e: | ||||
|                 print(pred) | ||||
|                 raise e | ||||
|  | ||||
|             loss.backward() | ||||
|             self.optimizer.step() | ||||
| @@ -715,16 +720,19 @@ if __name__ == "__main__": | ||||
|         model.load_model(save_path) | ||||
|         model.evaluate('test') | ||||
|     else: | ||||
|         while True: | ||||
|             try: | ||||
|                 model = Main(args, logger) | ||||
|                 model.fit() | ||||
|             except Exception as e: | ||||
|                 print(e) | ||||
|                 try: | ||||
|                     del model | ||||
|                 except Exception: | ||||
|                     pass | ||||
|                 time.sleep(30) | ||||
|                 continue | ||||
|             break | ||||
|         model = Main(args, logger) | ||||
|         model.fit() | ||||
|         # while True: | ||||
|         #     try: | ||||
|         #         model = Main(args, logger) | ||||
|         #         model.fit() | ||||
|         #     except Exception as e: | ||||
|         #         print(e) | ||||
|         #         traceback.print_exc() | ||||
|         #         try: | ||||
|         #             del model | ||||
|         #         except Exception: | ||||
|         #             pass | ||||
|         #         time.sleep(30) | ||||
|         #         continue | ||||
|         #     break | ||||
|   | ||||
							
								
								
									
										392
									
								
								models.py
									
									
									
									
									
								
							
							
						
						
									
										392
									
								
								models.py
									
									
									
									
									
								
							| @@ -1,15 +1,16 @@ | ||||
| import torch | ||||
| from torch import nn | ||||
| from torch import nn, einsum | ||||
| import torch.nn.functional as F | ||||
| import numpy as np | ||||
| from functools import partial | ||||
| from einops.layers.torch import Rearrange, Reduce | ||||
| from einops import rearrange, repeat | ||||
| from utils import * | ||||
| from layers import * | ||||
| from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | ||||
| from timm.models.layers import DropPath, trunc_normal_ | ||||
| from timm.models.registry import register_model | ||||
| from timm.models.layers.helpers import to_2tuple | ||||
| from timm.layers.helpers import to_2tuple | ||||
|  | ||||
|  | ||||
| class ConvE(torch.nn.Module): | ||||
| @@ -557,6 +558,8 @@ class FouriER(torch.nn.Module): | ||||
|         z = self.forward_embeddings(y) | ||||
|         z = self.forward_tokens(z) | ||||
|         z = z.mean([-2, -1]) | ||||
|         if np.count_nonzero(np.isnan(z)) > 0: | ||||
|             print("ZZZ") | ||||
|         z = self.norm(z) | ||||
|         x = self.head(z) | ||||
|         x = self.hidden_drop(x) | ||||
| @@ -707,6 +710,363 @@ def basic_blocks(dim, index, layers, | ||||
|  | ||||
|     return blocks | ||||
|  | ||||
| def window_partition(x, window_size): | ||||
|     """ | ||||
|     Args: | ||||
|         x: (B, H, W, C) | ||||
|         window_size (int): window size | ||||
|  | ||||
|     Returns: | ||||
|         windows: (num_windows*B, window_size, window_size, C) | ||||
|     """ | ||||
|     B, C, H, W = x.shape | ||||
|     x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) | ||||
|     windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) | ||||
|     return windows | ||||
|  | ||||
| class WindowAttention(nn.Module): | ||||
|     r""" Window based multi-head self attention (W-MSA) module with relative position bias. | ||||
|     It supports both of shifted and non-shifted window. | ||||
|  | ||||
|     Args: | ||||
|         dim (int): Number of input channels. | ||||
|         window_size (tuple[int]): The height and width of the window. | ||||
|         num_heads (int): Number of attention heads. | ||||
|         qkv_bias (bool, optional):  If True, add a learnable bias to query, key, value. Default: True | ||||
|         attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 | ||||
|         proj_drop (float, optional): Dropout ratio of output. Default: 0.0 | ||||
|         pretrained_window_size (tuple[int]): The height and width of the window in pre-training. | ||||
|     """ | ||||
|  | ||||
|     def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0., | ||||
|                  pretrained_window_size=[0, 0]): | ||||
|  | ||||
|         super().__init__() | ||||
|         self.dim = dim | ||||
|         self.window_size = window_size  # Wh, Ww | ||||
|         self.pretrained_window_size = pretrained_window_size | ||||
|         self.num_heads = num_heads | ||||
|  | ||||
|         self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True) | ||||
|  | ||||
|         # mlp to generate continuous relative position bias | ||||
|         self.cpb_mlp = nn.Sequential(nn.Linear(2, 512, bias=True), | ||||
|                                      nn.ReLU(inplace=True), | ||||
|                                      nn.Linear(512, num_heads, bias=False)) | ||||
|  | ||||
|         # get relative_coords_table | ||||
|         relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0], dtype=torch.float32) | ||||
|         relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1], dtype=torch.float32) | ||||
|         relative_coords_table = torch.stack( | ||||
|             torch.meshgrid([relative_coords_h, | ||||
|                             relative_coords_w])).permute(1, 2, 0).contiguous().unsqueeze(0)  # 1, 2*Wh-1, 2*Ww-1, 2 | ||||
|         if pretrained_window_size[0] > 0: | ||||
|             relative_coords_table[:, :, :, 0] /= (pretrained_window_size[0] - 1) | ||||
|             relative_coords_table[:, :, :, 1] /= (pretrained_window_size[1] - 1) | ||||
|         else: | ||||
|             relative_coords_table[:, :, :, 0] /= (self.window_size[0] - 1) | ||||
|             relative_coords_table[:, :, :, 1] /= (self.window_size[1] - 1) | ||||
|         relative_coords_table *= 8  # normalize to -8, 8 | ||||
|         relative_coords_table = torch.sign(relative_coords_table) * torch.log2( | ||||
|             torch.abs(relative_coords_table) + 1.0) / np.log2(8) | ||||
|  | ||||
|         self.register_buffer("relative_coords_table", relative_coords_table) | ||||
|  | ||||
|         # get pair-wise relative position index for each token inside the window | ||||
|         coords_h = torch.arange(self.window_size[0]) | ||||
|         coords_w = torch.arange(self.window_size[1]) | ||||
|         coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, Wh, Ww | ||||
|         coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww | ||||
|         relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Ww | ||||
|         relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2 | ||||
|         relative_coords[:, :, 0] += self.window_size[0] - 1  # shift to start from 0 | ||||
|         relative_coords[:, :, 1] += self.window_size[1] - 1 | ||||
|         relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 | ||||
|         relative_position_index = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww | ||||
|         self.register_buffer("relative_position_index", relative_position_index) | ||||
|  | ||||
|         self.qkv = nn.Linear(dim, dim * 3, bias=False) | ||||
|         if qkv_bias: | ||||
|             self.q_bias = nn.Parameter(torch.zeros(dim)) | ||||
|             self.v_bias = nn.Parameter(torch.zeros(dim)) | ||||
|         else: | ||||
|             self.q_bias = None | ||||
|             self.v_bias = None | ||||
|         self.attn_drop = nn.Dropout(attn_drop) | ||||
|         self.proj = nn.Linear(dim, dim) | ||||
|         self.proj_drop = nn.Dropout(proj_drop) | ||||
|         self.softmax = nn.Softmax(dim=-1) | ||||
|  | ||||
|     def forward(self, x, mask=None): | ||||
|         """ | ||||
|         Args: | ||||
|             x: input features with shape of (num_windows*B, N, C) | ||||
|             mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None | ||||
|         """ | ||||
|         B_, N, C = x.shape | ||||
|         qkv_bias = None | ||||
|         if self.q_bias is not None: | ||||
|             qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias)) | ||||
|         qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) | ||||
|         qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) | ||||
|         q, k, v = qkv[0], qkv[1], qkv[2]  # make torchscript happy (cannot use tensor as tuple) | ||||
|  | ||||
|         # cosine attention | ||||
|         attn = (F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1)) | ||||
|         logit_scale = torch.clamp(self.logit_scale, max=torch.log(torch.tensor(1. / 0.01)).cuda()).exp() | ||||
|         attn = attn * logit_scale | ||||
|  | ||||
|         relative_position_bias_table = self.cpb_mlp(self.relative_coords_table).view(-1, self.num_heads) | ||||
|         relative_position_bias = relative_position_bias_table[self.relative_position_index.view(-1)].view( | ||||
|             self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1)  # Wh*Ww,Wh*Ww,nH | ||||
|         relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww | ||||
|         relative_position_bias = 16 * torch.sigmoid(relative_position_bias) | ||||
|         attn = attn + relative_position_bias.unsqueeze(0) | ||||
|  | ||||
|         if mask is not None: | ||||
|             nW = mask.shape[0] | ||||
|             attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) | ||||
|             attn = attn.view(-1, self.num_heads, N, N) | ||||
|             attn = self.softmax(attn) | ||||
|         else: | ||||
|             attn = self.softmax(attn) | ||||
|  | ||||
|         attn = self.attn_drop(attn) | ||||
|  | ||||
|         x = (attn @ v).transpose(1, 2).reshape(B_, N, C) | ||||
|         x = self.proj(x) | ||||
|         x = self.proj_drop(x) | ||||
|         return x | ||||
|  | ||||
|     def extra_repr(self) -> str: | ||||
|         return f'dim={self.dim}, window_size={self.window_size}, ' \ | ||||
|                f'pretrained_window_size={self.pretrained_window_size}, num_heads={self.num_heads}' | ||||
|  | ||||
|     def flops(self, N): | ||||
|         # calculate flops for 1 window with token length of N | ||||
|         flops = 0 | ||||
|         # qkv = self.qkv(x) | ||||
|         flops += N * self.dim * 3 * self.dim | ||||
|         # attn = (q @ k.transpose(-2, -1)) | ||||
|         flops += self.num_heads * N * (self.dim // self.num_heads) * N | ||||
|         #  x = (attn @ v) | ||||
|         flops += self.num_heads * N * N * (self.dim // self.num_heads) | ||||
|         # x = self.proj(x) | ||||
|         flops += N * self.dim * self.dim | ||||
|         return flops | ||||
|      | ||||
| def window_reverse(windows, window_size, H, W): | ||||
|     """ | ||||
|     Args: | ||||
|         windows: (num_windows*B, window_size, window_size, C) | ||||
|         window_size (int): Window size | ||||
|         H (int): Height of image | ||||
|         W (int): Width of image | ||||
|  | ||||
|     Returns: | ||||
|         x: (B, H, W, C) | ||||
|     """ | ||||
|     B = int(windows.shape[0] / (H * W / window_size / window_size)) | ||||
|     x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1) | ||||
|     x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, -1, H, W) | ||||
|     return x | ||||
|  | ||||
| def cast_tuple(val, length = 1): | ||||
|     return val if isinstance(val, tuple) else ((val,) * length) | ||||
|  | ||||
| # helper classes | ||||
|  | ||||
| class ChanLayerNorm(nn.Module): | ||||
|     def __init__(self, dim, eps = 1e-5): | ||||
|         super().__init__() | ||||
|         self.eps = eps | ||||
|         self.g = nn.Parameter(torch.ones(1, dim, 1, 1)) | ||||
|         self.b = nn.Parameter(torch.zeros(1, dim, 1, 1)) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         var = torch.var(x, dim = 1, unbiased = False, keepdim = True) | ||||
|         mean = torch.mean(x, dim = 1, keepdim = True) | ||||
|         return (x - mean) / (var + self.eps).sqrt() * self.g + self.b | ||||
|  | ||||
| class OverlappingPatchEmbed(nn.Module): | ||||
|     def __init__(self, dim_in, dim_out, stride = 2): | ||||
|         super().__init__() | ||||
|         kernel_size = stride * 2 - 1 | ||||
|         padding = kernel_size // 2 | ||||
|         self.conv = nn.Conv2d(dim_in, dim_out, kernel_size, stride = stride, padding = padding) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         return self.conv(x) | ||||
|  | ||||
| class PEG(nn.Module): | ||||
|     def __init__(self, dim, kernel_size = 3): | ||||
|         super().__init__() | ||||
|         self.proj = nn.Conv2d(dim, dim, kernel_size = kernel_size, padding = kernel_size // 2, groups = dim, stride = 1) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         return self.proj(x) + x | ||||
|  | ||||
| # feedforward | ||||
|  | ||||
| class FeedForwardDSSA(nn.Module): | ||||
|     def __init__(self, dim, mult = 4, dropout = 0.): | ||||
|         super().__init__() | ||||
|         inner_dim = int(dim * mult) | ||||
|         self.net = nn.Sequential( | ||||
|             ChanLayerNorm(dim), | ||||
|             nn.Conv2d(dim, inner_dim, 1), | ||||
|             nn.GELU(), | ||||
|             nn.Dropout(dropout), | ||||
|             nn.Conv2d(inner_dim, dim, 1), | ||||
|             nn.Dropout(dropout) | ||||
|         ) | ||||
|     def forward(self, x): | ||||
|         return self.net(x) | ||||
|  | ||||
| # attention | ||||
|  | ||||
| class DSSA(nn.Module): | ||||
|     def __init__( | ||||
|         self, | ||||
|         dim, | ||||
|         heads = 8, | ||||
|         dim_head = 32, | ||||
|         dropout = 0., | ||||
|         window_size = 7 | ||||
|     ): | ||||
|         super().__init__() | ||||
|         self.heads = heads | ||||
|         self.scale = dim_head ** -0.5 | ||||
|         self.window_size = window_size | ||||
|         inner_dim = dim_head * heads | ||||
|  | ||||
|         self.norm = ChanLayerNorm(dim) | ||||
|  | ||||
|         self.attend = nn.Sequential( | ||||
|             nn.Softmax(dim = -1), | ||||
|             nn.Dropout(dropout) | ||||
|         ) | ||||
|  | ||||
|         self.to_qkv = nn.Conv1d(dim, inner_dim * 3, 1, bias = False) | ||||
|  | ||||
|         # window tokens | ||||
|  | ||||
|         self.window_tokens = nn.Parameter(torch.randn(dim)) | ||||
|  | ||||
|         # prenorm and non-linearity for window tokens | ||||
|         # then projection to queries and keys for window tokens | ||||
|  | ||||
|         self.window_tokens_to_qk = nn.Sequential( | ||||
|             nn.LayerNorm(dim_head), | ||||
|             nn.GELU(), | ||||
|             Rearrange('b h n c -> b (h c) n'), | ||||
|             nn.Conv1d(inner_dim, inner_dim * 2, 1), | ||||
|             Rearrange('b (h c) n -> b h n c', h = heads), | ||||
|         ) | ||||
|  | ||||
|         # window attention | ||||
|  | ||||
|         self.window_attend = nn.Sequential( | ||||
|             nn.Softmax(dim = -1), | ||||
|             nn.Dropout(dropout) | ||||
|         ) | ||||
|  | ||||
|         self.to_out = nn.Sequential( | ||||
|             nn.Conv2d(inner_dim, dim, 1), | ||||
|             nn.Dropout(dropout) | ||||
|         ) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         """ | ||||
|         einstein notation | ||||
|  | ||||
|         b - batch | ||||
|         c - channels | ||||
|         w1 - window size (height) | ||||
|         w2 - also window size (width) | ||||
|         i - sequence dimension (source) | ||||
|         j - sequence dimension (target dimension to be reduced) | ||||
|         h - heads | ||||
|         x - height of feature map divided by window size | ||||
|         y - width of feature map divided by window size | ||||
|         """ | ||||
|  | ||||
|         batch, height, width, heads, wsz = x.shape[0], *x.shape[-2:], self.heads, self.window_size | ||||
|         assert (height % wsz) == 0 and (width % wsz) == 0, f'height {height} and width {width} must be divisible by window size {wsz}' | ||||
|         num_windows = (height // wsz) * (width // wsz) | ||||
|  | ||||
|         x = self.norm(x) | ||||
|  | ||||
|         # fold in windows for "depthwise" attention - not sure why it is named depthwise when it is just "windowed" attention | ||||
|  | ||||
|         x = rearrange(x, 'b c (h w1) (w w2) -> (b h w) c (w1 w2)', w1 = wsz, w2 = wsz) | ||||
|  | ||||
|         # add windowing tokens | ||||
|  | ||||
|         w = repeat(self.window_tokens, 'c -> b c 1', b = x.shape[0]) | ||||
|         x = torch.cat((w, x), dim = -1) | ||||
|  | ||||
|         # project for queries, keys, value | ||||
|  | ||||
|         q, k, v = self.to_qkv(x).chunk(3, dim = 1) | ||||
|  | ||||
|         # split out heads | ||||
|  | ||||
|         q, k, v = map(lambda t: rearrange(t, 'b (h d) ... -> b h (...) d', h = heads), (q, k, v)) | ||||
|  | ||||
|         # scale | ||||
|  | ||||
|         q = q * self.scale | ||||
|  | ||||
|         # similarity | ||||
|  | ||||
|         dots = einsum('b h i d, b h j d -> b h i j', q, k) | ||||
|  | ||||
|         # attention | ||||
|  | ||||
|         attn = self.attend(dots) | ||||
|  | ||||
|         # aggregate values | ||||
|  | ||||
|         out = torch.matmul(attn, v) | ||||
|  | ||||
|         # split out windowed tokens | ||||
|  | ||||
|         window_tokens, windowed_fmaps = out[:, :, 0], out[:, :, 1:] | ||||
|  | ||||
|         # early return if there is only 1 window | ||||
|  | ||||
|         if num_windows == 1: | ||||
|             fmap = rearrange(windowed_fmaps, '(b x y) h (w1 w2) d -> b (h d) (x w1) (y w2)', x = height // wsz, y = width // wsz, w1 = wsz, w2 = wsz) | ||||
|             return self.to_out(fmap) | ||||
|  | ||||
|         # carry out the pointwise attention, the main novelty in the paper | ||||
|  | ||||
|         window_tokens = rearrange(window_tokens, '(b x y) h d -> b h (x y) d', x = height // wsz, y = width // wsz) | ||||
|         windowed_fmaps = rearrange(windowed_fmaps, '(b x y) h n d -> b h (x y) n d', x = height // wsz, y = width // wsz) | ||||
|  | ||||
|         # windowed queries and keys (preceded by prenorm activation) | ||||
|  | ||||
|         w_q, w_k = self.window_tokens_to_qk(window_tokens).chunk(2, dim = -1) | ||||
|  | ||||
|         # scale | ||||
|  | ||||
|         w_q = w_q * self.scale | ||||
|  | ||||
|         # similarities | ||||
|  | ||||
|         w_dots = einsum('b h i d, b h j d -> b h i j', w_q, w_k) | ||||
|  | ||||
|         w_attn = self.window_attend(w_dots) | ||||
|  | ||||
|         # aggregate the feature maps from the "depthwise" attention step (the most interesting part of the paper, one i haven't seen before) | ||||
|  | ||||
|         aggregated_windowed_fmap = einsum('b h i j, b h j w d -> b h i w d', w_attn, windowed_fmaps) | ||||
|  | ||||
|         # fold back the windows and then combine heads for aggregation | ||||
|  | ||||
|         fmap = rearrange(aggregated_windowed_fmap, 'b h (x y) (w1 w2) d -> b (h d) (x w1) (y w2)', x = height // wsz, y = width // wsz, w1 = wsz, w2 = wsz) | ||||
|         return self.to_out(fmap) | ||||
|  | ||||
| class PoolFormerBlock(nn.Module): | ||||
|     """ | ||||
| @@ -731,7 +1091,15 @@ class PoolFormerBlock(nn.Module): | ||||
|  | ||||
|         self.norm1 = norm_layer(dim) | ||||
|         #self.token_mixer = Pooling(pool_size=pool_size) | ||||
|         self.token_mixer = FNetBlock() | ||||
|         # self.token_mixer = FNetBlock() | ||||
|         self.window_size = 4 | ||||
|         self.attn_heads = 4 | ||||
|         self.attn_mask = None | ||||
|         # self.token_mixer = WindowAttention(dim=dim, window_size=to_2tuple(self.window_size), num_heads=4) | ||||
|         self.token_mixer = nn.ModuleList([ | ||||
|             DSSA(dim, heads=self.attn_heads, window_size=self.window_size), | ||||
|             FeedForwardDSSA(dim) | ||||
|         ]) | ||||
|         self.norm2 = norm_layer(dim) | ||||
|         mlp_hidden_dim = int(dim * mlp_ratio) | ||||
|         self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim,  | ||||
| @@ -748,16 +1116,26 @@ class PoolFormerBlock(nn.Module): | ||||
|                 layer_scale_init_value * torch.ones((dim)), requires_grad=True) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         B, C, H, W = x.shape | ||||
|         # x_windows = window_partition(x, self.window_size) | ||||
|         # x_windows = x_windows.view(-1, self.window_size * self.window_size, C) | ||||
|         # attn_windows = self.token_mixer(x_windows, mask=self.attn_mask) | ||||
|         # attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) | ||||
|         # x_attn = window_reverse(attn_windows, self.window_size, H, W) | ||||
|         x_attn = self.token_mixer(x) | ||||
|         if self.use_layer_scale: | ||||
|             x = x + self.drop_path( | ||||
|                 self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) | ||||
|                 * self.token_mixer(self.norm1(x))) | ||||
|                 * x_attn) | ||||
|             x = x + self.drop_path( | ||||
|                 self.layer_scale_2.unsqueeze(-1).unsqueeze(-1) | ||||
|                 * self.mlp(self.norm2(x))) | ||||
|         else: | ||||
|             x = x + self.drop_path(self.token_mixer(self.norm1(x))) | ||||
|             x = x + self.drop_path(x_attn) | ||||
|             x = x + self.drop_path(self.mlp(self.norm2(x))) | ||||
|  | ||||
|         if np.count_nonzero(np.isnan(x)) > 0: | ||||
|             print("PFBlock") | ||||
|         return x | ||||
| class PatchEmbed(nn.Module): | ||||
|     """ | ||||
| @@ -843,7 +1221,7 @@ class LayerNormChannel(nn.Module): | ||||
|             + self.bias.unsqueeze(-1).unsqueeze(-1) | ||||
|         return x | ||||
|  | ||||
| class FeedForward(nn.Module): | ||||
| class FeedForwardFNet(nn.Module): | ||||
|     def __init__(self, dim, hidden_dim, dropout = 0.): | ||||
|         super().__init__() | ||||
|         self.net = nn.Sequential( | ||||
| @@ -879,7 +1257,7 @@ class FNet(nn.Module): | ||||
|         for _ in range(depth): | ||||
|             self.layers.append(nn.ModuleList([ | ||||
|                 PreNorm(dim, FNetBlock()), | ||||
|                 PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout)) | ||||
|                 PreNorm(dim, FeedForwardFNet(dim, mlp_dim, dropout = dropout)) | ||||
|             ])) | ||||
|     def forward(self, x): | ||||
|         for attn, ff in self.layers: | ||||
|   | ||||
| @@ -2,3 +2,5 @@ torch==1.12.1+cu116 | ||||
| ordered-set==4.1.0 | ||||
| numpy==1.21.5 | ||||
| einops==0.4.1 | ||||
| pandas | ||||
| timm==0.9.16 | ||||
		Reference in New Issue
	
	Block a user