Compare commits
36 Commits
tourier_sp
...
twinge
Author | SHA1 | Date | |
---|---|---|---|
3f0018fedc | |||
9502c8d009 | |||
2637f53848 | |||
975a0a77c2 | |||
a064d12763 | |||
6d43b88599 | |||
7448528eec | |||
7194f8046c | |||
417a38d2e5 | |||
03f42561c6 | |||
936c37d0f6 | |||
39734013c4 | |||
bb9856ecd1 | |||
c2b17ec1ba | |||
f8e969cbd1 | |||
ae0f43ab4d | |||
dda7f13dbd | |||
1dd423edf0 | |||
a1bf2d7389 | |||
c31588cc5f | |||
c03e24f4c2 | |||
a47a60f6a1 | |||
ba388148d4 | |||
1b816fed50 | |||
32962bf421 | |||
b9efe68d3c | |||
465f98bef8 | |||
d4ac470c54 | |||
28a8352044 | |||
b77c79708e | |||
22d44d1a99 | |||
63ccb4ec75 | |||
6ec566505f | |||
30805a0af9 | |||
2e2b12571a | |||
d4b29eec2c |
@ -12407,3 +12407,233 @@
|
||||
12406 Carry out roadside bombing[65]
|
||||
12407 Appeal for target to allow international involvement (non-mediation)[1]
|
||||
12408 Reject request for change in leadership[179]
|
||||
12409 Criticize or denounce
|
||||
12410 Express intent to meet or negotiate
|
||||
12411 Consult
|
||||
12412 Make an appeal or request
|
||||
12413 Abduct, hijack, or take hostage
|
||||
12414 Praise or endorse
|
||||
12415 Engage in negotiation
|
||||
12416 Use unconventional violence
|
||||
12417 Make statement
|
||||
12418 Arrest, detain, or charge with legal action
|
||||
12419 Use conventional military force
|
||||
12420 Complain officially
|
||||
12421 Impose administrative sanctions
|
||||
12422 Express intent to cooperate
|
||||
12423 Make a visit
|
||||
12424 Appeal for de-escalation of military engagement
|
||||
12425 Sign formal agreement
|
||||
12426 Attempt to assassinate
|
||||
12427 Host a visit
|
||||
12428 Increase military alert status
|
||||
12429 Impose embargo, boycott, or sanctions
|
||||
12430 Provide economic aid
|
||||
12431 Demonstrate or rally
|
||||
12432 Express intent to engage in diplomatic cooperation (such as policy support)
|
||||
12433 Appeal for intelligence
|
||||
12434 Demand
|
||||
12435 Carry out suicide bombing
|
||||
12436 Threaten
|
||||
12437 Express intent to provide material aid
|
||||
12438 Grant diplomatic recognition
|
||||
12439 Meet at a 'third' location
|
||||
12440 Accuse
|
||||
12441 Investigate
|
||||
12442 Reject
|
||||
12443 Appeal for diplomatic cooperation (such as policy support)
|
||||
12444 Engage in symbolic act
|
||||
12445 Defy norms, law
|
||||
12446 Consider policy option
|
||||
12447 Provide aid
|
||||
12448 Sexually assault
|
||||
12449 Make empathetic comment
|
||||
12450 Bring lawsuit against
|
||||
12451 Impose blockade, restrict movement
|
||||
12452 Make pessimistic comment
|
||||
12453 Protest violently, riot
|
||||
12454 Reduce or break diplomatic relations
|
||||
12455 Grant asylum
|
||||
12456 Engage in diplomatic cooperation
|
||||
12457 Make optimistic comment
|
||||
12458 Torture
|
||||
12459 Refuse to yield
|
||||
12460 Appeal for change in leadership
|
||||
12461 Cooperate militarily
|
||||
12462 Mobilize or increase armed forces
|
||||
12463 fight with small arms and light weapons
|
||||
12464 Ease administrative sanctions
|
||||
12465 Appeal for political reform
|
||||
12466 Return, release person(s)
|
||||
12467 Discuss by telephone
|
||||
12468 Demonstrate for leadership change
|
||||
12469 Impose restrictions on political freedoms
|
||||
12470 Reduce relations
|
||||
12471 Investigate crime, corruption
|
||||
12472 Engage in material cooperation
|
||||
12473 Appeal to others to meet or negotiate
|
||||
12474 Provide humanitarian aid
|
||||
12475 Use tactics of violent repression
|
||||
12476 Occupy territory
|
||||
12477 Demand humanitarian aid
|
||||
12478 Threaten non-force
|
||||
12479 Express intent to cooperate economically
|
||||
12480 Conduct suicide, car, or other non-military bombing
|
||||
12481 Demand diplomatic cooperation (such as policy support)
|
||||
12482 Demand meeting, negotiation
|
||||
12483 Deny responsibility
|
||||
12484 Express intent to change institutions, regime
|
||||
12485 Give ultimatum
|
||||
12486 Appeal for judicial cooperation
|
||||
12487 Rally support on behalf of
|
||||
12488 Obstruct passage, block
|
||||
12489 Share intelligence or information
|
||||
12490 Expel or deport individuals
|
||||
12491 Confiscate property
|
||||
12492 Accuse of aggression
|
||||
12493 Physically assault
|
||||
12494 Retreat or surrender militarily
|
||||
12495 Veto
|
||||
12496 Kill by physical assault
|
||||
12497 Assassinate
|
||||
12498 Appeal for change in institutions, regime
|
||||
12499 Forgive
|
||||
12500 Reject proposal to meet, discuss, or negotiate
|
||||
12501 Express intent to provide humanitarian aid
|
||||
12502 Appeal for release of persons or property
|
||||
12503 Acknowledge or claim responsibility
|
||||
12504 Ease economic sanctions, boycott, embargo
|
||||
12505 Express intent to cooperate militarily
|
||||
12506 Cooperate economically
|
||||
12507 Express intent to provide economic aid
|
||||
12508 Mobilize or increase police power
|
||||
12509 Employ aerial weapons
|
||||
12510 Accuse of human rights abuses
|
||||
12511 Conduct strike or boycott
|
||||
12512 Appeal for policy change
|
||||
12513 Demonstrate military or police power
|
||||
12514 Provide military aid
|
||||
12515 Reject plan, agreement to settle dispute
|
||||
12516 Yield
|
||||
12517 Appeal for easing of administrative sanctions
|
||||
12518 Mediate
|
||||
12519 Apologize
|
||||
12520 Express intent to release persons or property
|
||||
12521 Express intent to de-escalate military engagement
|
||||
12522 Accede to demands for rights
|
||||
12523 Demand economic aid
|
||||
12524 Impose state of emergency or martial law
|
||||
12525 Receive deployment of peacekeepers
|
||||
12526 Demand de-escalation of military engagement
|
||||
12527 Declare truce, ceasefire
|
||||
12528 Reduce or stop humanitarian assistance
|
||||
12529 Appeal to others to settle dispute
|
||||
12530 Reject request for military aid
|
||||
12531 Threaten with political dissent, protest
|
||||
12532 Appeal to engage in or accept mediation
|
||||
12533 Express intent to ease economic sanctions, boycott, or embargo
|
||||
12534 Coerce
|
||||
12535 fight with artillery and tanks
|
||||
12536 Express intent to cooperate on intelligence
|
||||
12537 Express intent to settle dispute
|
||||
12538 Express accord
|
||||
12539 Decline comment
|
||||
12540 Rally opposition against
|
||||
12541 Halt negotiations
|
||||
12542 Demand that target yields
|
||||
12543 Appeal for military aid
|
||||
12544 Threaten with military force
|
||||
12545 Express intent to provide military protection or peacekeeping
|
||||
12546 Threaten with sanctions, boycott, embargo
|
||||
12547 Express intent to provide military aid
|
||||
12548 Demand change in leadership
|
||||
12549 Appeal for economic aid
|
||||
12550 Refuse to de-escalate military engagement
|
||||
12551 Refuse to release persons or property
|
||||
12552 Increase police alert status
|
||||
12553 Return, release property
|
||||
12554 Ease military blockade
|
||||
12555 Appeal for material cooperation
|
||||
12556 Express intent to cooperate on judicial matters
|
||||
12557 Appeal for economic cooperation
|
||||
12558 Demand settling of dispute
|
||||
12559 Accuse of crime, corruption
|
||||
12560 Defend verbally
|
||||
12561 Provide military protection or peacekeeping
|
||||
12562 Accuse of espionage, treason
|
||||
12563 Seize or damage property
|
||||
12564 Accede to requests or demands for political reform
|
||||
12565 Appeal for easing of economic sanctions, boycott, or embargo
|
||||
12566 Threaten to reduce or stop aid
|
||||
12567 Engage in judicial cooperation
|
||||
12568 Appeal to yield
|
||||
12569 Demand military aid
|
||||
12570 Refuse to ease administrative sanctions
|
||||
12571 Demand release of persons or property
|
||||
12572 Accede to demands for change in leadership
|
||||
12573 Appeal for humanitarian aid
|
||||
12574 Threaten with repression
|
||||
12575 Demand change in institutions, regime
|
||||
12576 Demonstrate for policy change
|
||||
12577 Appeal for aid
|
||||
12578 Appeal for rights
|
||||
12579 Engage in violent protest for rights
|
||||
12580 Express intent to mediate
|
||||
12581 Expel or withdraw peacekeepers
|
||||
12582 Appeal for military protection or peacekeeping
|
||||
12583 Engage in mass killings
|
||||
12584 Accuse of war crimes
|
||||
12585 Reject military cooperation
|
||||
12586 Threaten to halt negotiations
|
||||
12587 Ban political parties or politicians
|
||||
12588 Express intent to change leadership
|
||||
12589 Demand material cooperation
|
||||
12590 Express intent to institute political reform
|
||||
12591 Demand easing of administrative sanctions
|
||||
12592 Express intent to engage in material cooperation
|
||||
12593 Reduce or stop economic assistance
|
||||
12594 Express intent to ease administrative sanctions
|
||||
12595 Demand intelligence cooperation
|
||||
12596 Ease curfew
|
||||
12597 Receive inspectors
|
||||
12598 Demand rights
|
||||
12599 Demand political reform
|
||||
12600 Demand judicial cooperation
|
||||
12601 Engage in political dissent
|
||||
12602 Detonate nuclear weapons
|
||||
12603 Violate ceasefire
|
||||
12604 Express intent to accept mediation
|
||||
12605 Refuse to ease economic sanctions, boycott, or embargo
|
||||
12606 Demand mediation
|
||||
12607 Obstruct passage to demand leadership change
|
||||
12608 Express intent to yield
|
||||
12609 Conduct hunger strike
|
||||
12610 Threaten to halt mediation
|
||||
12611 Reject judicial cooperation
|
||||
12612 Reduce or stop military assistance
|
||||
12613 Ease political dissent
|
||||
12614 Threaten to reduce or break relations
|
||||
12615 Demobilize armed forces
|
||||
12616 Use as human shield
|
||||
12617 Demand policy change
|
||||
12618 Accede to demands for change in institutions, regime
|
||||
12619 Reject economic cooperation
|
||||
12620 Reject material cooperation
|
||||
12621 Halt mediation
|
||||
12622 Accede to demands for change in policy
|
||||
12623 Investigate war crimes
|
||||
12624 Threaten with administrative sanctions
|
||||
12625 Reduce or stop material aid
|
||||
12626 Destroy property
|
||||
12627 Express intent to change policy
|
||||
12628 Use chemical, biological, or radiological weapons
|
||||
12629 Reject request for military protection or peacekeeping
|
||||
12630 Demand material aid
|
||||
12631 Engage in mass expulsion
|
||||
12632 Investigate human rights abuses
|
||||
12633 Carry out car bombing
|
||||
12634 Expel or withdraw
|
||||
12635 Ease state of emergency or martial law
|
||||
12636 Carry out roadside bombing
|
||||
12637 Appeal for target to allow international involvement (non-mediation)
|
||||
12638 Reject request for change in leadership
|
File diff suppressed because it is too large
Load Diff
504678
data/wikidata12k/train.txt
504678
data/wikidata12k/train.txt
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@ -421,3 +421,27 @@
|
||||
420 P551[36-69]
|
||||
421 P579[0-15]
|
||||
422 P102[54-62]
|
||||
423 P131
|
||||
424 P1435
|
||||
425 P39
|
||||
426 P54
|
||||
427 P31
|
||||
428 P463
|
||||
429 P512
|
||||
430 P190
|
||||
431 P150
|
||||
432 P1376
|
||||
433 P166
|
||||
434 P2962
|
||||
435 P108
|
||||
436 P17
|
||||
437 P793
|
||||
438 P69
|
||||
439 P26
|
||||
440 P579
|
||||
441 P1411
|
||||
442 P6
|
||||
443 P1346
|
||||
444 P102
|
||||
445 P27
|
||||
446 P551
|
||||
|
@ -1,15 +0,0 @@
|
||||
# triples: 291818
|
||||
# entities: 12554
|
||||
# relations: 423
|
||||
# timesteps: 70
|
||||
# test triples: 19271
|
||||
# valid triples: 20208
|
||||
# train triples: 252339
|
||||
Measure method: N/A
|
||||
Target Size : 423
|
||||
Grow Factor: 0
|
||||
Shrink Factor: 4.0
|
||||
Epsilon Factor: 0
|
||||
Search method: N/A
|
||||
filter_dupes: inter
|
||||
nonames: False
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@ -1,24 +0,0 @@
|
||||
P1376 0
|
||||
P512 4
|
||||
P579 3
|
||||
P150 18
|
||||
P190 5
|
||||
P551 19
|
||||
P131 1
|
||||
P793 21
|
||||
P1435 13
|
||||
P39 14
|
||||
P17 6
|
||||
P54 22
|
||||
P31 15
|
||||
P6 7
|
||||
P1411 20
|
||||
P2962 2
|
||||
P463 9
|
||||
P1346 16
|
||||
P108 10
|
||||
P69 23
|
||||
P166 17
|
||||
P102 11
|
||||
P27 12
|
||||
P26 8
|
File diff suppressed because it is too large
Load Diff
@ -1,423 +0,0 @@
|
||||
0 P131[0-0]
|
||||
1 P131[1-1]
|
||||
2 P131[2-2]
|
||||
3 P131[3-3]
|
||||
4 P131[4-4]
|
||||
5 P131[5-5]
|
||||
6 P131[6-6]
|
||||
7 P131[7-7]
|
||||
8 P131[8-8]
|
||||
9 P131[9-9]
|
||||
10 P131[10-10]
|
||||
11 P131[11-11]
|
||||
12 P131[12-12]
|
||||
13 P131[13-13]
|
||||
14 P131[14-14]
|
||||
15 P131[15-15]
|
||||
16 P131[16-16]
|
||||
17 P131[17-17]
|
||||
18 P131[18-18]
|
||||
19 P131[19-19]
|
||||
20 P131[20-20]
|
||||
21 P131[21-21]
|
||||
22 P131[22-22]
|
||||
23 P131[23-23]
|
||||
24 P131[24-24]
|
||||
25 P131[25-25]
|
||||
26 P131[26-26]
|
||||
27 P131[27-27]
|
||||
28 P131[28-28]
|
||||
29 P131[29-29]
|
||||
30 P131[30-30]
|
||||
31 P131[31-31]
|
||||
32 P131[32-32]
|
||||
33 P131[33-33]
|
||||
34 P131[34-34]
|
||||
35 P131[35-35]
|
||||
36 P131[36-36]
|
||||
37 P131[37-37]
|
||||
38 P131[38-38]
|
||||
39 P131[39-39]
|
||||
40 P131[40-40]
|
||||
41 P131[41-41]
|
||||
42 P131[42-42]
|
||||
43 P131[43-43]
|
||||
44 P131[44-44]
|
||||
45 P131[45-45]
|
||||
46 P131[46-46]
|
||||
47 P131[47-47]
|
||||
48 P131[48-48]
|
||||
49 P131[49-49]
|
||||
50 P131[50-50]
|
||||
51 P131[51-51]
|
||||
52 P131[52-52]
|
||||
53 P131[53-53]
|
||||
54 P131[54-54]
|
||||
55 P131[55-55]
|
||||
56 P131[56-56]
|
||||
57 P131[57-57]
|
||||
58 P131[58-58]
|
||||
59 P131[59-59]
|
||||
60 P131[60-60]
|
||||
61 P131[61-61]
|
||||
62 P131[62-62]
|
||||
63 P131[63-63]
|
||||
64 P131[64-64]
|
||||
65 P131[65-65]
|
||||
66 P131[66-66]
|
||||
67 P131[67-67]
|
||||
68 P131[68-68]
|
||||
69 P131[69-69]
|
||||
70 P1435[65-65]
|
||||
71 P39[49-49]
|
||||
72 P39[50-50]
|
||||
73 P39[51-51]
|
||||
74 P39[52-52]
|
||||
75 P39[53-53]
|
||||
76 P39[54-54]
|
||||
77 P39[55-55]
|
||||
78 P39[56-56]
|
||||
79 P39[57-57]
|
||||
80 P39[58-58]
|
||||
81 P39[59-59]
|
||||
82 P39[60-60]
|
||||
83 P39[61-61]
|
||||
84 P39[62-62]
|
||||
85 P39[63-63]
|
||||
86 P39[64-64]
|
||||
87 P39[65-65]
|
||||
88 P39[66-66]
|
||||
89 P39[67-67]
|
||||
90 P39[68-68]
|
||||
91 P39[69-69]
|
||||
92 P54[40-40]
|
||||
93 P54[41-41]
|
||||
94 P54[42-42]
|
||||
95 P54[43-43]
|
||||
96 P54[44-44]
|
||||
97 P54[45-45]
|
||||
98 P54[46-46]
|
||||
99 P54[47-47]
|
||||
100 P54[48-48]
|
||||
101 P54[49-49]
|
||||
102 P54[50-50]
|
||||
103 P54[51-51]
|
||||
104 P54[52-52]
|
||||
105 P54[53-53]
|
||||
106 P54[54-54]
|
||||
107 P54[55-55]
|
||||
108 P54[56-56]
|
||||
109 P54[57-57]
|
||||
110 P54[58-58]
|
||||
111 P54[59-59]
|
||||
112 P54[60-60]
|
||||
113 P54[61-61]
|
||||
114 P54[62-62]
|
||||
115 P54[63-63]
|
||||
116 P54[64-64]
|
||||
117 P54[65-65]
|
||||
118 P54[66-66]
|
||||
119 P54[67-67]
|
||||
120 P54[68-68]
|
||||
121 P54[69-69]
|
||||
122 P31[0-0]
|
||||
123 P31[1-1]
|
||||
124 P31[2-2]
|
||||
125 P31[3-3]
|
||||
126 P31[4-4]
|
||||
127 P31[5-5]
|
||||
128 P31[6-6]
|
||||
129 P31[7-7]
|
||||
130 P31[8-8]
|
||||
131 P31[9-9]
|
||||
132 P31[10-10]
|
||||
133 P31[11-11]
|
||||
134 P31[12-12]
|
||||
135 P31[13-13]
|
||||
136 P31[14-14]
|
||||
137 P31[15-15]
|
||||
138 P31[16-16]
|
||||
139 P31[17-17]
|
||||
140 P31[18-18]
|
||||
141 P31[19-19]
|
||||
142 P31[20-20]
|
||||
143 P31[21-21]
|
||||
144 P31[22-22]
|
||||
145 P31[23-23]
|
||||
146 P31[24-24]
|
||||
147 P31[25-25]
|
||||
148 P31[26-26]
|
||||
149 P31[27-27]
|
||||
150 P31[28-28]
|
||||
151 P31[29-29]
|
||||
152 P31[30-30]
|
||||
153 P31[31-31]
|
||||
154 P31[32-32]
|
||||
155 P31[33-33]
|
||||
156 P31[34-34]
|
||||
157 P31[35-35]
|
||||
158 P31[36-36]
|
||||
159 P31[37-37]
|
||||
160 P31[38-38]
|
||||
161 P31[39-39]
|
||||
162 P31[40-40]
|
||||
163 P31[41-41]
|
||||
164 P31[42-42]
|
||||
165 P31[43-43]
|
||||
166 P31[44-44]
|
||||
167 P31[45-45]
|
||||
168 P31[46-46]
|
||||
169 P31[47-47]
|
||||
170 P31[48-48]
|
||||
171 P31[49-49]
|
||||
172 P31[50-50]
|
||||
173 P31[51-51]
|
||||
174 P31[52-52]
|
||||
175 P31[53-53]
|
||||
176 P31[54-54]
|
||||
177 P31[55-55]
|
||||
178 P31[56-56]
|
||||
179 P31[57-57]
|
||||
180 P31[58-58]
|
||||
181 P31[59-59]
|
||||
182 P31[60-60]
|
||||
183 P31[61-61]
|
||||
184 P31[62-62]
|
||||
185 P31[63-63]
|
||||
186 P31[64-64]
|
||||
187 P31[65-65]
|
||||
188 P31[66-66]
|
||||
189 P31[67-67]
|
||||
190 P31[68-68]
|
||||
191 P31[69-69]
|
||||
192 P463[26-26]
|
||||
193 P463[27-27]
|
||||
194 P463[28-28]
|
||||
195 P463[29-29]
|
||||
196 P463[30-30]
|
||||
197 P463[31-31]
|
||||
198 P463[32-32]
|
||||
199 P463[33-33]
|
||||
200 P463[34-34]
|
||||
201 P463[35-35]
|
||||
202 P463[36-36]
|
||||
203 P463[37-37]
|
||||
204 P463[38-38]
|
||||
205 P463[39-39]
|
||||
206 P463[40-40]
|
||||
207 P463[41-41]
|
||||
208 P463[42-42]
|
||||
209 P463[43-43]
|
||||
210 P463[44-44]
|
||||
211 P463[45-45]
|
||||
212 P463[46-46]
|
||||
213 P463[47-47]
|
||||
214 P463[48-48]
|
||||
215 P463[49-49]
|
||||
216 P463[50-50]
|
||||
217 P463[51-51]
|
||||
218 P463[52-52]
|
||||
219 P463[53-53]
|
||||
220 P463[54-54]
|
||||
221 P463[55-55]
|
||||
222 P463[56-56]
|
||||
223 P463[57-57]
|
||||
224 P463[58-58]
|
||||
225 P463[59-59]
|
||||
226 P463[60-60]
|
||||
227 P463[61-61]
|
||||
228 P463[62-62]
|
||||
229 P463[63-63]
|
||||
230 P463[64-64]
|
||||
231 P463[65-65]
|
||||
232 P463[66-66]
|
||||
233 P463[67-67]
|
||||
234 P463[68-68]
|
||||
235 P463[69-69]
|
||||
236 P512[4-69]
|
||||
237 P190[0-29]
|
||||
238 P150[0-3]
|
||||
239 P1376[39-47]
|
||||
240 P463[0-7]
|
||||
241 P166[0-7]
|
||||
242 P2962[18-30]
|
||||
243 P108[29-36]
|
||||
244 P39[0-3]
|
||||
245 P17[47-48]
|
||||
246 P166[21-23]
|
||||
247 P793[46-69]
|
||||
248 P69[32-41]
|
||||
249 P17[57-58]
|
||||
250 P190[42-45]
|
||||
251 P2962[39-42]
|
||||
252 P54[0-18]
|
||||
253 P26[56-61]
|
||||
254 P150[14-17]
|
||||
255 P463[16-17]
|
||||
256 P26[39-46]
|
||||
257 P579[36-43]
|
||||
258 P579[16-23]
|
||||
259 P2962[59-60]
|
||||
260 P1411[59-61]
|
||||
261 P26[20-27]
|
||||
262 P6[4-69]
|
||||
263 P1435[33-34]
|
||||
264 P166[52-53]
|
||||
265 P108[49-57]
|
||||
266 P150[10-13]
|
||||
267 P1346[47-68]
|
||||
268 P150[18-21]
|
||||
269 P1346[13-46]
|
||||
270 P69[20-23]
|
||||
271 P39[31-32]
|
||||
272 P1411[32-37]
|
||||
273 P166[62-63]
|
||||
274 P150[44-47]
|
||||
275 P2962[61-62]
|
||||
276 P150[48-51]
|
||||
277 P150[52-55]
|
||||
278 P1411[62-67]
|
||||
279 P1435[35-36]
|
||||
280 P1411[48-51]
|
||||
281 P150[22-25]
|
||||
282 P2962[63-64]
|
||||
283 P2962[65-66]
|
||||
284 P166[58-59]
|
||||
285 P190[46-49]
|
||||
286 P54[34-35]
|
||||
287 P1435[4-16]
|
||||
288 P463[18-19]
|
||||
289 P150[31-34]
|
||||
290 P150[35-38]
|
||||
291 P39[35-36]
|
||||
292 P26[62-69]
|
||||
293 P1411[56-58]
|
||||
294 P1435[37-38]
|
||||
295 P166[60-61]
|
||||
296 P39[33-34]
|
||||
297 P102[24-31]
|
||||
298 P2962[43-46]
|
||||
299 P108[37-48]
|
||||
300 P190[50-53]
|
||||
301 P39[4-6]
|
||||
302 P1435[39-40]
|
||||
303 P793[0-45]
|
||||
304 P150[64-69]
|
||||
305 P39[19-22]
|
||||
306 P27[30-38]
|
||||
307 P2962[31-38]
|
||||
308 P1411[24-31]
|
||||
309 P102[40-45]
|
||||
310 P39[37-38]
|
||||
311 P463[8-11]
|
||||
312 P1435[41-42]
|
||||
313 P27[52-59]
|
||||
314 P69[16-19]
|
||||
315 P17[16-18]
|
||||
316 P190[54-57]
|
||||
317 P1435[43-44]
|
||||
318 P166[8-15]
|
||||
319 P166[45-47]
|
||||
320 P2962[47-50]
|
||||
321 P39[39-40]
|
||||
322 P1411[52-55]
|
||||
323 P108[58-69]
|
||||
324 P463[20-21]
|
||||
325 P39[41-42]
|
||||
326 P150[26-30]
|
||||
327 P150[39-43]
|
||||
328 P1435[45-46]
|
||||
329 P26[28-38]
|
||||
330 P54[27-30]
|
||||
331 P190[58-61]
|
||||
332 P17[59-61]
|
||||
333 P54[36-37]
|
||||
334 P166[16-20]
|
||||
335 P166[37-40]
|
||||
336 P1435[47-48]
|
||||
337 P17[0-3]
|
||||
338 P26[47-55]
|
||||
339 P1435[49-50]
|
||||
340 P1435[25-28]
|
||||
341 P150[4-9]
|
||||
342 P102[63-69]
|
||||
343 P26[0-19]
|
||||
344 P1435[17-24]
|
||||
345 P39[23-26]
|
||||
346 P1435[51-52]
|
||||
347 P39[7-11]
|
||||
348 P69[12-15]
|
||||
349 P69[24-31]
|
||||
350 P102[0-23]
|
||||
351 P39[43-44]
|
||||
352 P579[24-35]
|
||||
353 P190[62-65]
|
||||
354 P1435[53-54]
|
||||
355 P1376[0-18]
|
||||
356 P27[0-14]
|
||||
357 P463[12-15]
|
||||
358 P166[33-36]
|
||||
359 P102[32-39]
|
||||
360 P17[4-7]
|
||||
361 P190[30-41]
|
||||
362 P166[24-28]
|
||||
363 P190[66-69]
|
||||
364 P69[42-69]
|
||||
365 P1435[55-56]
|
||||
366 P54[31-33]
|
||||
367 P39[45-46]
|
||||
368 P17[12-15]
|
||||
369 P1435[57-58]
|
||||
370 P54[19-26]
|
||||
371 P2962[51-54]
|
||||
372 P2962[67-69]
|
||||
373 P1435[59-60]
|
||||
374 P579[44-56]
|
||||
375 P1435[61-62]
|
||||
376 P166[41-44]
|
||||
377 P17[19-22]
|
||||
378 P1376[19-38]
|
||||
379 P17[23-26]
|
||||
380 P1376[48-69]
|
||||
381 P463[22-23]
|
||||
382 P17[27-30]
|
||||
383 P1435[63-64]
|
||||
384 P69[0-3]
|
||||
385 P1435[66-67]
|
||||
386 P17[35-38]
|
||||
387 P69[8-11]
|
||||
388 P1435[68-69]
|
||||
389 P17[31-34]
|
||||
390 P102[46-53]
|
||||
391 P27[60-69]
|
||||
392 P579[57-69]
|
||||
393 P69[4-7]
|
||||
394 P1411[7-14]
|
||||
395 P551[0-35]
|
||||
396 P108[0-28]
|
||||
397 P17[8-11]
|
||||
398 P1411[38-47]
|
||||
399 P17[43-46]
|
||||
400 P17[49-52]
|
||||
401 P166[64-69]
|
||||
402 P1435[29-32]
|
||||
403 P54[38-39]
|
||||
404 P39[27-30]
|
||||
405 P2962[55-58]
|
||||
406 P463[24-25]
|
||||
407 P17[39-42]
|
||||
408 P17[53-56]
|
||||
409 P17[66-69]
|
||||
410 P17[62-65]
|
||||
411 P1411[15-23]
|
||||
412 P166[48-51]
|
||||
413 P27[15-29]
|
||||
414 P150[56-63]
|
||||
415 P27[39-51]
|
||||
416 P39[47-48]
|
||||
417 P166[29-32]
|
||||
418 P39[12-18]
|
||||
419 P166[54-57]
|
||||
420 P551[36-69]
|
||||
421 P579[0-15]
|
||||
422 P102[54-62]
|
File diff suppressed because it is too large
Load Diff
@ -1,71 +0,0 @@
|
||||
0 19 19
|
||||
1 20 1643
|
||||
2 1644 1790
|
||||
3 1791 1816
|
||||
4 1817 1855
|
||||
5 1856 1871
|
||||
6 1872 1893
|
||||
7 1894 1905
|
||||
8 1906 1913
|
||||
9 1914 1918
|
||||
10 1919 1920
|
||||
11 1921 1924
|
||||
12 1925 1929
|
||||
13 1930 1933
|
||||
14 1934 1937
|
||||
15 1938 1941
|
||||
16 1942 1945
|
||||
17 1946 1948
|
||||
18 1949 1950
|
||||
19 1951 1953
|
||||
20 1954 1956
|
||||
21 1957 1959
|
||||
22 1960 1961
|
||||
23 1962 1963
|
||||
24 1964 1965
|
||||
25 1966 1967
|
||||
26 1968 1968
|
||||
27 1969 1970
|
||||
28 1971 1972
|
||||
29 1973 1974
|
||||
30 1975 1976
|
||||
31 1977 1978
|
||||
32 1979 1980
|
||||
33 1981 1982
|
||||
34 1983 1983
|
||||
35 1984 1984
|
||||
36 1985 1985
|
||||
37 1986 1986
|
||||
38 1987 1987
|
||||
39 1988 1988
|
||||
40 1989 1989
|
||||
41 1990 1990
|
||||
42 1991 1991
|
||||
43 1992 1992
|
||||
44 1993 1993
|
||||
45 1994 1994
|
||||
46 1995 1995
|
||||
47 1996 1996
|
||||
48 1997 1997
|
||||
49 1998 1998
|
||||
50 1999 1999
|
||||
51 2000 2000
|
||||
52 2001 2001
|
||||
53 2002 2002
|
||||
54 2003 2003
|
||||
55 2004 2004
|
||||
56 2005 2005
|
||||
57 2006 2006
|
||||
58 2007 2007
|
||||
59 2008 2008
|
||||
60 2009 2009
|
||||
61 2010 2010
|
||||
62 2011 2011
|
||||
63 2012 2012
|
||||
64 2013 2013
|
||||
65 2014 2014
|
||||
66 2015 2015
|
||||
67 2016 2016
|
||||
68 2017 2017
|
||||
69 2018 2020
|
||||
70 2021 2021
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@ -1,15 +0,0 @@
|
||||
# triples: 78032
|
||||
# entities: 10526
|
||||
# relations: 177
|
||||
# timesteps: 46
|
||||
# test triples: 6909
|
||||
# valid triples: 7198
|
||||
# train triples: 63925
|
||||
Measure method: N/A
|
||||
Target Size : 0
|
||||
Grow Factor: 0
|
||||
Shrink Factor: 0
|
||||
Epsilon Factor: 5.0
|
||||
Search method: N/A
|
||||
filter_dupes: inter
|
||||
nonames: False
|
10526
data/yago/entities.dict
10526
data/yago/entities.dict
File diff suppressed because it is too large
Load Diff
@ -1,177 +0,0 @@
|
||||
0 <wasBornIn>[0-2]
|
||||
1 <wasBornIn>[2-5]
|
||||
2 <wasBornIn>[5-7]
|
||||
3 <wasBornIn>[7-10]
|
||||
4 <wasBornIn>[10-12]
|
||||
5 <wasBornIn>[12-15]
|
||||
6 <wasBornIn>[15-17]
|
||||
7 <wasBornIn>[17-20]
|
||||
8 <wasBornIn>[20-22]
|
||||
9 <wasBornIn>[22-25]
|
||||
10 <wasBornIn>[25-27]
|
||||
11 <wasBornIn>[27-30]
|
||||
12 <wasBornIn>[30-32]
|
||||
13 <wasBornIn>[32-35]
|
||||
14 <wasBornIn>[35-45]
|
||||
15 <wasBornIn>[52-52]
|
||||
16 <diedIn>[0-3]
|
||||
17 <diedIn>[3-5]
|
||||
18 <diedIn>[5-7]
|
||||
19 <diedIn>[7-10]
|
||||
20 <diedIn>[10-12]
|
||||
21 <diedIn>[12-14]
|
||||
22 <diedIn>[14-17]
|
||||
23 <diedIn>[17-19]
|
||||
24 <diedIn>[19-21]
|
||||
25 <diedIn>[21-23]
|
||||
26 <diedIn>[23-25]
|
||||
27 <diedIn>[25-27]
|
||||
28 <diedIn>[27-29]
|
||||
29 <diedIn>[29-32]
|
||||
30 <diedIn>[32-34]
|
||||
31 <diedIn>[34-36]
|
||||
32 <diedIn>[36-38]
|
||||
33 <diedIn>[38-40]
|
||||
34 <diedIn>[40-42]
|
||||
35 <diedIn>[42-44]
|
||||
36 <diedIn>[44-47]
|
||||
37 <diedIn>[47-49]
|
||||
38 <diedIn>[49-51]
|
||||
39 <diedIn>[51-53]
|
||||
40 <diedIn>[53-55]
|
||||
41 <diedIn>[55-57]
|
||||
42 <diedIn>[59-59]
|
||||
43 <worksAt>[0-3]
|
||||
44 <worksAt>[3-5]
|
||||
45 <worksAt>[5-7]
|
||||
46 <worksAt>[7-10]
|
||||
47 <worksAt>[10-12]
|
||||
48 <worksAt>[12-14]
|
||||
49 <worksAt>[14-17]
|
||||
50 <worksAt>[17-19]
|
||||
51 <worksAt>[19-21]
|
||||
52 <worksAt>[21-23]
|
||||
53 <worksAt>[23-25]
|
||||
54 <worksAt>[25-27]
|
||||
55 <worksAt>[27-29]
|
||||
56 <worksAt>[29-32]
|
||||
57 <worksAt>[32-34]
|
||||
58 <worksAt>[34-36]
|
||||
59 <worksAt>[36-40]
|
||||
60 <worksAt>[40-42]
|
||||
61 <worksAt>[42-47]
|
||||
62 <worksAt>[47-53]
|
||||
63 <worksAt>[59-59]
|
||||
64 <playsFor>[0-3]
|
||||
65 <playsFor>[3-5]
|
||||
66 <playsFor>[5-23]
|
||||
67 <playsFor>[23-25]
|
||||
68 <playsFor>[25-27]
|
||||
69 <playsFor>[27-29]
|
||||
70 <playsFor>[29-32]
|
||||
71 <playsFor>[32-34]
|
||||
72 <playsFor>[34-36]
|
||||
73 <playsFor>[36-38]
|
||||
74 <playsFor>[38-40]
|
||||
75 <playsFor>[40-42]
|
||||
76 <playsFor>[42-44]
|
||||
77 <playsFor>[44-47]
|
||||
78 <playsFor>[47-51]
|
||||
79 <playsFor>[59-59]
|
||||
80 <hasWonPrize>[1-4]
|
||||
81 <hasWonPrize>[4-6]
|
||||
82 <hasWonPrize>[6-8]
|
||||
83 <hasWonPrize>[8-11]
|
||||
84 <hasWonPrize>[11-15]
|
||||
85 <hasWonPrize>[15-18]
|
||||
86 <hasWonPrize>[18-22]
|
||||
87 <hasWonPrize>[22-26]
|
||||
88 <hasWonPrize>[26-30]
|
||||
89 <hasWonPrize>[30-33]
|
||||
90 <hasWonPrize>[33-37]
|
||||
91 <hasWonPrize>[37-47]
|
||||
92 <hasWonPrize>[47-53]
|
||||
93 <hasWonPrize>[59-59]
|
||||
94 <isMarriedTo>[0-3]
|
||||
95 <isMarriedTo>[3-5]
|
||||
96 <isMarriedTo>[5-7]
|
||||
97 <isMarriedTo>[7-10]
|
||||
98 <isMarriedTo>[10-12]
|
||||
99 <isMarriedTo>[12-14]
|
||||
100 <isMarriedTo>[14-17]
|
||||
101 <isMarriedTo>[17-19]
|
||||
102 <isMarriedTo>[19-21]
|
||||
103 <isMarriedTo>[21-23]
|
||||
104 <isMarriedTo>[23-25]
|
||||
105 <isMarriedTo>[25-27]
|
||||
106 <isMarriedTo>[27-29]
|
||||
107 <isMarriedTo>[29-32]
|
||||
108 <isMarriedTo>[32-34]
|
||||
109 <isMarriedTo>[34-38]
|
||||
110 <isMarriedTo>[38-42]
|
||||
111 <isMarriedTo>[42-47]
|
||||
112 <isMarriedTo>[47-51]
|
||||
113 <isMarriedTo>[51-55]
|
||||
114 <isMarriedTo>[59-59]
|
||||
115 <owns>[0-10]
|
||||
116 <owns>[10-17]
|
||||
117 <owns>[17-19]
|
||||
118 <owns>[19-23]
|
||||
119 <owns>[23-36]
|
||||
120 <owns>[36-38]
|
||||
121 <owns>[59-59]
|
||||
122 <graduatedFrom>[0-3]
|
||||
123 <graduatedFrom>[3-5]
|
||||
124 <graduatedFrom>[5-7]
|
||||
125 <graduatedFrom>[7-10]
|
||||
126 <graduatedFrom>[10-14]
|
||||
127 <graduatedFrom>[14-17]
|
||||
128 <graduatedFrom>[17-19]
|
||||
129 <graduatedFrom>[19-21]
|
||||
130 <graduatedFrom>[21-23]
|
||||
131 <graduatedFrom>[23-27]
|
||||
132 <graduatedFrom>[27-32]
|
||||
133 <graduatedFrom>[32-34]
|
||||
134 <graduatedFrom>[34-38]
|
||||
135 <graduatedFrom>[38-42]
|
||||
136 <graduatedFrom>[59-59]
|
||||
137 <isAffiliatedTo>[1-4]
|
||||
138 <isAffiliatedTo>[4-6]
|
||||
139 <isAffiliatedTo>[6-8]
|
||||
140 <isAffiliatedTo>[8-11]
|
||||
141 <isAffiliatedTo>[11-13]
|
||||
142 <isAffiliatedTo>[13-15]
|
||||
143 <isAffiliatedTo>[15-18]
|
||||
144 <isAffiliatedTo>[18-20]
|
||||
145 <isAffiliatedTo>[20-22]
|
||||
146 <isAffiliatedTo>[22-24]
|
||||
147 <isAffiliatedTo>[24-26]
|
||||
148 <isAffiliatedTo>[26-28]
|
||||
149 <isAffiliatedTo>[28-30]
|
||||
150 <isAffiliatedTo>[30-33]
|
||||
151 <isAffiliatedTo>[33-35]
|
||||
152 <isAffiliatedTo>[35-37]
|
||||
153 <isAffiliatedTo>[37-40]
|
||||
154 <isAffiliatedTo>[40-42]
|
||||
155 <isAffiliatedTo>[42-44]
|
||||
156 <isAffiliatedTo>[44-47]
|
||||
157 <isAffiliatedTo>[47-49]
|
||||
158 <isAffiliatedTo>[49-51]
|
||||
159 <isAffiliatedTo>[51-53]
|
||||
160 <isAffiliatedTo>[53-55]
|
||||
161 <isAffiliatedTo>[55-57]
|
||||
162 <isAffiliatedTo>[59-59]
|
||||
163 <created>[0-3]
|
||||
164 <created>[3-5]
|
||||
165 <created>[5-10]
|
||||
166 <created>[10-12]
|
||||
167 <created>[12-17]
|
||||
168 <created>[17-19]
|
||||
169 <created>[19-25]
|
||||
170 <created>[25-29]
|
||||
171 <created>[29-32]
|
||||
172 <created>[32-36]
|
||||
173 <created>[36-42]
|
||||
174 <created>[42-47]
|
||||
175 <created>[47-53]
|
||||
176 <created>[59-59]
|
6909
data/yago/test.txt
6909
data/yago/test.txt
File diff suppressed because it is too large
Load Diff
@ -1,60 +0,0 @@
|
||||
0 -431 1782
|
||||
1 1783 1848
|
||||
2 1849 1870
|
||||
3 1871 1888
|
||||
4 1889 1899
|
||||
5 1900 1906
|
||||
6 1907 1912
|
||||
7 1913 1917
|
||||
8 1918 1922
|
||||
9 1923 1926
|
||||
10 1927 1930
|
||||
11 1931 1934
|
||||
12 1935 1938
|
||||
13 1939 1941
|
||||
14 1942 1944
|
||||
15 1945 1947
|
||||
16 1948 1950
|
||||
17 1951 1953
|
||||
18 1954 1956
|
||||
19 1957 1959
|
||||
20 1960 1962
|
||||
21 1963 1965
|
||||
22 1966 1967
|
||||
23 1968 1969
|
||||
24 1970 1971
|
||||
25 1972 1973
|
||||
26 1974 1975
|
||||
27 1976 1977
|
||||
28 1978 1979
|
||||
29 1980 1981
|
||||
30 1982 1983
|
||||
31 1984 1985
|
||||
32 1986 1987
|
||||
33 1988 1989
|
||||
34 1990 1991
|
||||
35 1992 1993
|
||||
36 1994 1994
|
||||
37 1995 1996
|
||||
38 1997 1997
|
||||
39 1998 1998
|
||||
40 1999 1999
|
||||
41 2000 2000
|
||||
42 2001 2001
|
||||
43 2002 2002
|
||||
44 2003 2003
|
||||
45 2004 2004
|
||||
46 2005 2005
|
||||
47 2006 2006
|
||||
48 2007 2007
|
||||
49 2008 2008
|
||||
50 2009 2009
|
||||
51 2010 2010
|
||||
52 2011 2011
|
||||
53 2012 2012
|
||||
54 2013 2013
|
||||
55 2014 2014
|
||||
56 2015 2015
|
||||
57 2016 2016
|
||||
58 2017 2017
|
||||
59 2018 2018
|
63925
data/yago/train.txt
63925
data/yago/train.txt
File diff suppressed because it is too large
Load Diff
7198
data/yago/valid.txt
7198
data/yago/valid.txt
File diff suppressed because it is too large
Load Diff
@ -1,793 +0,0 @@
|
||||
0
|
||||
2
|
||||
4
|
||||
9
|
||||
11
|
||||
12
|
||||
16
|
||||
17
|
||||
19
|
||||
27
|
||||
29
|
||||
34
|
||||
35
|
||||
37
|
||||
38
|
||||
41
|
||||
42
|
||||
45
|
||||
49
|
||||
51
|
||||
52
|
||||
54
|
||||
56
|
||||
57
|
||||
61
|
||||
64
|
||||
65
|
||||
67
|
||||
69
|
||||
70
|
||||
72
|
||||
76
|
||||
78
|
||||
79
|
||||
83
|
||||
86
|
||||
87
|
||||
89
|
||||
101
|
||||
102
|
||||
103
|
||||
108
|
||||
111
|
||||
112
|
||||
119
|
||||
121
|
||||
122
|
||||
126
|
||||
128
|
||||
129
|
||||
132
|
||||
134
|
||||
138
|
||||
141
|
||||
144
|
||||
146
|
||||
153
|
||||
154
|
||||
155
|
||||
156
|
||||
158
|
||||
159
|
||||
160
|
||||
161
|
||||
162
|
||||
164
|
||||
165
|
||||
166
|
||||
168
|
||||
173
|
||||
175
|
||||
176
|
||||
177
|
||||
182
|
||||
184
|
||||
185
|
||||
186
|
||||
187
|
||||
188
|
||||
190
|
||||
192
|
||||
193
|
||||
201
|
||||
202
|
||||
208
|
||||
209
|
||||
211
|
||||
213
|
||||
215
|
||||
216
|
||||
217
|
||||
222
|
||||
227
|
||||
229
|
||||
235
|
||||
239
|
||||
240
|
||||
242
|
||||
243
|
||||
245
|
||||
246
|
||||
247
|
||||
251
|
||||
252
|
||||
254
|
||||
257
|
||||
261
|
||||
263
|
||||
266
|
||||
268
|
||||
271
|
||||
279
|
||||
282
|
||||
292
|
||||
300
|
||||
303
|
||||
305
|
||||
308
|
||||
309
|
||||
311
|
||||
313
|
||||
316
|
||||
319
|
||||
322
|
||||
324
|
||||
325
|
||||
329
|
||||
331
|
||||
332
|
||||
333
|
||||
334
|
||||
337
|
||||
339
|
||||
342
|
||||
343
|
||||
346
|
||||
347
|
||||
348
|
||||
349
|
||||
350
|
||||
352
|
||||
353
|
||||
355
|
||||
357
|
||||
361
|
||||
362
|
||||
363
|
||||
367
|
||||
371
|
||||
373
|
||||
378
|
||||
379
|
||||
383
|
||||
384
|
||||
385
|
||||
389
|
||||
392
|
||||
394
|
||||
395
|
||||
396
|
||||
397
|
||||
399
|
||||
400
|
||||
402
|
||||
403
|
||||
407
|
||||
409
|
||||
415
|
||||
416
|
||||
420
|
||||
421
|
||||
422
|
||||
428
|
||||
429
|
||||
432
|
||||
433
|
||||
440
|
||||
442
|
||||
443
|
||||
450
|
||||
452
|
||||
459
|
||||
463
|
||||
464
|
||||
466
|
||||
471
|
||||
472
|
||||
476
|
||||
480
|
||||
484
|
||||
489
|
||||
490
|
||||
493
|
||||
494
|
||||
495
|
||||
500
|
||||
503
|
||||
507
|
||||
509
|
||||
515
|
||||
519
|
||||
520
|
||||
521
|
||||
525
|
||||
528
|
||||
529
|
||||
533
|
||||
534
|
||||
539
|
||||
541
|
||||
542
|
||||
548
|
||||
550
|
||||
556
|
||||
559
|
||||
563
|
||||
566
|
||||
567
|
||||
569
|
||||
573
|
||||
575
|
||||
576
|
||||
579
|
||||
582
|
||||
585
|
||||
588
|
||||
592
|
||||
593
|
||||
594
|
||||
596
|
||||
597
|
||||
598
|
||||
599
|
||||
603
|
||||
604
|
||||
605
|
||||
606
|
||||
607
|
||||
613
|
||||
614
|
||||
616
|
||||
617
|
||||
618
|
||||
619
|
||||
621
|
||||
623
|
||||
624
|
||||
625
|
||||
628
|
||||
638
|
||||
641
|
||||
642
|
||||
648
|
||||
651
|
||||
659
|
||||
660
|
||||
661
|
||||
663
|
||||
664
|
||||
676
|
||||
677
|
||||
678
|
||||
680
|
||||
682
|
||||
686
|
||||
688
|
||||
689
|
||||
691
|
||||
694
|
||||
698
|
||||
704
|
||||
707
|
||||
708
|
||||
712
|
||||
713
|
||||
716
|
||||
719
|
||||
723
|
||||
724
|
||||
726
|
||||
728
|
||||
732
|
||||
741
|
||||
742
|
||||
743
|
||||
744
|
||||
745
|
||||
746
|
||||
750
|
||||
752
|
||||
755
|
||||
759
|
||||
762
|
||||
764
|
||||
767
|
||||
768
|
||||
770
|
||||
772
|
||||
775
|
||||
777
|
||||
780
|
||||
782
|
||||
785
|
||||
789
|
||||
799
|
||||
800
|
||||
801
|
||||
802
|
||||
804
|
||||
805
|
||||
810
|
||||
811
|
||||
816
|
||||
822
|
||||
823
|
||||
826
|
||||
829
|
||||
832
|
||||
834
|
||||
835
|
||||
838
|
||||
839
|
||||
842
|
||||
847
|
||||
848
|
||||
850
|
||||
851
|
||||
852
|
||||
856
|
||||
861
|
||||
862
|
||||
865
|
||||
867
|
||||
868
|
||||
869
|
||||
874
|
||||
876
|
||||
882
|
||||
883
|
||||
884
|
||||
885
|
||||
891
|
||||
893
|
||||
898
|
||||
899
|
||||
906
|
||||
909
|
||||
910
|
||||
911
|
||||
912
|
||||
920
|
||||
923
|
||||
924
|
||||
926
|
||||
928
|
||||
934
|
||||
938
|
||||
941
|
||||
942
|
||||
943
|
||||
944
|
||||
945
|
||||
951
|
||||
954
|
||||
956
|
||||
957
|
||||
958
|
||||
960
|
||||
961
|
||||
963
|
||||
964
|
||||
968
|
||||
970
|
||||
975
|
||||
976
|
||||
977
|
||||
979
|
||||
981
|
||||
988
|
||||
989
|
||||
992
|
||||
993
|
||||
995
|
||||
997
|
||||
1005
|
||||
1008
|
||||
1009
|
||||
1012
|
||||
1013
|
||||
1014
|
||||
1015
|
||||
1023
|
||||
1029
|
||||
1032
|
||||
1038
|
||||
1044
|
||||
1045
|
||||
1052
|
||||
1053
|
||||
1055
|
||||
1057
|
||||
1060
|
||||
1061
|
||||
1065
|
||||
1066
|
||||
1074
|
||||
1077
|
||||
1079
|
||||
1080
|
||||
1082
|
||||
1083
|
||||
1085
|
||||
1086
|
||||
1089
|
||||
1090
|
||||
1091
|
||||
1095
|
||||
1104
|
||||
1107
|
||||
1111
|
||||
1114
|
||||
1121
|
||||
1124
|
||||
1126
|
||||
1127
|
||||
1128
|
||||
1131
|
||||
1132
|
||||
1139
|
||||
1140
|
||||
1142
|
||||
1143
|
||||
1145
|
||||
1148
|
||||
1150
|
||||
1157
|
||||
1163
|
||||
1164
|
||||
1168
|
||||
1170
|
||||
1171
|
||||
1172
|
||||
1173
|
||||
1179
|
||||
1182
|
||||
1186
|
||||
1189
|
||||
1190
|
||||
1191
|
||||
1194
|
||||
1196
|
||||
1198
|
||||
1201
|
||||
1204
|
||||
1206
|
||||
1208
|
||||
1217
|
||||
1220
|
||||
1223
|
||||
1228
|
||||
1231
|
||||
1232
|
||||
1235
|
||||
1236
|
||||
1237
|
||||
1238
|
||||
1240
|
||||
1246
|
||||
1247
|
||||
1249
|
||||
1252
|
||||
1258
|
||||
1260
|
||||
1265
|
||||
1266
|
||||
1273
|
||||
1274
|
||||
1278
|
||||
1279
|
||||
1280
|
||||
1284
|
||||
1286
|
||||
1287
|
||||
1288
|
||||
1289
|
||||
1290
|
||||
1293
|
||||
1294
|
||||
1295
|
||||
1297
|
||||
1298
|
||||
1301
|
||||
1303
|
||||
1304
|
||||
1305
|
||||
1307
|
||||
1308
|
||||
1309
|
||||
1314
|
||||
1318
|
||||
1319
|
||||
1323
|
||||
1325
|
||||
1327
|
||||
1328
|
||||
1333
|
||||
1337
|
||||
1340
|
||||
1341
|
||||
1343
|
||||
1345
|
||||
1346
|
||||
1347
|
||||
1349
|
||||
1350
|
||||
1351
|
||||
1358
|
||||
1364
|
||||
1365
|
||||
1367
|
||||
1368
|
||||
1369
|
||||
1370
|
||||
1373
|
||||
1375
|
||||
1376
|
||||
1378
|
||||
1380
|
||||
1381
|
||||
1382
|
||||
1385
|
||||
1387
|
||||
1390
|
||||
1391
|
||||
1394
|
||||
1396
|
||||
1397
|
||||
1399
|
||||
1400
|
||||
1406
|
||||
1409
|
||||
1412
|
||||
1416
|
||||
1417
|
||||
1418
|
||||
1420
|
||||
1423
|
||||
1425
|
||||
1428
|
||||
1430
|
||||
1431
|
||||
1432
|
||||
1437
|
||||
1438
|
||||
1439
|
||||
1444
|
||||
1447
|
||||
1450
|
||||
1454
|
||||
1456
|
||||
1457
|
||||
1460
|
||||
1464
|
||||
1465
|
||||
1469
|
||||
1473
|
||||
1474
|
||||
1475
|
||||
1477
|
||||
1479
|
||||
1488
|
||||
1490
|
||||
1493
|
||||
1494
|
||||
1497
|
||||
1500
|
||||
1502
|
||||
1503
|
||||
1504
|
||||
1505
|
||||
1507
|
||||
1508
|
||||
1510
|
||||
1514
|
||||
1515
|
||||
1520
|
||||
1522
|
||||
1523
|
||||
1526
|
||||
1547
|
||||
1549
|
||||
1553
|
||||
1556
|
||||
1557
|
||||
1558
|
||||
1562
|
||||
1563
|
||||
1564
|
||||
1565
|
||||
1570
|
||||
1571
|
||||
1574
|
||||
1575
|
||||
1579
|
||||
1591
|
||||
1592
|
||||
1594
|
||||
1601
|
||||
1604
|
||||
1605
|
||||
1606
|
||||
1608
|
||||
1609
|
||||
1613
|
||||
1618
|
||||
1619
|
||||
1620
|
||||
1621
|
||||
1632
|
||||
1634
|
||||
1635
|
||||
1636
|
||||
1642
|
||||
1643
|
||||
1648
|
||||
1650
|
||||
1652
|
||||
1653
|
||||
1660
|
||||
1661
|
||||
1662
|
||||
1666
|
||||
1669
|
||||
1670
|
||||
1676
|
||||
1677
|
||||
1682
|
||||
1683
|
||||
1690
|
||||
1692
|
||||
1693
|
||||
1697
|
||||
1698
|
||||
1702
|
||||
1703
|
||||
1706
|
||||
1709
|
||||
1711
|
||||
1713
|
||||
1715
|
||||
1717
|
||||
1721
|
||||
1724
|
||||
1725
|
||||
1729
|
||||
1730
|
||||
1733
|
||||
1734
|
||||
1735
|
||||
1736
|
||||
1741
|
||||
1745
|
||||
1746
|
||||
1748
|
||||
1749
|
||||
1751
|
||||
1755
|
||||
1761
|
||||
1763
|
||||
1766
|
||||
1767
|
||||
1768
|
||||
1769
|
||||
1773
|
||||
1775
|
||||
1777
|
||||
1778
|
||||
1783
|
||||
1789
|
||||
1790
|
||||
1792
|
||||
1793
|
||||
1795
|
||||
1800
|
||||
1803
|
||||
1805
|
||||
1809
|
||||
1812
|
||||
1815
|
||||
1816
|
||||
1819
|
||||
1820
|
||||
1822
|
||||
1823
|
||||
1824
|
||||
1825
|
||||
1828
|
||||
1831
|
||||
1833
|
||||
1834
|
||||
1835
|
||||
1836
|
||||
1837
|
||||
1842
|
||||
1848
|
||||
1849
|
||||
1852
|
||||
1853
|
||||
1854
|
||||
1856
|
||||
1857
|
||||
1858
|
||||
1859
|
||||
1861
|
||||
1864
|
||||
1865
|
||||
1869
|
||||
1873
|
||||
1874
|
||||
1876
|
||||
1877
|
||||
1882
|
||||
1883
|
||||
1884
|
||||
1885
|
||||
1888
|
||||
1889
|
||||
1890
|
||||
1892
|
||||
1894
|
||||
1896
|
||||
1899
|
||||
1902
|
||||
1903
|
||||
1905
|
||||
1908
|
||||
1910
|
||||
1913
|
||||
1914
|
||||
1915
|
||||
1920
|
||||
1928
|
||||
1931
|
||||
1936
|
||||
1938
|
||||
1941
|
||||
1942
|
||||
1944
|
||||
1946
|
||||
1947
|
||||
1948
|
||||
1954
|
||||
1956
|
||||
1958
|
||||
1961
|
||||
1966
|
||||
1968
|
||||
1969
|
||||
1971
|
||||
1972
|
||||
1977
|
||||
1979
|
||||
1985
|
||||
1986
|
||||
1987
|
||||
1988
|
||||
1989
|
||||
1990
|
||||
1999
|
||||
2001
|
||||
2005
|
||||
2009
|
||||
2010
|
||||
2012
|
||||
2013
|
||||
2014
|
||||
2015
|
||||
2017
|
||||
2018
|
||||
2022
|
||||
2023
|
||||
2028
|
||||
2032
|
||||
2036
|
||||
2037
|
||||
2038
|
||||
2041
|
||||
2042
|
||||
2043
|
||||
2044
|
||||
2045
|
||||
2046
|
||||
2048
|
File diff suppressed because it is too large
Load Diff
@ -1,809 +0,0 @@
|
||||
7
|
||||
9
|
||||
12
|
||||
15
|
||||
17
|
||||
22
|
||||
24
|
||||
25
|
||||
28
|
||||
29
|
||||
32
|
||||
37
|
||||
38
|
||||
41
|
||||
43
|
||||
49
|
||||
52
|
||||
54
|
||||
57
|
||||
58
|
||||
59
|
||||
60
|
||||
66
|
||||
69
|
||||
72
|
||||
76
|
||||
78
|
||||
81
|
||||
83
|
||||
84
|
||||
85
|
||||
88
|
||||
89
|
||||
94
|
||||
100
|
||||
102
|
||||
105
|
||||
106
|
||||
107
|
||||
108
|
||||
109
|
||||
115
|
||||
116
|
||||
121
|
||||
123
|
||||
124
|
||||
127
|
||||
128
|
||||
133
|
||||
135
|
||||
137
|
||||
138
|
||||
141
|
||||
144
|
||||
156
|
||||
157
|
||||
159
|
||||
161
|
||||
168
|
||||
171
|
||||
172
|
||||
174
|
||||
175
|
||||
176
|
||||
181
|
||||
182
|
||||
186
|
||||
188
|
||||
189
|
||||
190
|
||||
191
|
||||
195
|
||||
197
|
||||
198
|
||||
200
|
||||
201
|
||||
204
|
||||
208
|
||||
212
|
||||
215
|
||||
216
|
||||
217
|
||||
218
|
||||
219
|
||||
220
|
||||
222
|
||||
224
|
||||
225
|
||||
227
|
||||
229
|
||||
230
|
||||
233
|
||||
236
|
||||
239
|
||||
240
|
||||
242
|
||||
243
|
||||
244
|
||||
246
|
||||
247
|
||||
250
|
||||
251
|
||||
253
|
||||
254
|
||||
255
|
||||
256
|
||||
257
|
||||
261
|
||||
265
|
||||
266
|
||||
271
|
||||
273
|
||||
274
|
||||
275
|
||||
276
|
||||
279
|
||||
280
|
||||
282
|
||||
284
|
||||
287
|
||||
289
|
||||
292
|
||||
296
|
||||
297
|
||||
299
|
||||
300
|
||||
302
|
||||
308
|
||||
311
|
||||
312
|
||||
315
|
||||
316
|
||||
317
|
||||
320
|
||||
321
|
||||
322
|
||||
326
|
||||
331
|
||||
333
|
||||
335
|
||||
336
|
||||
337
|
||||
339
|
||||
344
|
||||
345
|
||||
346
|
||||
347
|
||||
351
|
||||
352
|
||||
353
|
||||
354
|
||||
355
|
||||
358
|
||||
359
|
||||
362
|
||||
364
|
||||
366
|
||||
368
|
||||
373
|
||||
376
|
||||
388
|
||||
390
|
||||
392
|
||||
393
|
||||
394
|
||||
395
|
||||
397
|
||||
398
|
||||
401
|
||||
403
|
||||
406
|
||||
407
|
||||
409
|
||||
410
|
||||
412
|
||||
413
|
||||
415
|
||||
416
|
||||
418
|
||||
420
|
||||
421
|
||||
425
|
||||
435
|
||||
437
|
||||
443
|
||||
444
|
||||
445
|
||||
446
|
||||
448
|
||||
453
|
||||
455
|
||||
456
|
||||
462
|
||||
463
|
||||
468
|
||||
470
|
||||
471
|
||||
477
|
||||
478
|
||||
481
|
||||
485
|
||||
490
|
||||
491
|
||||
493
|
||||
498
|
||||
505
|
||||
510
|
||||
513
|
||||
514
|
||||
515
|
||||
516
|
||||
521
|
||||
523
|
||||
527
|
||||
529
|
||||
531
|
||||
534
|
||||
535
|
||||
536
|
||||
537
|
||||
538
|
||||
543
|
||||
547
|
||||
550
|
||||
555
|
||||
557
|
||||
558
|
||||
559
|
||||
560
|
||||
561
|
||||
565
|
||||
566
|
||||
567
|
||||
570
|
||||
575
|
||||
577
|
||||
580
|
||||
581
|
||||
582
|
||||
593
|
||||
594
|
||||
595
|
||||
597
|
||||
599
|
||||
602
|
||||
605
|
||||
609
|
||||
612
|
||||
614
|
||||
616
|
||||
618
|
||||
620
|
||||
625
|
||||
628
|
||||
632
|
||||
633
|
||||
635
|
||||
636
|
||||
643
|
||||
644
|
||||
645
|
||||
646
|
||||
647
|
||||
648
|
||||
652
|
||||
662
|
||||
663
|
||||
669
|
||||
670
|
||||
672
|
||||
673
|
||||
681
|
||||
682
|
||||
685
|
||||
687
|
||||
689
|
||||
693
|
||||
697
|
||||
700
|
||||
702
|
||||
707
|
||||
711
|
||||
716
|
||||
717
|
||||
719
|
||||
727
|
||||
728
|
||||
729
|
||||
730
|
||||
732
|
||||
733
|
||||
734
|
||||
738
|
||||
740
|
||||
744
|
||||
751
|
||||
754
|
||||
755
|
||||
756
|
||||
760
|
||||
761
|
||||
762
|
||||
763
|
||||
766
|
||||
768
|
||||
770
|
||||
771
|
||||
772
|
||||
773
|
||||
774
|
||||
775
|
||||
776
|
||||
777
|
||||
779
|
||||
781
|
||||
782
|
||||
784
|
||||
786
|
||||
788
|
||||
789
|
||||
792
|
||||
795
|
||||
799
|
||||
800
|
||||
805
|
||||
808
|
||||
810
|
||||
812
|
||||
815
|
||||
817
|
||||
820
|
||||
821
|
||||
825
|
||||
827
|
||||
829
|
||||
831
|
||||
832
|
||||
833
|
||||
834
|
||||
836
|
||||
837
|
||||
840
|
||||
841
|
||||
842
|
||||
848
|
||||
849
|
||||
850
|
||||
851
|
||||
852
|
||||
855
|
||||
858
|
||||
860
|
||||
861
|
||||
866
|
||||
869
|
||||
871
|
||||
872
|
||||
877
|
||||
878
|
||||
880
|
||||
881
|
||||
882
|
||||
884
|
||||
885
|
||||
886
|
||||
891
|
||||
893
|
||||
897
|
||||
899
|
||||
901
|
||||
908
|
||||
911
|
||||
913
|
||||
919
|
||||
921
|
||||
925
|
||||
927
|
||||
929
|
||||
934
|
||||
937
|
||||
938
|
||||
945
|
||||
947
|
||||
948
|
||||
950
|
||||
957
|
||||
962
|
||||
963
|
||||
965
|
||||
969
|
||||
971
|
||||
976
|
||||
977
|
||||
978
|
||||
985
|
||||
986
|
||||
989
|
||||
990
|
||||
991
|
||||
993
|
||||
996
|
||||
997
|
||||
998
|
||||
1003
|
||||
1005
|
||||
1006
|
||||
1007
|
||||
1010
|
||||
1011
|
||||
1013
|
||||
1014
|
||||
1019
|
||||
1022
|
||||
1024
|
||||
1025
|
||||
1028
|
||||
1031
|
||||
1032
|
||||
1034
|
||||
1038
|
||||
1040
|
||||
1042
|
||||
1043
|
||||
1048
|
||||
1049
|
||||
1050
|
||||
1051
|
||||
1056
|
||||
1057
|
||||
1059
|
||||
1062
|
||||
1063
|
||||
1065
|
||||
1066
|
||||
1071
|
||||
1072
|
||||
1074
|
||||
1075
|
||||
1076
|
||||
1080
|
||||
1081
|
||||
1082
|
||||
1085
|
||||
1086
|
||||
1087
|
||||
1090
|
||||
1095
|
||||
1096
|
||||
1098
|
||||
1099
|
||||
1101
|
||||
1105
|
||||
1108
|
||||
1109
|
||||
1110
|
||||
1112
|
||||
1117
|
||||
1119
|
||||
1121
|
||||
1122
|
||||
1123
|
||||
1125
|
||||
1129
|
||||
1133
|
||||
1139
|
||||
1143
|
||||
1145
|
||||
1147
|
||||
1151
|
||||
1153
|
||||
1154
|
||||
1158
|
||||
1159
|
||||
1162
|
||||
1165
|
||||
1167
|
||||
1169
|
||||
1171
|
||||
1175
|
||||
1177
|
||||
1178
|
||||
1180
|
||||
1181
|
||||
1182
|
||||
1185
|
||||
1187
|
||||
1188
|
||||
1193
|
||||
1197
|
||||
1199
|
||||
1217
|
||||
1218
|
||||
1220
|
||||
1221
|
||||
1225
|
||||
1227
|
||||
1230
|
||||
1232
|
||||
1233
|
||||
1235
|
||||
1236
|
||||
1237
|
||||
1238
|
||||
1239
|
||||
1244
|
||||
1246
|
||||
1247
|
||||
1248
|
||||
1262
|
||||
1263
|
||||
1264
|
||||
1266
|
||||
1267
|
||||
1269
|
||||
1271
|
||||
1272
|
||||
1273
|
||||
1276
|
||||
1277
|
||||
1278
|
||||
1280
|
||||
1284
|
||||
1291
|
||||
1292
|
||||
1293
|
||||
1295
|
||||
1296
|
||||
1297
|
||||
1299
|
||||
1300
|
||||
1301
|
||||
1305
|
||||
1307
|
||||
1309
|
||||
1312
|
||||
1322
|
||||
1325
|
||||
1330
|
||||
1334
|
||||
1335
|
||||
1337
|
||||
1338
|
||||
1340
|
||||
1342
|
||||
1346
|
||||
1347
|
||||
1350
|
||||
1351
|
||||
1356
|
||||
1357
|
||||
1358
|
||||
1359
|
||||
1366
|
||||
1368
|
||||
1370
|
||||
1371
|
||||
1373
|
||||
1376
|
||||
1379
|
||||
1382
|
||||
1383
|
||||
1384
|
||||
1385
|
||||
1386
|
||||
1387
|
||||
1389
|
||||
1393
|
||||
1394
|
||||
1398
|
||||
1403
|
||||
1404
|
||||
1409
|
||||
1411
|
||||
1413
|
||||
1415
|
||||
1420
|
||||
1421
|
||||
1423
|
||||
1426
|
||||
1429
|
||||
1431
|
||||
1433
|
||||
1434
|
||||
1439
|
||||
1444
|
||||
1446
|
||||
1447
|
||||
1456
|
||||
1457
|
||||
1461
|
||||
1467
|
||||
1469
|
||||
1472
|
||||
1477
|
||||
1481
|
||||
1493
|
||||
1494
|
||||
1496
|
||||
1498
|
||||
1499
|
||||
1501
|
||||
1503
|
||||
1506
|
||||
1507
|
||||
1508
|
||||
1510
|
||||
1511
|
||||
1512
|
||||
1516
|
||||
1521
|
||||
1523
|
||||
1527
|
||||
1528
|
||||
1529
|
||||
1530
|
||||
1535
|
||||
1537
|
||||
1540
|
||||
1541
|
||||
1542
|
||||
1546
|
||||
1552
|
||||
1559
|
||||
1562
|
||||
1563
|
||||
1564
|
||||
1567
|
||||
1572
|
||||
1574
|
||||
1577
|
||||
1581
|
||||
1587
|
||||
1589
|
||||
1594
|
||||
1601
|
||||
1603
|
||||
1613
|
||||
1614
|
||||
1616
|
||||
1617
|
||||
1618
|
||||
1619
|
||||
1620
|
||||
1621
|
||||
1623
|
||||
1624
|
||||
1625
|
||||
1626
|
||||
1631
|
||||
1632
|
||||
1634
|
||||
1635
|
||||
1636
|
||||
1638
|
||||
1640
|
||||
1642
|
||||
1643
|
||||
1645
|
||||
1647
|
||||
1648
|
||||
1650
|
||||
1651
|
||||
1652
|
||||
1655
|
||||
1656
|
||||
1658
|
||||
1661
|
||||
1662
|
||||
1663
|
||||
1665
|
||||
1666
|
||||
1667
|
||||
1668
|
||||
1669
|
||||
1674
|
||||
1675
|
||||
1685
|
||||
1686
|
||||
1695
|
||||
1697
|
||||
1698
|
||||
1699
|
||||
1706
|
||||
1713
|
||||
1716
|
||||
1717
|
||||
1718
|
||||
1723
|
||||
1724
|
||||
1725
|
||||
1729
|
||||
1730
|
||||
1731
|
||||
1732
|
||||
1733
|
||||
1734
|
||||
1738
|
||||
1741
|
||||
1744
|
||||
1749
|
||||
1761
|
||||
1762
|
||||
1769
|
||||
1772
|
||||
1774
|
||||
1776
|
||||
1777
|
||||
1781
|
||||
1784
|
||||
1787
|
||||
1789
|
||||
1790
|
||||
1791
|
||||
1798
|
||||
1804
|
||||
1805
|
||||
1807
|
||||
1808
|
||||
1811
|
||||
1812
|
||||
1816
|
||||
1821
|
||||
1824
|
||||
1827
|
||||
1831
|
||||
1834
|
||||
1835
|
||||
1836
|
||||
1842
|
||||
1847
|
||||
1852
|
||||
1855
|
||||
1856
|
||||
1859
|
||||
1861
|
||||
1862
|
||||
1865
|
||||
1866
|
||||
1871
|
||||
1872
|
||||
1874
|
||||
1876
|
||||
1877
|
||||
1878
|
||||
1879
|
||||
1880
|
||||
1881
|
||||
1885
|
||||
1887
|
||||
1888
|
||||
1889
|
||||
1891
|
||||
1892
|
||||
1894
|
||||
1895
|
||||
1899
|
||||
1900
|
||||
1907
|
||||
1911
|
||||
1913
|
||||
1914
|
||||
1915
|
||||
1917
|
||||
1919
|
||||
1920
|
||||
1923
|
||||
1924
|
||||
1925
|
||||
1927
|
||||
1934
|
||||
1939
|
||||
1940
|
||||
1941
|
||||
1948
|
||||
1951
|
||||
1953
|
||||
1957
|
||||
1958
|
||||
1959
|
||||
1961
|
||||
1962
|
||||
1965
|
||||
1966
|
||||
1967
|
||||
1971
|
||||
1973
|
||||
1975
|
||||
1979
|
||||
1981
|
||||
1983
|
||||
1989
|
||||
1996
|
||||
1997
|
||||
2000
|
||||
2004
|
||||
2007
|
||||
2009
|
||||
2011
|
||||
2012
|
||||
2016
|
||||
2017
|
||||
2019
|
||||
2021
|
||||
2024
|
||||
2029
|
||||
2040
|
||||
2042
|
||||
2044
|
||||
2048
|
3
icews14_both.log
Normal file
3
icews14_both.log
Normal file
@ -0,0 +1,3 @@
|
||||
nohup: ignoring input
|
||||
2023-06-20 09:22:51,618 - [INFO] - {'dataset': 'icews14_both', 'name': 'icews14_both', 'gpu': '2', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': False}
|
||||
2023-06-20 09:22:57,979 - [INFO] - [E:0| 0]: Train Loss:0.70005, Val MRR:0.0, icews14_both
|
14945
log/ice00001
Normal file
14945
log/ice00001
Normal file
File diff suppressed because it is too large
Load Diff
4904
log/ice0003
Normal file
4904
log/ice0003
Normal file
File diff suppressed because it is too large
Load Diff
6607
log/ice0003_2
Normal file
6607
log/ice0003_2
Normal file
File diff suppressed because it is too large
Load Diff
6205
log/ice001
Normal file
6205
log/ice001
Normal file
File diff suppressed because it is too large
Load Diff
9541
log/ice14ws_128
Normal file
9541
log/ice14ws_128
Normal file
File diff suppressed because it is too large
Load Diff
4154
log/iceboth
Normal file
4154
log/iceboth
Normal file
File diff suppressed because it is too large
Load Diff
9482
log/icews14
Normal file
9482
log/icews14
Normal file
File diff suppressed because it is too large
Load Diff
1
log/icews14_128
Normal file
1
log/icews14_128
Normal file
@ -0,0 +1 @@
|
||||
2023-05-13 03:52:44,141 - icews14_128 - [INFO] - {'dataset': 'icews14', 'name': 'icews14_128', 'gpu': '0', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': True, 'filtered': False}
|
10670
log/icews14_both
Normal file
10670
log/icews14_both
Normal file
File diff suppressed because it is too large
Load Diff
2
log/poofnet.log
Normal file
2
log/poofnet.log
Normal file
@ -0,0 +1,2 @@
|
||||
nohup: ignoring input
|
||||
python: can't open file 'run.py': [Errno 2] No such file or directory
|
1
log/testrun_227cb2f9
Normal file
1
log/testrun_227cb2f9
Normal file
@ -0,0 +1 @@
|
||||
2023-05-17 06:54:57,988 - testrun_227cb2f9 - [INFO] - {'dataset': 'icews14', 'name': 'testrun_227cb2f9', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
1
log/testrun_30d70322
Normal file
1
log/testrun_30d70322
Normal file
@ -0,0 +1 @@
|
||||
2023-05-17 06:23:34,181 - testrun_30d70322 - [INFO] - {'dataset': 'icews14', 'name': 'testrun_30d70322', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
1
log/testrun_3212b281
Normal file
1
log/testrun_3212b281
Normal file
@ -0,0 +1 @@
|
||||
2023-05-17 06:53:01,668 - testrun_3212b281 - [INFO] - {'dataset': 'icews14', 'name': 'testrun_3212b281', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
1
log/testrun_3dbc9e89
Normal file
1
log/testrun_3dbc9e89
Normal file
@ -0,0 +1 @@
|
||||
2023-05-06 08:35:38,753 - testrun_3dbc9e89 - [INFO] - {'dataset': 'wikidata12k', 'name': 'testrun_3dbc9e89', 'gpu': '0', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False}
|
1
log/testrun_43389ddf
Normal file
1
log/testrun_43389ddf
Normal file
@ -0,0 +1 @@
|
||||
2023-05-17 06:38:00,469 - testrun_43389ddf - [INFO] - {'dataset': 'icews14', 'name': 'testrun_43389ddf', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
1
log/testrun_47ede3b9
Normal file
1
log/testrun_47ede3b9
Normal file
@ -0,0 +1 @@
|
||||
2023-05-17 06:13:02,952 - testrun_47ede3b9 - [INFO] - {'dataset': 'FB15k-237', 'name': 'testrun_47ede3b9', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
1
log/testrun_49495af8
Normal file
1
log/testrun_49495af8
Normal file
@ -0,0 +1 @@
|
||||
2023-05-06 08:37:18,939 - testrun_49495af8 - [INFO] - {'dataset': 'wikidata12k', 'name': 'testrun_49495af8', 'gpu': '3', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False}
|
7877
log/testrun_4a235016
Normal file
7877
log/testrun_4a235016
Normal file
File diff suppressed because it is too large
Load Diff
1
log/testrun_4f5d8391
Normal file
1
log/testrun_4f5d8391
Normal file
@ -0,0 +1 @@
|
||||
2023-05-06 08:35:13,356 - testrun_4f5d8391 - [INFO] - {'dataset': 'wikidata12k', 'name': 'testrun_4f5d8391', 'gpu': '0', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False}
|
1
log/testrun_540f6a03
Normal file
1
log/testrun_540f6a03
Normal file
@ -0,0 +1 @@
|
||||
2023-05-06 08:34:55,992 - testrun_540f6a03 - [INFO] - {'dataset': 'wikidata12k', 'name': 'testrun_540f6a03', 'gpu': '0', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False}
|
1
log/testrun_5a901712
Normal file
1
log/testrun_5a901712
Normal file
@ -0,0 +1 @@
|
||||
2023-05-17 07:04:56,051 - testrun_5a901712 - [INFO] - {'dataset': 'icews14', 'name': 'testrun_5a901712', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
44
log/testrun_5cafe61a
Normal file
44
log/testrun_5cafe61a
Normal file
@ -0,0 +1,44 @@
|
||||
2023-05-17 06:48:57,396 - testrun_5cafe61a - [INFO] - {'dataset': 'icews14', 'name': 'testrun_5cafe61a', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
||||
2023-05-17 06:49:44,802 - concurrent.futures - [ERROR] - exception calling callback for <Future at 0x7efb51b74160 state=finished raised BrokenProcessPool>
|
||||
joblib.externals.loky.process_executor._RemoteTraceback:
|
||||
"""
|
||||
Traceback (most recent call last):
|
||||
File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/joblib/externals/loky/process_executor.py", line 391, in _process_worker
|
||||
call_item = call_queue.get(block=True, timeout=timeout)
|
||||
File "/opt/conda/envs/kgs2s/lib/python3.8/multiprocessing/queues.py", line 116, in get
|
||||
return _ForkingPickler.loads(res)
|
||||
File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/torch/storage.py", line 222, in _load_from_bytes
|
||||
return torch.load(io.BytesIO(b))
|
||||
File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/torch/serialization.py", line 713, in load
|
||||
return _legacy_load(opened_file, map_location, pickle_module, **pickle_load_args)
|
||||
File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/torch/serialization.py", line 930, in _legacy_load
|
||||
result = unpickler.load()
|
||||
File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/torch/serialization.py", line 876, in persistent_load
|
||||
wrap_storage=restore_location(obj, location),
|
||||
File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/torch/serialization.py", line 175, in default_restore_location
|
||||
result = fn(storage, location)
|
||||
File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/torch/serialization.py", line 155, in _cuda_deserialize
|
||||
return torch._UntypedStorage(obj.nbytes(), device=torch.device(location))
|
||||
RuntimeError: CUDA out of memory. Tried to allocate 678.00 MiB (GPU 0; 31.72 GiB total capacity; 0 bytes already allocated; 593.94 MiB free; 0 bytes reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
||||
"""
|
||||
|
||||
The above exception was the direct cause of the following exception:
|
||||
|
||||
Traceback (most recent call last):
|
||||
File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/joblib/externals/loky/_base.py", line 26, in _invoke_callbacks
|
||||
callback(self)
|
||||
File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/joblib/parallel.py", line 385, in __call__
|
||||
self.parallel.dispatch_next()
|
||||
File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/joblib/parallel.py", line 834, in dispatch_next
|
||||
if not self.dispatch_one_batch(self._original_iterator):
|
||||
File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/joblib/parallel.py", line 901, in dispatch_one_batch
|
||||
self._dispatch(tasks)
|
||||
File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/joblib/parallel.py", line 819, in _dispatch
|
||||
job = self._backend.apply_async(batch, callback=cb)
|
||||
File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/joblib/_parallel_backends.py", line 556, in apply_async
|
||||
future = self._workers.submit(SafeFunction(func))
|
||||
File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/joblib/externals/loky/reusable_executor.py", line 176, in submit
|
||||
return super().submit(fn, *args, **kwargs)
|
||||
File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/joblib/externals/loky/process_executor.py", line 1129, in submit
|
||||
raise self._flags.broken
|
||||
joblib.externals.loky.process_executor.BrokenProcessPool: A task has failed to un-serialize. Please ensure that the arguments of the function are all picklable.
|
1
log/testrun_6fd94d59
Normal file
1
log/testrun_6fd94d59
Normal file
@ -0,0 +1 @@
|
||||
2023-05-06 08:34:33,652 - testrun_6fd94d59 - [INFO] - {'dataset': 'wikidata12k', 'name': 'testrun_6fd94d59', 'gpu': '3', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False}
|
1
log/testrun_7c096a18
Normal file
1
log/testrun_7c096a18
Normal file
@ -0,0 +1 @@
|
||||
2023-05-17 06:56:35,124 - testrun_7c096a18 - [INFO] - {'dataset': 'icews14', 'name': 'testrun_7c096a18', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
1
log/testrun_7fb885ee
Normal file
1
log/testrun_7fb885ee
Normal file
@ -0,0 +1 @@
|
||||
2023-05-17 07:13:14,777 - testrun_7fb885ee - [INFO] - {'dataset': 'icews14', 'name': 'testrun_7fb885ee', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
1
log/testrun_8f32040f
Normal file
1
log/testrun_8f32040f
Normal file
@ -0,0 +1 @@
|
||||
2023-05-17 06:59:35,220 - testrun_8f32040f - [INFO] - {'dataset': 'icews14', 'name': 'testrun_8f32040f', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
1
log/testrun_958ef154
Normal file
1
log/testrun_958ef154
Normal file
@ -0,0 +1 @@
|
||||
2023-05-17 06:16:45,427 - testrun_958ef154 - [INFO] - {'dataset': 'icews14', 'name': 'testrun_958ef154', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
2
log/testrun_9acdfb58
Normal file
2
log/testrun_9acdfb58
Normal file
@ -0,0 +1,2 @@
|
||||
2023-05-06 08:36:46,668 - testrun_9acdfb58 - [INFO] - {'dataset': 'wikidata12k', 'name': 'testrun_9acdfb58', 'gpu': '3', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False}
|
||||
2023-05-06 08:36:57,409 - testrun_9acdfb58 - [INFO] - [E:0| 0]: Train Loss:0.69813, Val MRR:0.0, testrun_9acdfb58
|
1
log/testrun_a051cf32
Normal file
1
log/testrun_a051cf32
Normal file
@ -0,0 +1 @@
|
||||
2023-05-17 06:36:14,606 - testrun_a051cf32 - [INFO] - {'dataset': 'icews14', 'name': 'testrun_a051cf32', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
1
log/testrun_a06d39d0
Normal file
1
log/testrun_a06d39d0
Normal file
@ -0,0 +1 @@
|
||||
2023-05-17 06:13:16,274 - testrun_a06d39d0 - [INFO] - {'dataset': 'icews14', 'name': 'testrun_a06d39d0', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
1
log/testrun_aca2b734
Normal file
1
log/testrun_aca2b734
Normal file
@ -0,0 +1 @@
|
||||
2023-05-17 06:41:20,654 - testrun_aca2b734 - [INFO] - {'dataset': 'icews14', 'name': 'testrun_aca2b734', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
1
log/testrun_ad7a0edb
Normal file
1
log/testrun_ad7a0edb
Normal file
@ -0,0 +1 @@
|
||||
2023-05-17 06:45:54,332 - testrun_ad7a0edb - [INFO] - {'dataset': 'icews14', 'name': 'testrun_ad7a0edb', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
7958
log/testrun_ae6f81ee
Normal file
7958
log/testrun_ae6f81ee
Normal file
File diff suppressed because it is too large
Load Diff
1
log/testrun_b381870f
Normal file
1
log/testrun_b381870f
Normal file
@ -0,0 +1 @@
|
||||
2023-05-30 17:54:20,857 - testrun_b381870f - [INFO] - {'dataset': 'wikidata12k', 'name': 'testrun_b381870f', 'gpu': '0', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0003, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': False}
|
2
log/testrun_b396dcde
Normal file
2
log/testrun_b396dcde
Normal file
@ -0,0 +1,2 @@
|
||||
2023-05-30 17:56:25,430 - testrun_b396dcde - [INFO] - {'dataset': 'wikidata12k', 'name': 'testrun_b396dcde', 'gpu': '0', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0003, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': False}
|
||||
2023-05-30 17:57:00,673 - testrun_b396dcde - [INFO] - {'dataset': 'wikidata12k', 'name': 'testrun_b396dcde', 'gpu': '0', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0003, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': False, 'num_ent': 12554, 'num_rel': 423}
|
1
log/testrun_bbf65ab5
Normal file
1
log/testrun_bbf65ab5
Normal file
@ -0,0 +1 @@
|
||||
2023-05-17 06:21:14,228 - testrun_bbf65ab5 - [INFO] - {'dataset': 'icews14', 'name': 'testrun_bbf65ab5', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
1
log/testrun_bfaa042b
Normal file
1
log/testrun_bfaa042b
Normal file
@ -0,0 +1 @@
|
||||
2023-05-17 06:50:58,251 - testrun_bfaa042b - [INFO] - {'dataset': 'icews14', 'name': 'testrun_bfaa042b', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
1
log/testrun_c77a8ec3
Normal file
1
log/testrun_c77a8ec3
Normal file
@ -0,0 +1 @@
|
||||
2023-05-17 06:37:11,288 - testrun_c77a8ec3 - [INFO] - {'dataset': 'icews14', 'name': 'testrun_c77a8ec3', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
1
log/testrun_cb3528f3
Normal file
1
log/testrun_cb3528f3
Normal file
@ -0,0 +1 @@
|
||||
2023-05-17 07:08:13,688 - testrun_cb3528f3 - [INFO] - {'dataset': 'icews14', 'name': 'testrun_cb3528f3', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
1
log/testrun_cd333c33
Normal file
1
log/testrun_cd333c33
Normal file
@ -0,0 +1 @@
|
||||
2023-05-17 06:25:12,047 - testrun_cd333c33 - [INFO] - {'dataset': 'icews14', 'name': 'testrun_cd333c33', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
2
log/testrun_d0367b19
Normal file
2
log/testrun_d0367b19
Normal file
@ -0,0 +1,2 @@
|
||||
2023-05-06 08:37:25,129 - testrun_d0367b19 - [INFO] - {'dataset': 'wikidata12k', 'name': 'testrun_d0367b19', 'gpu': '3', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False}
|
||||
2023-05-06 08:37:36,239 - testrun_d0367b19 - [INFO] - [E:0| 0]: Train Loss:0.69813, Val MRR:0.0, testrun_d0367b19
|
9001
log/testrun_d2ab6391
Normal file
9001
log/testrun_d2ab6391
Normal file
File diff suppressed because it is too large
Load Diff
11836
log/testrun_e1726b98
Normal file
11836
log/testrun_e1726b98
Normal file
File diff suppressed because it is too large
Load Diff
1
log/testrun_f0394b3c
Normal file
1
log/testrun_f0394b3c
Normal file
@ -0,0 +1 @@
|
||||
2023-05-17 06:47:48,537 - testrun_f0394b3c - [INFO] - {'dataset': 'icews14', 'name': 'testrun_f0394b3c', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
1
log/testrun_f42f568c
Normal file
1
log/testrun_f42f568c
Normal file
@ -0,0 +1 @@
|
||||
2023-05-30 17:55:52,461 - testrun_f42f568c - [INFO] - {'dataset': 'wikidata12k', 'name': 'testrun_f42f568c', 'gpu': '0', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0003, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': False}
|
1
log/testrun_fdb0e82c
Normal file
1
log/testrun_fdb0e82c
Normal file
@ -0,0 +1 @@
|
||||
2023-05-17 06:39:01,301 - testrun_fdb0e82c - [INFO] - {'dataset': 'icews14', 'name': 'testrun_fdb0e82c', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
1116
log/wikidata12k
Normal file
1116
log/wikidata12k
Normal file
File diff suppressed because it is too large
Load Diff
2
log/wikidata12k_0.00003
Normal file
2
log/wikidata12k_0.00003
Normal file
@ -0,0 +1,2 @@
|
||||
2023-06-04 17:05:45,012 - wikidata12k_0.00003 - [INFO] - {'dataset': 'wikidata12k', 'name': 'wikidata12k_0.00003', 'gpu': '2', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': False}
|
||||
2023-06-04 17:06:06,702 - wikidata12k_0.00003 - [INFO] - [E:0| 0]: Train Loss:0.69813, Val MRR:0.0, wikidata12k_0.00003
|
4918
log/wikidata12k_0.001
Normal file
4918
log/wikidata12k_0.001
Normal file
File diff suppressed because it is too large
Load Diff
15357
log/wikidata12k_1n
Normal file
15357
log/wikidata12k_1n
Normal file
File diff suppressed because it is too large
Load Diff
11565
log/wikidata12k_both
Normal file
11565
log/wikidata12k_both
Normal file
File diff suppressed because it is too large
Load Diff
9241
log/yago11k
Normal file
9241
log/yago11k
Normal file
File diff suppressed because it is too large
Load Diff
9654
log/yago11k_0.00003
Normal file
9654
log/yago11k_0.00003
Normal file
File diff suppressed because it is too large
Load Diff
9599
log/yago11k_0.0003
Normal file
9599
log/yago11k_0.0003
Normal file
File diff suppressed because it is too large
Load Diff
7233
log/yago11k_0.001
Normal file
7233
log/yago11k_0.001
Normal file
File diff suppressed because it is too large
Load Diff
18847
log/yago11k_0.001.log
Normal file
18847
log/yago11k_0.001.log
Normal file
File diff suppressed because it is too large
Load Diff
9169
log/yago11k_both
Normal file
9169
log/yago11k_both
Normal file
File diff suppressed because it is too large
Load Diff
9162
log/yago11k_both_0.001
Normal file
9162
log/yago11k_both_0.001
Normal file
File diff suppressed because it is too large
Load Diff
131
main.py
131
main.py
@ -3,10 +3,12 @@ import uuid
|
||||
import argparse
|
||||
import logging
|
||||
import logging.config
|
||||
import time
|
||||
import pandas as pd
|
||||
import sys
|
||||
|
||||
import torch
|
||||
import numpy as np
|
||||
import time
|
||||
|
||||
from collections import defaultdict as ddict
|
||||
from pprint import pprint
|
||||
@ -18,11 +20,12 @@ from data_loader import TrainDataset, TestDataset
|
||||
from utils import get_logger, get_combined_results, set_gpu, prepare_env, set_seed
|
||||
|
||||
from models import ComplEx, ConvE, HypER, InteractE, FouriER, TuckER
|
||||
import traceback
|
||||
|
||||
|
||||
class Main(object):
|
||||
|
||||
def __init__(self, params):
|
||||
def __init__(self, params, logger):
|
||||
"""
|
||||
Constructor of the runner class
|
||||
Parameters
|
||||
@ -35,11 +38,9 @@ class Main(object):
|
||||
|
||||
"""
|
||||
self.p = params
|
||||
self.logger = get_logger(
|
||||
self.p.name, self.p.log_dir, self.p.config_dir)
|
||||
self.logger = logger
|
||||
|
||||
self.logger.info(vars(self.p))
|
||||
pprint(vars(self.p))
|
||||
|
||||
if self.p.gpu != '-1' and torch.cuda.is_available():
|
||||
self.device = torch.device('cuda')
|
||||
@ -84,15 +85,17 @@ class Main(object):
|
||||
|
||||
self.ent2id = {}
|
||||
for line in open('./data/{}/{}'.format(self.p.dataset, "entities.dict")):
|
||||
id, ent = map(str.lower, line.strip().split('\t'))
|
||||
id, ent = map(str.lower, line.replace('\xa0', '').strip().split('\t'))
|
||||
self.ent2id[ent] = int(id)
|
||||
self.rel2id = {}
|
||||
for line in open('./data/{}/{}'.format(self.p.dataset, "relations.dict")):
|
||||
id, rel = map(str.lower, line.strip().split('\t'))
|
||||
self.rel2id[rel] = int(id)
|
||||
rel_set.add(rel)
|
||||
|
||||
# self.ent2id = {ent: idx for idx, ent in enumerate(ent_set)}
|
||||
# self.rel2id = {rel: idx for idx, rel in enumerate(rel_set)}
|
||||
|
||||
self.rel2id.update({rel+'_reverse': idx+len(self.rel2id)
|
||||
for idx, rel in enumerate(rel_set)})
|
||||
|
||||
@ -108,59 +111,52 @@ class Main(object):
|
||||
sr2o = ddict(set)
|
||||
|
||||
for split in ['train', 'test', 'valid']:
|
||||
samples = 0
|
||||
for i, line in enumerate(open('./data/{}/{}.txt'.format(self.p.dataset, split))):
|
||||
sub, rel, obj, rel_type, *_ = map(str.lower, line.strip().split('\t'))
|
||||
if (split == 'test' and self.p.rel_type is not None):
|
||||
if rel_type != self.p.rel_type:
|
||||
continue
|
||||
sub, rel, obj = self.ent2id[sub], self.rel2id[rel], self.ent2id[obj]
|
||||
self.data[split].append((sub, rel, obj))
|
||||
for line in open('./data/{}/{}.txt'.format(self.p.dataset, split)):
|
||||
sub, rel, obj, *_ = map(str.lower, line.replace('\xa0', '').strip().split('\t'))
|
||||
nt_rel = rel.split('[')[0]
|
||||
sub, rel, obj, nt_rel = self.ent2id[sub], self.rel2id[rel], self.ent2id[obj], self.rel2id[nt_rel]
|
||||
self.data[split].append((sub, rel, obj, nt_rel))
|
||||
|
||||
if split == 'train':
|
||||
sr2o[(sub, rel)].add(obj)
|
||||
sr2o[(obj, rel+self.p.num_rel)].add(sub)
|
||||
samples += 1
|
||||
print(split.capitalize() + ': ' + str(samples) + ' samples')
|
||||
sr2o[(sub, rel, nt_rel)].add(obj)
|
||||
sr2o[(obj, rel+self.p.num_rel, nt_rel + self.p.num_rel)].add(sub)
|
||||
self.data = dict(self.data)
|
||||
|
||||
self.sr2o = {k: list(v) for k, v in sr2o.items()}
|
||||
for split in ['test', 'valid']:
|
||||
for sub, rel, obj in self.data[split]:
|
||||
sr2o[(sub, rel)].add(obj)
|
||||
sr2o[(obj, rel+self.p.num_rel)].add(sub)
|
||||
for sub, rel, obj, nt_rel in self.data[split]:
|
||||
sr2o[(sub, rel, nt_rel)].add(obj)
|
||||
sr2o[(obj, rel+self.p.num_rel, nt_rel + self.p.num_rel)].add(sub)
|
||||
|
||||
self.sr2o_all = {k: list(v) for k, v in sr2o.items()}
|
||||
|
||||
self.triples = ddict(list)
|
||||
|
||||
if self.p.train_strategy == 'one_to_n':
|
||||
for (sub, rel), obj in self.sr2o.items():
|
||||
for (sub, rel, nt_rel), obj in self.sr2o.items():
|
||||
self.triples['train'].append(
|
||||
{'triple': (sub, rel, -1), 'label': self.sr2o[(sub, rel)], 'sub_samp': 1})
|
||||
{'triple': (sub, rel, -1, nt_rel), 'label': self.sr2o[(sub, rel, nt_rel)], 'sub_samp': 1})
|
||||
else:
|
||||
for sub, rel, obj in self.data['train']:
|
||||
for sub, rel, obj, nt_rel in self.data['train']:
|
||||
rel_inv = rel + self.p.num_rel
|
||||
sub_samp = len(self.sr2o[(sub, rel)]) + \
|
||||
len(self.sr2o[(obj, rel_inv)])
|
||||
sub_samp = len(self.sr2o[(sub, rel, nt_rel)]) + \
|
||||
len(self.sr2o[(obj, rel_inv, nt_rel + self.p.num_rel)])
|
||||
sub_samp = np.sqrt(1/sub_samp)
|
||||
|
||||
self.triples['train'].append({'triple': (
|
||||
sub, rel, obj), 'label': self.sr2o[(sub, rel)], 'sub_samp': sub_samp})
|
||||
sub, rel, obj, nt_rel), 'label': self.sr2o[(sub, rel, nt_rel)], 'sub_samp': sub_samp})
|
||||
self.triples['train'].append({'triple': (
|
||||
obj, rel_inv, sub), 'label': self.sr2o[(obj, rel_inv)], 'sub_samp': sub_samp})
|
||||
obj, rel_inv, sub, nt_rel + self.p.num_rel), 'label': self.sr2o[(obj, rel_inv, nt_rel + self.p.num_rel)], 'sub_samp': sub_samp})
|
||||
|
||||
for split in ['test', 'valid']:
|
||||
for sub, rel, obj in self.data[split]:
|
||||
for sub, rel, obj, nt_rel in self.data[split]:
|
||||
rel_inv = rel + self.p.num_rel
|
||||
self.triples['{}_{}'.format(split, 'tail')].append(
|
||||
{'triple': (sub, rel, obj), 'label': self.sr2o_all[(sub, rel)]})
|
||||
{'triple': (sub, rel, obj, nt_rel), 'label': self.sr2o_all[(sub, rel, nt_rel)]})
|
||||
self.triples['{}_{}'.format(split, 'head')].append(
|
||||
{'triple': (obj, rel_inv, sub), 'label': self.sr2o_all[(obj, rel_inv)]})
|
||||
{'triple': (obj, rel_inv, sub, nt_rel + self.p.num_rel), 'label': self.sr2o_all[(obj, rel_inv, nt_rel + self.p.num_rel)]})
|
||||
|
||||
self.triples = dict(self.triples)
|
||||
print(len(self.triples['test_head']))
|
||||
print(len(self.triples['test_tail']))
|
||||
|
||||
def get_data_loader(dataset_class, split, batch_size, shuffle=True):
|
||||
return DataLoader(
|
||||
@ -282,13 +278,13 @@ class Main(object):
|
||||
if self.p.train_strategy == 'one_to_x':
|
||||
triple, label, neg_ent, sub_samp = [
|
||||
_.to(self.device) for _ in batch]
|
||||
return triple[:, 0], triple[:, 1], triple[:, 2], label, neg_ent, sub_samp
|
||||
return triple[:, 0], triple[:, 1], triple[:, 2], triple[:, 3], label, neg_ent, sub_samp
|
||||
else:
|
||||
triple, label = [_.to(self.device) for _ in batch]
|
||||
return triple[:, 0], triple[:, 1], triple[:, 2], label, None, None
|
||||
return triple[:, 0], triple[:, 1], triple[:, 2], triple[:, 3], label, None, None
|
||||
else:
|
||||
triple, label = [_.to(self.device) for _ in batch]
|
||||
return triple[:, 0], triple[:, 1], triple[:, 2], label
|
||||
return triple[:, 0], triple[:, 1], triple[:, 2], triple[:, 3], label
|
||||
|
||||
def save_model(self, save_path):
|
||||
"""
|
||||
@ -415,16 +411,35 @@ class Main(object):
|
||||
train_iter = iter(
|
||||
self.data_iter['{}_{}'.format(split, mode.split('_')[0])])
|
||||
|
||||
sub_all = []
|
||||
obj_all = []
|
||||
rel_all = []
|
||||
target_score = []
|
||||
target_rank = []
|
||||
obj_pred = []
|
||||
obj_pred_score = []
|
||||
for step, batch in enumerate(train_iter):
|
||||
sub, rel, obj, label = self.read_batch(batch, split)
|
||||
pred = self.model.forward(sub, rel, None, 'one_to_n')
|
||||
sub, rel, obj, nt_rel, label = self.read_batch(batch, split)
|
||||
pred = self.model.forward(sub, rel, nt_rel, None, 'one_to_n')
|
||||
b_range = torch.arange(pred.size()[0], device=self.device)
|
||||
target_pred = pred[b_range, obj]
|
||||
pred = torch.where(label.byte(), torch.zeros_like(pred), pred)
|
||||
pred[b_range, obj] = target_pred
|
||||
|
||||
highest = torch.argsort(pred, dim=1, descending=True)[:,0]
|
||||
highest_score = pred[b_range, highest]
|
||||
|
||||
ranks = 1 + torch.argsort(torch.argsort(pred, dim=1,
|
||||
descending=True), dim=1, descending=False)[b_range, obj]
|
||||
|
||||
sub_all.extend(sub.cpu().numpy())
|
||||
obj_all.extend(obj.cpu().numpy())
|
||||
rel_all.extend(rel.cpu().numpy())
|
||||
target_score.extend(target_pred.cpu().numpy())
|
||||
target_rank.extend(ranks.cpu().numpy())
|
||||
obj_pred.extend(highest.cpu().numpy())
|
||||
obj_pred_score.extend(highest_score.cpu().numpy())
|
||||
|
||||
ranks = ranks.float()
|
||||
results['count'] = torch.numel(
|
||||
ranks) + results.get('count', 0.0)
|
||||
@ -439,7 +454,8 @@ class Main(object):
|
||||
if step % 100 == 0:
|
||||
self.logger.info('[{}, {} Step {}]\t{}'.format(
|
||||
split.title(), mode.title(), step, self.p.name))
|
||||
|
||||
df = pd.DataFrame({"sub":sub_all,"rel":rel_all,"obj":obj_all, "rank": target_rank,"score":target_score, "pred":obj_pred,"pred_score":obj_pred_score})
|
||||
df.to_csv(f"{self.p.name}_result.csv",header=True, index=False)
|
||||
return results
|
||||
|
||||
def run_epoch(self, epoch):
|
||||
@ -461,10 +477,10 @@ class Main(object):
|
||||
for step, batch in enumerate(train_iter):
|
||||
self.optimizer.zero_grad()
|
||||
|
||||
sub, rel, obj, label, neg_ent, sub_samp = self.read_batch(
|
||||
sub, rel, obj, nt_rel, label, neg_ent, sub_samp = self.read_batch(
|
||||
batch, 'train')
|
||||
|
||||
pred = self.model.forward(sub, rel, neg_ent, self.p.train_strategy)
|
||||
pred = self.model.forward(sub, rel, nt_rel, neg_ent, self.p.train_strategy)
|
||||
loss = self.model.loss(pred, label, sub_samp)
|
||||
|
||||
loss.backward()
|
||||
@ -635,7 +651,6 @@ if __name__ == "__main__":
|
||||
|
||||
parser.add_argument('--test_only', action='store_true', default=False)
|
||||
parser.add_argument('--grid_search', action='store_true', default=False)
|
||||
parser.add_argument('--rel_type', default=None, type=str)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
@ -644,9 +659,10 @@ if __name__ == "__main__":
|
||||
set_gpu(args.gpu)
|
||||
set_seed(args.seed)
|
||||
|
||||
model = Main(args)
|
||||
|
||||
if (args.grid_search):
|
||||
|
||||
model = Main(args)
|
||||
from sklearn.model_selection import GridSearchCV
|
||||
from skorch import NeuralNet
|
||||
|
||||
@ -677,7 +693,7 @@ if __name__ == "__main__":
|
||||
collate_fn=TrainDataset.collate_fn
|
||||
))
|
||||
for step, batch in enumerate(dataloader):
|
||||
sub, rel, obj, label, neg_ent, sub_samp = model.read_batch(
|
||||
sub, rel, obj, nt_rel, label, neg_ent, sub_samp = model.read_batch(
|
||||
batch, 'train')
|
||||
|
||||
if (neg_ent is None):
|
||||
@ -695,18 +711,27 @@ if __name__ == "__main__":
|
||||
search = grid.fit(inputs, label)
|
||||
print("BEST SCORE: ", search.best_score_)
|
||||
print("BEST PARAMS: ", search.best_params_)
|
||||
logger = get_logger(
|
||||
args.name, args.log_dir, args.config_dir)
|
||||
if (args.test_only):
|
||||
model = Main(args, logger)
|
||||
save_path = os.path.join('./torch_saved', args.name)
|
||||
model.load_model(save_path)
|
||||
model.evaluate('test')
|
||||
else:
|
||||
while True:
|
||||
try:
|
||||
model = Main(args, logger)
|
||||
model.fit()
|
||||
except Exception as e:
|
||||
print(e)
|
||||
time.sleep(30)
|
||||
del model
|
||||
model = Main(args)
|
||||
continue
|
||||
break
|
||||
# while True:
|
||||
# try:
|
||||
# model = Main(args, logger)
|
||||
# model.fit()
|
||||
# except Exception as e:
|
||||
# print(e)
|
||||
# traceback.print_exc()
|
||||
# try:
|
||||
# del model
|
||||
# except Exception:
|
||||
# pass
|
||||
# time.sleep(30)
|
||||
# continue
|
||||
# break
|
||||
|
201
models.py
201
models.py
@ -9,7 +9,7 @@ from layers import *
|
||||
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
||||
from timm.models.layers import DropPath, trunc_normal_
|
||||
from timm.models.registry import register_model
|
||||
from timm.models.layers.helpers import to_2tuple
|
||||
from timm.layers.helpers import to_2tuple
|
||||
|
||||
|
||||
class ConvE(torch.nn.Module):
|
||||
@ -466,6 +466,10 @@ class FouriER(torch.nn.Module):
|
||||
self.p.ent_vec_dim, image_h*image_w)
|
||||
torch.nn.init.xavier_normal_(self.ent_fusion.weight)
|
||||
|
||||
self.ent_attn = torch.nn.Linear(
|
||||
128, 128)
|
||||
torch.nn.init.xavier_normal_(self.ent_attn.weight)
|
||||
|
||||
self.rel_fusion = torch.nn.Linear(
|
||||
self.p.rel_vec_dim, image_h*image_w)
|
||||
torch.nn.init.xavier_normal_(self.rel_fusion.weight)
|
||||
@ -548,7 +552,14 @@ class FouriER(torch.nn.Module):
|
||||
# output only the features of last layer for image classification
|
||||
return x
|
||||
|
||||
def forward(self, sub, rel, neg_ents, strategy='one_to_x'):
|
||||
def fuse_attention(self, s_embedding, l_embedding):
|
||||
w1 = self.ent_attn(torch.tanh(s_embedding))
|
||||
w2 = self.ent_attn(torch.tanh(l_embedding))
|
||||
aff = F.softmax(torch.cat((w1,w2),1), 1)
|
||||
en_embedding = aff[:,0].unsqueeze(1) * s_embedding + aff[:, 1].unsqueeze(1) * l_embedding
|
||||
return en_embedding
|
||||
|
||||
def forward(self, sub, rel, nt_rel, neg_ents, strategy='one_to_x'):
|
||||
sub_emb = self.ent_fusion(self.ent_embed(sub))
|
||||
rel_emb = self.rel_fusion(self.rel_embed(rel))
|
||||
comb_emb = torch.stack([sub_emb.view(-1, self.p.image_h, self.p.image_w), rel_emb.view(-1, self.p.image_h, self.p.image_w)], dim=1)
|
||||
@ -557,6 +568,17 @@ class FouriER(torch.nn.Module):
|
||||
z = self.forward_embeddings(y)
|
||||
z = self.forward_tokens(z)
|
||||
z = z.mean([-2, -1])
|
||||
|
||||
nt_rel_emb = self.rel_fusion(self.rel_embed(nt_rel))
|
||||
comb_emb_1 = torch.stack([sub_emb.view(-1, self.p.image_h, self.p.image_w), nt_rel_emb.view(-1, self.p.image_h, self.p.image_w)], dim=1)
|
||||
y_1 = comb_emb_1.view(-1, 2, self.p.image_h, self.p.image_w)
|
||||
y_1 = self.bn0(y_1)
|
||||
z_1 = self.forward_embeddings(y_1)
|
||||
z_1 = self.forward_tokens(z_1)
|
||||
z_1 = z_1.mean([-2, -1])
|
||||
|
||||
z = self.fuse_attention(z, z_1)
|
||||
|
||||
z = self.norm(z)
|
||||
x = self.head(z)
|
||||
x = self.hidden_drop(x)
|
||||
@ -707,6 +729,166 @@ def basic_blocks(dim, index, layers,
|
||||
|
||||
return blocks
|
||||
|
||||
def window_partition(x, window_size):
|
||||
"""
|
||||
Args:
|
||||
x: (B, H, W, C)
|
||||
window_size (int): window size
|
||||
|
||||
Returns:
|
||||
windows: (num_windows*B, window_size, window_size, C)
|
||||
"""
|
||||
B, C, H, W = x.shape
|
||||
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
|
||||
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
||||
return windows
|
||||
|
||||
class WindowAttention(nn.Module):
|
||||
r""" Window based multi-head self attention (W-MSA) module with relative position bias.
|
||||
It supports both of shifted and non-shifted window.
|
||||
|
||||
Args:
|
||||
dim (int): Number of input channels.
|
||||
window_size (tuple[int]): The height and width of the window.
|
||||
num_heads (int): Number of attention heads.
|
||||
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
||||
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
|
||||
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
|
||||
pretrained_window_size (tuple[int]): The height and width of the window in pre-training.
|
||||
"""
|
||||
|
||||
def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0.,
|
||||
pretrained_window_size=[0, 0]):
|
||||
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.window_size = window_size # Wh, Ww
|
||||
self.pretrained_window_size = pretrained_window_size
|
||||
self.num_heads = num_heads
|
||||
|
||||
self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True)
|
||||
|
||||
# mlp to generate continuous relative position bias
|
||||
self.cpb_mlp = nn.Sequential(nn.Linear(2, 512, bias=True),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.Linear(512, num_heads, bias=False))
|
||||
|
||||
# get relative_coords_table
|
||||
relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0], dtype=torch.float32)
|
||||
relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1], dtype=torch.float32)
|
||||
relative_coords_table = torch.stack(
|
||||
torch.meshgrid([relative_coords_h,
|
||||
relative_coords_w])).permute(1, 2, 0).contiguous().unsqueeze(0) # 1, 2*Wh-1, 2*Ww-1, 2
|
||||
if pretrained_window_size[0] > 0:
|
||||
relative_coords_table[:, :, :, 0] /= (pretrained_window_size[0] - 1)
|
||||
relative_coords_table[:, :, :, 1] /= (pretrained_window_size[1] - 1)
|
||||
else:
|
||||
relative_coords_table[:, :, :, 0] /= (self.window_size[0] - 1)
|
||||
relative_coords_table[:, :, :, 1] /= (self.window_size[1] - 1)
|
||||
relative_coords_table *= 8 # normalize to -8, 8
|
||||
relative_coords_table = torch.sign(relative_coords_table) * torch.log2(
|
||||
torch.abs(relative_coords_table) + 1.0) / np.log2(8)
|
||||
|
||||
self.register_buffer("relative_coords_table", relative_coords_table)
|
||||
|
||||
# get pair-wise relative position index for each token inside the window
|
||||
coords_h = torch.arange(self.window_size[0])
|
||||
coords_w = torch.arange(self.window_size[1])
|
||||
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
||||
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
||||
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
||||
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
||||
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
|
||||
relative_coords[:, :, 1] += self.window_size[1] - 1
|
||||
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
||||
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
||||
self.register_buffer("relative_position_index", relative_position_index)
|
||||
|
||||
self.qkv = nn.Linear(dim, dim * 3, bias=False)
|
||||
if qkv_bias:
|
||||
self.q_bias = nn.Parameter(torch.zeros(dim))
|
||||
self.v_bias = nn.Parameter(torch.zeros(dim))
|
||||
else:
|
||||
self.q_bias = None
|
||||
self.v_bias = None
|
||||
self.attn_drop = nn.Dropout(attn_drop)
|
||||
self.proj = nn.Linear(dim, dim)
|
||||
self.proj_drop = nn.Dropout(proj_drop)
|
||||
self.softmax = nn.Softmax(dim=-1)
|
||||
|
||||
def forward(self, x, mask=None):
|
||||
"""
|
||||
Args:
|
||||
x: input features with shape of (num_windows*B, N, C)
|
||||
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
|
||||
"""
|
||||
B_, N, C = x.shape
|
||||
qkv_bias = None
|
||||
if self.q_bias is not None:
|
||||
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
|
||||
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
|
||||
qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
||||
|
||||
# cosine attention
|
||||
attn = (F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1))
|
||||
logit_scale = torch.clamp(self.logit_scale, max=torch.log(torch.tensor(1. / 0.01)).cuda()).exp()
|
||||
attn = attn * logit_scale
|
||||
|
||||
relative_position_bias_table = self.cpb_mlp(self.relative_coords_table).view(-1, self.num_heads)
|
||||
relative_position_bias = relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
||||
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
|
||||
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
||||
relative_position_bias = 16 * torch.sigmoid(relative_position_bias)
|
||||
attn = attn + relative_position_bias.unsqueeze(0)
|
||||
|
||||
if mask is not None:
|
||||
nW = mask.shape[0]
|
||||
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
|
||||
attn = attn.view(-1, self.num_heads, N, N)
|
||||
attn = self.softmax(attn)
|
||||
else:
|
||||
attn = self.softmax(attn)
|
||||
|
||||
attn = self.attn_drop(attn)
|
||||
|
||||
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
||||
x = self.proj(x)
|
||||
x = self.proj_drop(x)
|
||||
return x
|
||||
|
||||
def extra_repr(self) -> str:
|
||||
return f'dim={self.dim}, window_size={self.window_size}, ' \
|
||||
f'pretrained_window_size={self.pretrained_window_size}, num_heads={self.num_heads}'
|
||||
|
||||
def flops(self, N):
|
||||
# calculate flops for 1 window with token length of N
|
||||
flops = 0
|
||||
# qkv = self.qkv(x)
|
||||
flops += N * self.dim * 3 * self.dim
|
||||
# attn = (q @ k.transpose(-2, -1))
|
||||
flops += self.num_heads * N * (self.dim // self.num_heads) * N
|
||||
# x = (attn @ v)
|
||||
flops += self.num_heads * N * N * (self.dim // self.num_heads)
|
||||
# x = self.proj(x)
|
||||
flops += N * self.dim * self.dim
|
||||
return flops
|
||||
|
||||
def window_reverse(windows, window_size, H, W):
|
||||
"""
|
||||
Args:
|
||||
windows: (num_windows*B, window_size, window_size, C)
|
||||
window_size (int): Window size
|
||||
H (int): Height of image
|
||||
W (int): Width of image
|
||||
|
||||
Returns:
|
||||
x: (B, H, W, C)
|
||||
"""
|
||||
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
||||
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
|
||||
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, -1, H, W)
|
||||
return x
|
||||
|
||||
class PoolFormerBlock(nn.Module):
|
||||
"""
|
||||
@ -731,7 +913,10 @@ class PoolFormerBlock(nn.Module):
|
||||
|
||||
self.norm1 = norm_layer(dim)
|
||||
#self.token_mixer = Pooling(pool_size=pool_size)
|
||||
self.token_mixer = FNetBlock()
|
||||
# self.token_mixer = FNetBlock()
|
||||
self.window_size = 4
|
||||
self.attn_mask = None
|
||||
self.token_mixer = WindowAttention(dim=dim, window_size=to_2tuple(self.window_size), num_heads=4)
|
||||
self.norm2 = norm_layer(dim)
|
||||
mlp_hidden_dim = int(dim * mlp_ratio)
|
||||
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim,
|
||||
@ -748,15 +933,21 @@ class PoolFormerBlock(nn.Module):
|
||||
layer_scale_init_value * torch.ones((dim)), requires_grad=True)
|
||||
|
||||
def forward(self, x):
|
||||
B, C, H, W = x.shape
|
||||
x_windows = window_partition(x, self.window_size)
|
||||
x_windows = x_windows.view(-1, self.window_size * self.window_size, C)
|
||||
attn_windows = self.token_mixer(x_windows, mask=self.attn_mask)
|
||||
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
||||
x_attn = window_reverse(attn_windows, self.window_size, H, W)
|
||||
if self.use_layer_scale:
|
||||
x = x + self.drop_path(
|
||||
self.layer_scale_1.unsqueeze(-1).unsqueeze(-1)
|
||||
* self.token_mixer(self.norm1(x)))
|
||||
* x_attn)
|
||||
x = x + self.drop_path(
|
||||
self.layer_scale_2.unsqueeze(-1).unsqueeze(-1)
|
||||
* self.mlp(self.norm2(x)))
|
||||
else:
|
||||
x = x + self.drop_path(self.token_mixer(self.norm1(x)))
|
||||
x = x + self.drop_path(x_attn)
|
||||
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
||||
return x
|
||||
class PatchEmbed(nn.Module):
|
||||
|
@ -2,3 +2,5 @@ torch==1.12.1+cu116
|
||||
ordered-set==4.1.0
|
||||
numpy==1.21.5
|
||||
einops==0.4.1
|
||||
pandas
|
||||
timm==0.9.16
|
3
run.sh
3
run.sh
@ -38,3 +38,6 @@ PID:
|
||||
|
||||
___
|
||||
nohup python main.py --name ice001 --lr 0.001 --data icews14 --gpu 3 >run_log/0.001.log 2>&1 &
|
||||
___
|
||||
nohup python main.py --name iceboth --data icews14_both --gpu 0 >run_log/iceboth.log 2>&1 &
|
||||
PID: 21984
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@ -1,425 +0,0 @@
|
||||
nohup: ignoring input
|
||||
2023-05-27 04:41:18,497 - [INFO] - {'dataset': 'wikidata12k', 'name': 'wikidata12k_0.001', 'gpu': '3', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': False}
|
||||
{'batch_size': 128,
|
||||
'bias': False,
|
||||
'config_dir': './config/',
|
||||
'dataset': 'wikidata12k',
|
||||
'drop': 0.0,
|
||||
'drop_path': 0.0,
|
||||
'embed_dim': 400,
|
||||
'ent_vec_dim': 400,
|
||||
'expansion_factor': 4,
|
||||
'expansion_factor_token': 0.5,
|
||||
'feat_drop': 0.2,
|
||||
'filt_h': 1,
|
||||
'filt_w': 9,
|
||||
'form': 'plain',
|
||||
'gpu': '3',
|
||||
'grid_search': False,
|
||||
'hid_drop': 0.5,
|
||||
'image_h': 128,
|
||||
'image_w': 128,
|
||||
'in_channels': 1,
|
||||
'inp_drop': 0.2,
|
||||
'k_h': 20,
|
||||
'k_w': 10,
|
||||
'ker_sz': 9,
|
||||
'l2': 0.0,
|
||||
'lbl_smooth': 0.1,
|
||||
'log_dir': './log/',
|
||||
'lr': 0.001,
|
||||
'max_epochs': 500,
|
||||
'mixer_depth': 16,
|
||||
'mixer_dim': 256,
|
||||
'mixer_dropout': 0.2,
|
||||
'name': 'wikidata12k_0.001',
|
||||
'neg_num': 1000,
|
||||
'num_filt': 96,
|
||||
'num_workers': 0,
|
||||
'opt': 'adam',
|
||||
'out_channels': 32,
|
||||
'patch_size': 8,
|
||||
'perm': 1,
|
||||
'rel_vec_dim': 400,
|
||||
'restore': False,
|
||||
'seed': 42,
|
||||
'test_only': False,
|
||||
'train_strategy': 'one_to_n'}
|
||||
2023-05-27 04:41:28,635 - [INFO] - [E:0| 0]: Train Loss:0.69813, Val MRR:0.0, wikidata12k_0.001
|
||||
2023-05-27 04:42:32,570 - [INFO] - [E:0| 100]: Train Loss:0.053587, Val MRR:0.0, wikidata12k_0.001
|
||||
2023-05-27 04:43:36,618 - [INFO] - [E:0| 200]: Train Loss:0.028724, Val MRR:0.0, wikidata12k_0.001
|
||||
2023-05-27 04:44:40,687 - [INFO] - [E:0| 300]: Train Loss:0.020033, Val MRR:0.0, wikidata12k_0.001
|
||||
2023-05-27 04:45:44,799 - [INFO] - [E:0| 400]: Train Loss:0.015589, Val MRR:0.0, wikidata12k_0.001
|
||||
2023-05-27 04:46:48,901 - [INFO] - [E:0| 500]: Train Loss:0.012878, Val MRR:0.0, wikidata12k_0.001
|
||||
2023-05-27 04:47:53,124 - [INFO] - [E:0| 600]: Train Loss:0.011054, Val MRR:0.0, wikidata12k_0.001
|
||||
2023-05-27 04:48:57,224 - [INFO] - [E:0| 700]: Train Loss:0.0097532, Val MRR:0.0, wikidata12k_0.001
|
||||
2023-05-27 04:50:01,352 - [INFO] - [E:0| 800]: Train Loss:0.008763, Val MRR:0.0, wikidata12k_0.001
|
||||
2023-05-27 04:51:05,445 - [INFO] - [E:0| 900]: Train Loss:0.0079929, Val MRR:0.0, wikidata12k_0.001
|
||||
2023-05-27 04:52:09,559 - [INFO] - [E:0| 1000]: Train Loss:0.0073745, Val MRR:0.0, wikidata12k_0.001
|
||||
2023-05-27 04:53:13,624 - [INFO] - [E:0| 1100]: Train Loss:0.0068693, Val MRR:0.0, wikidata12k_0.001
|
||||
2023-05-27 04:54:17,823 - [INFO] - [E:0| 1200]: Train Loss:0.0064497, Val MRR:0.0, wikidata12k_0.001
|
||||
2023-05-27 04:55:21,967 - [INFO] - [E:0| 1300]: Train Loss:0.0060945, Val MRR:0.0, wikidata12k_0.001
|
||||
2023-05-27 04:56:26,129 - [INFO] - [E:0| 1400]: Train Loss:0.0057879, Val MRR:0.0, wikidata12k_0.001
|
||||
2023-05-27 04:57:30,256 - [INFO] - [E:0| 1500]: Train Loss:0.0055195, Val MRR:0.0, wikidata12k_0.001
|
||||
2023-05-27 04:58:34,350 - [INFO] - [E:0| 1600]: Train Loss:0.0052845, Val MRR:0.0, wikidata12k_0.001
|
||||
2023-05-27 04:59:16,259 - [INFO] - [Epoch:0]: Training Loss:0.005147
|
||||
|
||||
2023-05-27 04:59:16,481 - [INFO] - [Valid, Tail_Batch Step 0] wikidata12k_0.001
|
||||
2023-05-27 04:59:38,187 - [INFO] - [Valid, Tail_Batch Step 100] wikidata12k_0.001
|
||||
2023-05-27 04:59:50,745 - [INFO] - [Valid, Head_Batch Step 0] wikidata12k_0.001
|
||||
2023-05-27 05:00:12,609 - [INFO] - [Valid, Head_Batch Step 100] wikidata12k_0.001
|
||||
2023-05-27 05:00:25,062 - [INFO] - [Evaluating Epoch 0 valid]:
|
||||
MRR: Tail : 0.08049, Head : 0.01947, Avg : 0.04998
|
||||
|
||||
2023-05-27 05:00:26,469 - [INFO] - [Epoch 0]: Training Loss: 0.0051469, Valid MRR: 0.04998,
|
||||
|
||||
|
||||
|
||||
2023-05-27 05:00:27,127 - [INFO] - [E:1| 0]: Train Loss:0.0016275, Val MRR:0.04998, wikidata12k_0.001
|
||||
2023-05-27 05:01:31,277 - [INFO] - [E:1| 100]: Train Loss:0.0017991, Val MRR:0.04998, wikidata12k_0.001
|
||||
2023-05-27 05:02:35,390 - [INFO] - [E:1| 200]: Train Loss:0.0017846, Val MRR:0.04998, wikidata12k_0.001
|
||||
2023-05-27 05:03:39,590 - [INFO] - [E:1| 300]: Train Loss:0.0017789, Val MRR:0.04998, wikidata12k_0.001
|
||||
2023-05-27 05:04:43,748 - [INFO] - [E:1| 400]: Train Loss:0.001772, Val MRR:0.04998, wikidata12k_0.001
|
||||
2023-05-27 05:05:47,967 - [INFO] - [E:1| 500]: Train Loss:0.0017692, Val MRR:0.04998, wikidata12k_0.001
|
||||
2023-05-27 05:06:52,036 - [INFO] - [E:1| 600]: Train Loss:0.0017597, Val MRR:0.04998, wikidata12k_0.001
|
||||
2023-05-27 05:07:56,215 - [INFO] - [E:1| 700]: Train Loss:0.0017589, Val MRR:0.04998, wikidata12k_0.001
|
||||
2023-05-27 05:09:00,363 - [INFO] - [E:1| 800]: Train Loss:0.0017555, Val MRR:0.04998, wikidata12k_0.001
|
||||
2023-05-27 05:10:04,516 - [INFO] - [E:1| 900]: Train Loss:0.0017507, Val MRR:0.04998, wikidata12k_0.001
|
||||
2023-05-27 05:11:08,719 - [INFO] - [E:1| 1000]: Train Loss:0.0017476, Val MRR:0.04998, wikidata12k_0.001
|
||||
2023-05-27 05:12:12,940 - [INFO] - [E:1| 1100]: Train Loss:0.0017427, Val MRR:0.04998, wikidata12k_0.001
|
||||
2023-05-27 05:13:17,076 - [INFO] - [E:1| 1200]: Train Loss:0.0017384, Val MRR:0.04998, wikidata12k_0.001
|
||||
2023-05-27 05:14:21,295 - [INFO] - [E:1| 1300]: Train Loss:0.0017345, Val MRR:0.04998, wikidata12k_0.001
|
||||
2023-05-27 05:15:25,462 - [INFO] - [E:1| 1400]: Train Loss:0.0017307, Val MRR:0.04998, wikidata12k_0.001
|
||||
2023-05-27 05:16:29,614 - [INFO] - [E:1| 1500]: Train Loss:0.0017243, Val MRR:0.04998, wikidata12k_0.001
|
||||
2023-05-27 05:17:33,705 - [INFO] - [E:1| 1600]: Train Loss:0.001719, Val MRR:0.04998, wikidata12k_0.001
|
||||
2023-05-27 05:18:15,618 - [INFO] - [Epoch:1]: Training Loss:0.001714
|
||||
|
||||
2023-05-27 05:18:15,839 - [INFO] - [Valid, Tail_Batch Step 0] wikidata12k_0.001
|
||||
2023-05-27 05:18:37,583 - [INFO] - [Valid, Tail_Batch Step 100] wikidata12k_0.001
|
||||
2023-05-27 05:18:50,191 - [INFO] - [Valid, Head_Batch Step 0] wikidata12k_0.001
|
||||
2023-05-27 05:19:12,067 - [INFO] - [Valid, Head_Batch Step 100] wikidata12k_0.001
|
||||
2023-05-27 05:19:24,503 - [INFO] - [Evaluating Epoch 1 valid]:
|
||||
MRR: Tail : 0.1748, Head : 0.04108, Avg : 0.10794
|
||||
|
||||
2023-05-27 05:19:25,566 - [INFO] - [Epoch 1]: Training Loss: 0.0017143, Valid MRR: 0.10794,
|
||||
|
||||
|
||||
|
||||
2023-05-27 05:19:26,219 - [INFO] - [E:2| 0]: Train Loss:0.0016961, Val MRR:0.10794, wikidata12k_0.001
|
||||
2023-05-27 05:20:30,344 - [INFO] - [E:2| 100]: Train Loss:0.0016227, Val MRR:0.10794, wikidata12k_0.001
|
||||
2023-05-27 05:21:34,535 - [INFO] - [E:2| 200]: Train Loss:0.0016161, Val MRR:0.10794, wikidata12k_0.001
|
||||
2023-05-27 05:22:38,770 - [INFO] - [E:2| 300]: Train Loss:0.0016161, Val MRR:0.10794, wikidata12k_0.001
|
||||
2023-05-27 05:23:43,004 - [INFO] - [E:2| 400]: Train Loss:0.0016106, Val MRR:0.10794, wikidata12k_0.001
|
||||
2023-05-27 05:24:47,137 - [INFO] - [E:2| 500]: Train Loss:0.0016058, Val MRR:0.10794, wikidata12k_0.001
|
||||
2023-05-27 05:25:51,362 - [INFO] - [E:2| 600]: Train Loss:0.0016067, Val MRR:0.10794, wikidata12k_0.001
|
||||
2023-05-27 05:26:55,499 - [INFO] - [E:2| 700]: Train Loss:0.0016013, Val MRR:0.10794, wikidata12k_0.001
|
||||
2023-05-27 05:27:59,761 - [INFO] - [E:2| 800]: Train Loss:0.0015978, Val MRR:0.10794, wikidata12k_0.001
|
||||
2023-05-27 05:29:03,935 - [INFO] - [E:2| 900]: Train Loss:0.0015935, Val MRR:0.10794, wikidata12k_0.001
|
||||
2023-05-27 05:30:08,210 - [INFO] - [E:2| 1000]: Train Loss:0.0015896, Val MRR:0.10794, wikidata12k_0.001
|
||||
2023-05-27 05:31:12,398 - [INFO] - [E:2| 1100]: Train Loss:0.0015856, Val MRR:0.10794, wikidata12k_0.001
|
||||
2023-05-27 05:32:16,608 - [INFO] - [E:2| 1200]: Train Loss:0.0015814, Val MRR:0.10794, wikidata12k_0.001
|
||||
2023-05-27 05:33:20,836 - [INFO] - [E:2| 1300]: Train Loss:0.0015758, Val MRR:0.10794, wikidata12k_0.001
|
||||
2023-05-27 05:34:25,014 - [INFO] - [E:2| 1400]: Train Loss:0.001571, Val MRR:0.10794, wikidata12k_0.001
|
||||
2023-05-27 05:35:29,265 - [INFO] - [E:2| 1500]: Train Loss:0.001565, Val MRR:0.10794, wikidata12k_0.001
|
||||
2023-05-27 05:36:33,450 - [INFO] - [E:2| 1600]: Train Loss:0.0015589, Val MRR:0.10794, wikidata12k_0.001
|
||||
2023-05-27 05:37:15,383 - [INFO] - [Epoch:2]: Training Loss:0.001556
|
||||
|
||||
2023-05-27 05:37:15,603 - [INFO] - [Valid, Tail_Batch Step 0] wikidata12k_0.001
|
||||
2023-05-27 05:37:37,308 - [INFO] - [Valid, Tail_Batch Step 100] wikidata12k_0.001
|
||||
2023-05-27 05:37:49,874 - [INFO] - [Valid, Head_Batch Step 0] wikidata12k_0.001
|
||||
2023-05-27 05:38:11,738 - [INFO] - [Valid, Head_Batch Step 100] wikidata12k_0.001
|
||||
2023-05-27 05:38:24,173 - [INFO] - [Evaluating Epoch 2 valid]:
|
||||
MRR: Tail : 0.28305, Head : 0.07818, Avg : 0.18062
|
||||
|
||||
2023-05-27 05:38:25,157 - [INFO] - [Epoch 2]: Training Loss: 0.001556, Valid MRR: 0.18062,
|
||||
|
||||
|
||||
|
||||
2023-05-27 05:38:25,813 - [INFO] - [E:3| 0]: Train Loss:0.0013897, Val MRR:0.18062, wikidata12k_0.001
|
||||
2023-05-27 05:39:30,024 - [INFO] - [E:3| 100]: Train Loss:0.0014599, Val MRR:0.18062, wikidata12k_0.001
|
||||
2023-05-27 05:40:34,122 - [INFO] - [E:3| 200]: Train Loss:0.0014516, Val MRR:0.18062, wikidata12k_0.001
|
||||
2023-05-27 05:41:38,261 - [INFO] - [E:3| 300]: Train Loss:0.0014552, Val MRR:0.18062, wikidata12k_0.001
|
||||
2023-05-27 05:42:42,459 - [INFO] - [E:3| 400]: Train Loss:0.0014541, Val MRR:0.18062, wikidata12k_0.001
|
||||
2023-05-27 05:43:46,707 - [INFO] - [E:3| 500]: Train Loss:0.0014521, Val MRR:0.18062, wikidata12k_0.001
|
||||
2023-05-27 05:44:50,829 - [INFO] - [E:3| 600]: Train Loss:0.0014476, Val MRR:0.18062, wikidata12k_0.001
|
||||
2023-05-27 05:45:54,979 - [INFO] - [E:3| 700]: Train Loss:0.0014439, Val MRR:0.18062, wikidata12k_0.001
|
||||
2023-05-27 05:46:59,115 - [INFO] - [E:3| 800]: Train Loss:0.0014396, Val MRR:0.18062, wikidata12k_0.001
|
||||
2023-05-27 05:48:03,341 - [INFO] - [E:3| 900]: Train Loss:0.0014367, Val MRR:0.18062, wikidata12k_0.001
|
||||
2023-05-27 05:49:07,419 - [INFO] - [E:3| 1000]: Train Loss:0.0014329, Val MRR:0.18062, wikidata12k_0.001
|
||||
2023-05-27 05:50:11,647 - [INFO] - [E:3| 1100]: Train Loss:0.0014308, Val MRR:0.18062, wikidata12k_0.001
|
||||
2023-05-27 05:51:15,783 - [INFO] - [E:3| 1200]: Train Loss:0.0014276, Val MRR:0.18062, wikidata12k_0.001
|
||||
2023-05-27 05:52:19,915 - [INFO] - [E:3| 1300]: Train Loss:0.0014245, Val MRR:0.18062, wikidata12k_0.001
|
||||
2023-05-27 05:53:24,121 - [INFO] - [E:3| 1400]: Train Loss:0.0014212, Val MRR:0.18062, wikidata12k_0.001
|
||||
2023-05-27 05:54:28,236 - [INFO] - [E:3| 1500]: Train Loss:0.0014184, Val MRR:0.18062, wikidata12k_0.001
|
||||
2023-05-27 05:55:32,482 - [INFO] - [E:3| 1600]: Train Loss:0.0014147, Val MRR:0.18062, wikidata12k_0.001
|
||||
2023-05-27 05:56:14,438 - [INFO] - [Epoch:3]: Training Loss:0.001413
|
||||
|
||||
2023-05-27 05:56:14,658 - [INFO] - [Valid, Tail_Batch Step 0] wikidata12k_0.001
|
||||
2023-05-27 05:56:36,372 - [INFO] - [Valid, Tail_Batch Step 100] wikidata12k_0.001
|
||||
2023-05-27 05:56:48,954 - [INFO] - [Valid, Head_Batch Step 0] wikidata12k_0.001
|
||||
2023-05-27 05:57:10,881 - [INFO] - [Valid, Head_Batch Step 100] wikidata12k_0.001
|
||||
2023-05-27 05:57:23,328 - [INFO] - [Evaluating Epoch 3 valid]:
|
||||
MRR: Tail : 0.31549, Head : 0.09979, Avg : 0.20764
|
||||
|
||||
2023-05-27 05:57:24,420 - [INFO] - [Epoch 3]: Training Loss: 0.001413, Valid MRR: 0.20764,
|
||||
|
||||
|
||||
|
||||
2023-05-27 05:57:25,077 - [INFO] - [E:4| 0]: Train Loss:0.0014323, Val MRR:0.20764, wikidata12k_0.001
|
||||
2023-05-27 05:58:29,238 - [INFO] - [E:4| 100]: Train Loss:0.0013524, Val MRR:0.20764, wikidata12k_0.001
|
||||
2023-05-27 05:59:33,410 - [INFO] - [E:4| 200]: Train Loss:0.0013439, Val MRR:0.20764, wikidata12k_0.001
|
||||
2023-05-27 06:00:37,566 - [INFO] - [E:4| 300]: Train Loss:0.0013507, Val MRR:0.20764, wikidata12k_0.001
|
||||
2023-05-27 06:01:41,692 - [INFO] - [E:4| 400]: Train Loss:0.0013525, Val MRR:0.20764, wikidata12k_0.001
|
||||
2023-05-27 06:02:45,877 - [INFO] - [E:4| 500]: Train Loss:0.0013497, Val MRR:0.20764, wikidata12k_0.001
|
||||
2023-05-27 06:03:50,088 - [INFO] - [E:4| 600]: Train Loss:0.0013468, Val MRR:0.20764, wikidata12k_0.001
|
||||
2023-05-27 06:04:54,238 - [INFO] - [E:4| 700]: Train Loss:0.0013447, Val MRR:0.20764, wikidata12k_0.001
|
||||
2023-05-27 06:05:58,490 - [INFO] - [E:4| 800]: Train Loss:0.0013417, Val MRR:0.20764, wikidata12k_0.001
|
||||
2023-05-27 06:07:02,645 - [INFO] - [E:4| 900]: Train Loss:0.001339, Val MRR:0.20764, wikidata12k_0.001
|
||||
2023-05-27 06:08:06,755 - [INFO] - [E:4| 1000]: Train Loss:0.0013377, Val MRR:0.20764, wikidata12k_0.001
|
||||
2023-05-27 06:09:10,902 - [INFO] - [E:4| 1100]: Train Loss:0.0013348, Val MRR:0.20764, wikidata12k_0.001
|
||||
2023-05-27 06:10:15,038 - [INFO] - [E:4| 1200]: Train Loss:0.0013326, Val MRR:0.20764, wikidata12k_0.001
|
||||
2023-05-27 06:11:19,143 - [INFO] - [E:4| 1300]: Train Loss:0.0013302, Val MRR:0.20764, wikidata12k_0.001
|
||||
2023-05-27 06:12:23,347 - [INFO] - [E:4| 1400]: Train Loss:0.0013283, Val MRR:0.20764, wikidata12k_0.001
|
||||
2023-05-27 06:13:27,477 - [INFO] - [E:4| 1500]: Train Loss:0.0013269, Val MRR:0.20764, wikidata12k_0.001
|
||||
2023-05-27 06:14:31,542 - [INFO] - [E:4| 1600]: Train Loss:0.0013247, Val MRR:0.20764, wikidata12k_0.001
|
||||
2023-05-27 06:15:13,457 - [INFO] - [Epoch:4]: Training Loss:0.001323
|
||||
|
||||
2023-05-27 06:15:13,677 - [INFO] - [Valid, Tail_Batch Step 0] wikidata12k_0.001
|
||||
2023-05-27 06:15:35,362 - [INFO] - [Valid, Tail_Batch Step 100] wikidata12k_0.001
|
||||
2023-05-27 06:15:47,916 - [INFO] - [Valid, Head_Batch Step 0] wikidata12k_0.001
|
||||
2023-05-27 06:16:09,784 - [INFO] - [Valid, Head_Batch Step 100] wikidata12k_0.001
|
||||
2023-05-27 06:16:22,221 - [INFO] - [Evaluating Epoch 4 valid]:
|
||||
MRR: Tail : 0.36022, Head : 0.1037, Avg : 0.23196
|
||||
|
||||
2023-05-27 06:16:23,220 - [INFO] - [Epoch 4]: Training Loss: 0.0013235, Valid MRR: 0.23196,
|
||||
|
||||
|
||||
|
||||
2023-05-27 06:16:23,875 - [INFO] - [E:5| 0]: Train Loss:0.0013387, Val MRR:0.23196, wikidata12k_0.001
|
||||
2023-05-27 06:17:28,154 - [INFO] - [E:5| 100]: Train Loss:0.0012781, Val MRR:0.23196, wikidata12k_0.001
|
||||
2023-05-27 06:18:32,286 - [INFO] - [E:5| 200]: Train Loss:0.0012786, Val MRR:0.23196, wikidata12k_0.001
|
||||
2023-05-27 06:19:36,495 - [INFO] - [E:5| 300]: Train Loss:0.0012809, Val MRR:0.23196, wikidata12k_0.001
|
||||
2023-05-27 06:20:40,588 - [INFO] - [E:5| 400]: Train Loss:0.0012857, Val MRR:0.23196, wikidata12k_0.001
|
||||
2023-05-27 06:21:44,792 - [INFO] - [E:5| 500]: Train Loss:0.0012853, Val MRR:0.23196, wikidata12k_0.001
|
||||
2023-05-27 06:22:49,006 - [INFO] - [E:5| 600]: Train Loss:0.0012833, Val MRR:0.23196, wikidata12k_0.001
|
||||
2023-05-27 06:23:53,190 - [INFO] - [E:5| 700]: Train Loss:0.0012812, Val MRR:0.23196, wikidata12k_0.001
|
||||
2023-05-27 06:24:57,311 - [INFO] - [E:5| 800]: Train Loss:0.0012813, Val MRR:0.23196, wikidata12k_0.001
|
||||
2023-05-27 06:26:01,510 - [INFO] - [E:5| 900]: Train Loss:0.0012801, Val MRR:0.23196, wikidata12k_0.001
|
||||
2023-05-27 06:27:05,756 - [INFO] - [E:5| 1000]: Train Loss:0.0012789, Val MRR:0.23196, wikidata12k_0.001
|
||||
2023-05-27 06:28:09,936 - [INFO] - [E:5| 1100]: Train Loss:0.0012769, Val MRR:0.23196, wikidata12k_0.001
|
||||
2023-05-27 06:29:14,145 - [INFO] - [E:5| 1200]: Train Loss:0.0012746, Val MRR:0.23196, wikidata12k_0.001
|
||||
2023-05-27 06:30:18,293 - [INFO] - [E:5| 1300]: Train Loss:0.0012721, Val MRR:0.23196, wikidata12k_0.001
|
||||
2023-05-27 06:31:22,538 - [INFO] - [E:5| 1400]: Train Loss:0.0012703, Val MRR:0.23196, wikidata12k_0.001
|
||||
2023-05-27 06:32:26,694 - [INFO] - [E:5| 1500]: Train Loss:0.0012689, Val MRR:0.23196, wikidata12k_0.001
|
||||
2023-05-27 06:33:30,913 - [INFO] - [E:5| 1600]: Train Loss:0.0012677, Val MRR:0.23196, wikidata12k_0.001
|
||||
2023-05-27 06:34:12,771 - [INFO] - [Epoch:5]: Training Loss:0.001267
|
||||
|
||||
2023-05-27 06:34:12,992 - [INFO] - [Valid, Tail_Batch Step 0] wikidata12k_0.001
|
||||
2023-05-27 06:34:34,725 - [INFO] - [Valid, Tail_Batch Step 100] wikidata12k_0.001
|
||||
2023-05-27 06:34:47,309 - [INFO] - [Valid, Head_Batch Step 0] wikidata12k_0.001
|
||||
2023-05-27 06:35:09,233 - [INFO] - [Valid, Head_Batch Step 100] wikidata12k_0.001
|
||||
2023-05-27 06:35:21,676 - [INFO] - [Evaluating Epoch 5 valid]:
|
||||
MRR: Tail : 0.39017, Head : 0.12832, Avg : 0.25924
|
||||
|
||||
2023-05-27 06:35:22,811 - [INFO] - [Epoch 5]: Training Loss: 0.0012668, Valid MRR: 0.25924,
|
||||
|
||||
|
||||
|
||||
2023-05-27 06:35:23,469 - [INFO] - [E:6| 0]: Train Loss:0.0011894, Val MRR:0.25924, wikidata12k_0.001
|
||||
2023-05-27 06:36:27,594 - [INFO] - [E:6| 100]: Train Loss:0.0012342, Val MRR:0.25924, wikidata12k_0.001
|
||||
2023-05-27 06:37:31,786 - [INFO] - [E:6| 200]: Train Loss:0.0012378, Val MRR:0.25924, wikidata12k_0.001
|
||||
2023-05-27 06:38:35,956 - [INFO] - [E:6| 300]: Train Loss:0.0012388, Val MRR:0.25924, wikidata12k_0.001
|
||||
2023-05-27 06:39:40,226 - [INFO] - [E:6| 400]: Train Loss:0.0012378, Val MRR:0.25924, wikidata12k_0.001
|
||||
2023-05-27 06:40:44,423 - [INFO] - [E:6| 500]: Train Loss:0.0012438, Val MRR:0.25924, wikidata12k_0.001
|
||||
2023-05-27 06:41:48,645 - [INFO] - [E:6| 600]: Train Loss:0.0012421, Val MRR:0.25924, wikidata12k_0.001
|
||||
2023-05-27 06:42:52,773 - [INFO] - [E:6| 700]: Train Loss:0.0012408, Val MRR:0.25924, wikidata12k_0.001
|
||||
2023-05-27 06:43:56,948 - [INFO] - [E:6| 800]: Train Loss:0.0012416, Val MRR:0.25924, wikidata12k_0.001
|
||||
2023-05-27 06:45:01,063 - [INFO] - [E:6| 900]: Train Loss:0.001242, Val MRR:0.25924, wikidata12k_0.001
|
||||
2023-05-27 06:46:05,216 - [INFO] - [E:6| 1000]: Train Loss:0.0012397, Val MRR:0.25924, wikidata12k_0.001
|
||||
2023-05-27 06:47:09,350 - [INFO] - [E:6| 1100]: Train Loss:0.0012386, Val MRR:0.25924, wikidata12k_0.001
|
||||
2023-05-27 06:48:13,445 - [INFO] - [E:6| 1200]: Train Loss:0.0012373, Val MRR:0.25924, wikidata12k_0.001
|
||||
2023-05-27 06:49:17,622 - [INFO] - [E:6| 1300]: Train Loss:0.0012363, Val MRR:0.25924, wikidata12k_0.001
|
||||
2023-05-27 06:50:21,832 - [INFO] - [E:6| 1400]: Train Loss:0.0012346, Val MRR:0.25924, wikidata12k_0.001
|
||||
2023-05-27 06:51:26,056 - [INFO] - [E:6| 1500]: Train Loss:0.0012342, Val MRR:0.25924, wikidata12k_0.001
|
||||
2023-05-27 06:52:30,214 - [INFO] - [E:6| 1600]: Train Loss:0.001233, Val MRR:0.25924, wikidata12k_0.001
|
||||
2023-05-27 06:53:12,160 - [INFO] - [Epoch:6]: Training Loss:0.001232
|
||||
|
||||
2023-05-27 06:53:12,380 - [INFO] - [Valid, Tail_Batch Step 0] wikidata12k_0.001
|
||||
2023-05-27 06:53:34,088 - [INFO] - [Valid, Tail_Batch Step 100] wikidata12k_0.001
|
||||
2023-05-27 06:53:46,650 - [INFO] - [Valid, Head_Batch Step 0] wikidata12k_0.001
|
||||
2023-05-27 06:54:08,519 - [INFO] - [Valid, Head_Batch Step 100] wikidata12k_0.001
|
||||
2023-05-27 06:54:20,952 - [INFO] - [Evaluating Epoch 6 valid]:
|
||||
MRR: Tail : 0.37877, Head : 0.18554, Avg : 0.28215
|
||||
|
||||
2023-05-27 06:54:22,025 - [INFO] - [Epoch 6]: Training Loss: 0.0012324, Valid MRR: 0.28215,
|
||||
|
||||
|
||||
|
||||
2023-05-27 06:54:22,682 - [INFO] - [E:7| 0]: Train Loss:0.0011315, Val MRR:0.28215, wikidata12k_0.001
|
||||
2023-05-27 06:55:26,826 - [INFO] - [E:7| 100]: Train Loss:0.001205, Val MRR:0.28215, wikidata12k_0.001
|
||||
2023-05-27 06:56:30,996 - [INFO] - [E:7| 200]: Train Loss:0.0012037, Val MRR:0.28215, wikidata12k_0.001
|
||||
2023-05-27 06:57:35,173 - [INFO] - [E:7| 300]: Train Loss:0.0012034, Val MRR:0.28215, wikidata12k_0.001
|
||||
2023-05-27 06:58:39,365 - [INFO] - [E:7| 400]: Train Loss:0.0012073, Val MRR:0.28215, wikidata12k_0.001
|
||||
2023-05-27 06:59:43,659 - [INFO] - [E:7| 500]: Train Loss:0.0012094, Val MRR:0.28215, wikidata12k_0.001
|
||||
2023-05-27 07:00:47,839 - [INFO] - [E:7| 600]: Train Loss:0.0012093, Val MRR:0.28215, wikidata12k_0.001
|
||||
2023-05-27 07:01:51,994 - [INFO] - [E:7| 700]: Train Loss:0.0012077, Val MRR:0.28215, wikidata12k_0.001
|
||||
2023-05-27 07:02:56,159 - [INFO] - [E:7| 800]: Train Loss:0.0012085, Val MRR:0.28215, wikidata12k_0.001
|
||||
2023-05-27 07:04:00,272 - [INFO] - [E:7| 900]: Train Loss:0.0012086, Val MRR:0.28215, wikidata12k_0.001
|
||||
2023-05-27 07:05:04,432 - [INFO] - [E:7| 1000]: Train Loss:0.0012104, Val MRR:0.28215, wikidata12k_0.001
|
||||
2023-05-27 07:06:08,565 - [INFO] - [E:7| 1100]: Train Loss:0.00121, Val MRR:0.28215, wikidata12k_0.001
|
||||
2023-05-27 07:07:12,766 - [INFO] - [E:7| 1200]: Train Loss:0.0012097, Val MRR:0.28215, wikidata12k_0.001
|
||||
2023-05-27 07:08:16,920 - [INFO] - [E:7| 1300]: Train Loss:0.0012101, Val MRR:0.28215, wikidata12k_0.001
|
||||
2023-05-27 07:09:21,081 - [INFO] - [E:7| 1400]: Train Loss:0.0012095, Val MRR:0.28215, wikidata12k_0.001
|
||||
2023-05-27 07:10:25,247 - [INFO] - [E:7| 1500]: Train Loss:0.0012082, Val MRR:0.28215, wikidata12k_0.001
|
||||
2023-05-27 07:11:29,494 - [INFO] - [E:7| 1600]: Train Loss:0.0012075, Val MRR:0.28215, wikidata12k_0.001
|
||||
2023-05-27 07:12:11,381 - [INFO] - [Epoch:7]: Training Loss:0.001208
|
||||
|
||||
2023-05-27 07:12:11,602 - [INFO] - [Valid, Tail_Batch Step 0] wikidata12k_0.001
|
||||
2023-05-27 07:12:33,359 - [INFO] - [Valid, Tail_Batch Step 100] wikidata12k_0.001
|
||||
2023-05-27 07:12:45,946 - [INFO] - [Valid, Head_Batch Step 0] wikidata12k_0.001
|
||||
2023-05-27 07:13:07,852 - [INFO] - [Valid, Head_Batch Step 100] wikidata12k_0.001
|
||||
2023-05-27 07:13:20,334 - [INFO] - [Evaluating Epoch 7 valid]:
|
||||
MRR: Tail : 0.40626, Head : 0.21375, Avg : 0.31001
|
||||
|
||||
2023-05-27 07:13:21,326 - [INFO] - [Epoch 7]: Training Loss: 0.0012077, Valid MRR: 0.31001,
|
||||
|
||||
|
||||
|
||||
2023-05-27 07:13:21,980 - [INFO] - [E:8| 0]: Train Loss:0.0012363, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:14:26,096 - [INFO] - [E:8| 100]: Train Loss:0.0011868, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:15:30,354 - [INFO] - [E:8| 200]: Train Loss:0.0011847, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:16:34,466 - [INFO] - [E:8| 300]: Train Loss:0.0011814, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:17:38,565 - [INFO] - [E:8| 400]: Train Loss:0.0011847, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:18:42,799 - [INFO] - [E:8| 500]: Train Loss:0.0011887, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:19:46,964 - [INFO] - [E:8| 600]: Train Loss:0.0011901, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:20:51,144 - [INFO] - [E:8| 700]: Train Loss:0.0011897, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:21:55,282 - [INFO] - [E:8| 800]: Train Loss:0.0011913, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:22:59,411 - [INFO] - [E:8| 900]: Train Loss:0.0011918, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:24:03,538 - [INFO] - [E:8| 1000]: Train Loss:0.0011908, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:25:07,761 - [INFO] - [E:8| 1100]: Train Loss:0.0011915, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:26:11,872 - [INFO] - [E:8| 1200]: Train Loss:0.0011925, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:27:16,041 - [INFO] - [E:8| 1300]: Train Loss:0.0011918, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:28:20,210 - [INFO] - [E:8| 1400]: Train Loss:0.0011905, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:29:24,336 - [INFO] - [E:8| 1500]: Train Loss:0.0011898, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:30:28,566 - [INFO] - [E:8| 1600]: Train Loss:0.0011888, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:31:10,538 - [INFO] - [Epoch:8]: Training Loss:0.001189
|
||||
|
||||
2023-05-27 07:31:10,758 - [INFO] - [Valid, Tail_Batch Step 0] wikidata12k_0.001
|
||||
2023-05-27 07:31:32,478 - [INFO] - [Valid, Tail_Batch Step 100] wikidata12k_0.001
|
||||
2023-05-27 07:31:45,038 - [INFO] - [Valid, Head_Batch Step 0] wikidata12k_0.001
|
||||
2023-05-27 07:32:06,913 - [INFO] - [Valid, Head_Batch Step 100] wikidata12k_0.001
|
||||
2023-05-27 07:32:19,354 - [INFO] - [Evaluating Epoch 8 valid]:
|
||||
MRR: Tail : 0.41408, Head : 0.20141, Avg : 0.30774
|
||||
|
||||
2023-05-27 07:32:19,354 - [INFO] - [Epoch 8]: Training Loss: 0.0011888, Valid MRR: 0.31001,
|
||||
|
||||
|
||||
|
||||
2023-05-27 07:32:20,011 - [INFO] - [E:9| 0]: Train Loss:0.0011748, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:33:24,159 - [INFO] - [E:9| 100]: Train Loss:0.0011746, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:34:28,351 - [INFO] - [E:9| 200]: Train Loss:0.0011787, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:35:32,472 - [INFO] - [E:9| 300]: Train Loss:0.0011761, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:36:36,656 - [INFO] - [E:9| 400]: Train Loss:0.0011729, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:37:40,796 - [INFO] - [E:9| 500]: Train Loss:0.0011725, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:38:44,981 - [INFO] - [E:9| 600]: Train Loss:0.0011741, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:39:49,133 - [INFO] - [E:9| 700]: Train Loss:0.001173, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:40:53,329 - [INFO] - [E:9| 800]: Train Loss:0.0011736, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:41:57,558 - [INFO] - [E:9| 900]: Train Loss:0.0011731, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:43:01,737 - [INFO] - [E:9| 1000]: Train Loss:0.0011729, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:44:05,854 - [INFO] - [E:9| 1100]: Train Loss:0.001173, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:45:10,080 - [INFO] - [E:9| 1200]: Train Loss:0.0011727, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:46:14,191 - [INFO] - [E:9| 1300]: Train Loss:0.0011718, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:47:18,385 - [INFO] - [E:9| 1400]: Train Loss:0.001171, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:48:22,543 - [INFO] - [E:9| 1500]: Train Loss:0.0011709, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:49:26,748 - [INFO] - [E:9| 1600]: Train Loss:0.0011712, Val MRR:0.31001, wikidata12k_0.001
|
||||
2023-05-27 07:50:08,734 - [INFO] - [Epoch:9]: Training Loss:0.001171
|
||||
|
||||
2023-05-27 07:50:08,954 - [INFO] - [Valid, Tail_Batch Step 0] wikidata12k_0.001
|
||||
2023-05-27 07:50:30,672 - [INFO] - [Valid, Tail_Batch Step 100] wikidata12k_0.001
|
||||
2023-05-27 07:50:43,251 - [INFO] - [Valid, Head_Batch Step 0] wikidata12k_0.001
|
||||
2023-05-27 07:51:05,138 - [INFO] - [Valid, Head_Batch Step 100] wikidata12k_0.001
|
||||
2023-05-27 07:51:17,628 - [INFO] - [Evaluating Epoch 9 valid]:
|
||||
MRR: Tail : 0.42849, Head : 0.23814, Avg : 0.33331
|
||||
MR: Tail : 655.47, Head : 840.42, Avg : 747.94
|
||||
Hit-1: Tail : 0.35832, Head : 0.15504, Avg : 0.25668
|
||||
Hit-3: Tail : 0.45838, Head : 0.2739, Avg : 0.36614
|
||||
Hit-10: Tail : 0.55785, Head : 0.39074, Avg : 0.47429
|
||||
2023-05-27 07:51:18,545 - [INFO] - [Epoch 9]: Training Loss: 0.0011709, Valid MRR: 0.33331,
|
||||
|
||||
|
||||
|
||||
2023-05-27 07:51:19,204 - [INFO] - [E:10| 0]: Train Loss:0.00113, Val MRR:0.33331, wikidata12k_0.001
|
||||
2023-05-27 07:52:23,358 - [INFO] - [E:10| 100]: Train Loss:0.0011531, Val MRR:0.33331, wikidata12k_0.001
|
||||
2023-05-27 07:53:27,523 - [INFO] - [E:10| 200]: Train Loss:0.0011557, Val MRR:0.33331, wikidata12k_0.001
|
||||
2023-05-27 07:54:31,758 - [INFO] - [E:10| 300]: Train Loss:0.0011545, Val MRR:0.33331, wikidata12k_0.001
|
||||
2023-05-27 07:55:36,004 - [INFO] - [E:10| 400]: Train Loss:0.0011554, Val MRR:0.33331, wikidata12k_0.001
|
||||
2023-05-27 07:56:40,140 - [INFO] - [E:10| 500]: Train Loss:0.001154, Val MRR:0.33331, wikidata12k_0.001
|
||||
2023-05-27 07:57:44,301 - [INFO] - [E:10| 600]: Train Loss:0.0011525, Val MRR:0.33331, wikidata12k_0.001
|
||||
2023-05-27 07:58:48,517 - [INFO] - [E:10| 700]: Train Loss:0.0011538, Val MRR:0.33331, wikidata12k_0.001
|
||||
2023-05-27 07:59:52,698 - [INFO] - [E:10| 800]: Train Loss:0.0011536, Val MRR:0.33331, wikidata12k_0.001
|
||||
2023-05-27 08:00:56,912 - [INFO] - [E:10| 900]: Train Loss:0.0011541, Val MRR:0.33331, wikidata12k_0.001
|
||||
2023-05-27 08:02:01,143 - [INFO] - [E:10| 1000]: Train Loss:0.0011546, Val MRR:0.33331, wikidata12k_0.001
|
||||
2023-05-27 08:03:05,293 - [INFO] - [E:10| 1100]: Train Loss:0.0011542, Val MRR:0.33331, wikidata12k_0.001
|
||||
2023-05-27 08:04:09,471 - [INFO] - [E:10| 1200]: Train Loss:0.0011539, Val MRR:0.33331, wikidata12k_0.001
|
||||
2023-05-27 08:05:13,701 - [INFO] - [E:10| 1300]: Train Loss:0.0011531, Val MRR:0.33331, wikidata12k_0.001
|
||||
2023-05-27 08:06:17,887 - [INFO] - [E:10| 1400]: Train Loss:0.0011534, Val MRR:0.33331, wikidata12k_0.001
|
||||
2023-05-27 08:07:22,089 - [INFO] - [E:10| 1500]: Train Loss:0.0011546, Val MRR:0.33331, wikidata12k_0.001
|
||||
2023-05-27 08:08:26,239 - [INFO] - [E:10| 1600]: Train Loss:0.0011552, Val MRR:0.33331, wikidata12k_0.001
|
||||
2023-05-27 08:09:08,153 - [INFO] - [Epoch:10]: Training Loss:0.001156
|
||||
|
||||
2023-05-27 08:09:08,373 - [INFO] - [Valid, Tail_Batch Step 0] wikidata12k_0.001
|
||||
2023-05-27 08:09:30,456 - [INFO] - [Valid, Tail_Batch Step 100] wikidata12k_0.001
|
||||
2023-05-27 08:09:43,084 - [INFO] - [Valid, Head_Batch Step 0] wikidata12k_0.001
|
||||
2023-05-27 08:10:05,005 - [INFO] - [Valid, Head_Batch Step 100] wikidata12k_0.001
|
||||
2023-05-27 08:10:17,448 - [INFO] - [Evaluating Epoch 10 valid]:
|
||||
MRR: Tail : 0.45191, Head : 0.21626, Avg : 0.33409
|
||||
|
||||
2023-05-27 08:10:18,436 - [INFO] - [Epoch 10]: Training Loss: 0.0011556, Valid MRR: 0.33409,
|
||||
|
||||
|
||||
|
||||
2023-05-27 08:10:19,090 - [INFO] - [E:11| 0]: Train Loss:0.0011363, Val MRR:0.33409, wikidata12k_0.001
|
||||
2023-05-27 08:11:23,530 - [INFO] - [E:11| 100]: Train Loss:0.0011426, Val MRR:0.33409, wikidata12k_0.001
|
||||
2023-05-27 08:12:27,950 - [INFO] - [E:11| 200]: Train Loss:0.0011483, Val MRR:0.33409, wikidata12k_0.001
|
||||
2023-05-27 08:13:32,143 - [INFO] - [E:11| 300]: Train Loss:0.0011472, Val MRR:0.33409, wikidata12k_0.001
|
||||
2023-05-27 08:14:36,469 - [INFO] - [E:11| 400]: Train Loss:0.0011477, Val MRR:0.33409, wikidata12k_0.001
|
||||
2023-05-27 08:15:40,641 - [INFO] - [E:11| 500]: Train Loss:0.0011474, Val MRR:0.33409, wikidata12k_0.001
|
||||
2023-05-27 08:16:44,731 - [INFO] - [E:11| 600]: Train Loss:0.0011465, Val MRR:0.33409, wikidata12k_0.001
|
||||
2023-05-27 08:17:48,900 - [INFO] - [E:11| 700]: Train Loss:0.0011469, Val MRR:0.33409, wikidata12k_0.001
|
||||
2023-05-27 08:18:53,113 - [INFO] - [E:11| 800]: Train Loss:0.0011469, Val MRR:0.33409, wikidata12k_0.001
|
||||
2023-05-27 08:19:57,285 - [INFO] - [E:11| 900]: Train Loss:0.0011457, Val MRR:0.33409, wikidata12k_0.001
|
||||
2023-05-27 08:21:01,406 - [INFO] - [E:11| 1000]: Train Loss:0.0011445, Val MRR:0.33409, wikidata12k_0.001
|
||||
2023-05-27 08:22:05,596 - [INFO] - [E:11| 1100]: Train Loss:0.0011434, Val MRR:0.33409, wikidata12k_0.001
|
||||
2023-05-27 08:23:09,693 - [INFO] - [E:11| 1200]: Train Loss:0.0011431, Val MRR:0.33409, wikidata12k_0.001
|
||||
2023-05-27 08:24:13,830 - [INFO] - [E:11| 1300]: Train Loss:0.001143, Val MRR:0.33409, wikidata12k_0.001
|
||||
2023-05-27 08:25:18,076 - [INFO] - [E:11| 1400]: Train Loss:0.0011426, Val MRR:0.33409, wikidata12k_0.001
|
||||
2023-05-27 08:26:22,160 - [INFO] - [E:11| 1500]: Train Loss:0.0011422, Val MRR:0.33409, wikidata12k_0.001
|
||||
2023-05-27 08:27:26,373 - [INFO] - [E:11| 1600]: Train Loss:0.0011418, Val MRR:0.33409, wikidata12k_0.001
|
||||
2023-05-27 08:28:08,368 - [INFO] - [Epoch:11]: Training Loss:0.001142
|
||||
|
||||
2023-05-27 08:28:08,589 - [INFO] - [Valid, Tail_Batch Step 0] wikidata12k_0.001
|
||||
2023-05-27 08:28:30,301 - [INFO] - [Valid, Tail_Batch Step 100] wikidata12k_0.001
|
||||
2023-05-27 08:28:42,888 - [INFO] - [Valid, Head_Batch Step 0] wikidata12k_0.001
|
||||
2023-05-27 08:29:04,760 - [INFO] - [Valid, Head_Batch Step 100] wikidata12k_0.001
|
||||
2023-05-27 08:29:17,200 - [INFO] - [Evaluating Epoch 11 valid]:
|
||||
MRR: Tail : 0.4433, Head : 0.23916, Avg : 0.34123
|
||||
|
||||
2023-05-27 08:29:18,266 - [INFO] - [Epoch 11]: Training Loss: 0.0011416, Valid MRR: 0.34123,
|
||||
|
||||
|
||||
|
||||
2023-05-27 08:29:18,927 - [INFO] - [E:12| 0]: Train Loss:0.0010957, Val MRR:0.34123, wikidata12k_0.001
|
||||
2023-05-27 08:30:23,063 - [INFO] - [E:12| 100]: Train Loss:0.0011303, Val MRR:0.34123, wikidata12k_0.001
|
||||
2023-05-27 08:31:27,243 - [INFO] - [E:12| 200]: Train Loss:0.001132, Val MRR:0.34123, wikidata12k_0.001
|
||||
2023-05-27 08:32:31,360 - [INFO] - [E:12| 300]: Train Loss:0.0011321, Val MRR:0.34123, wikidata12k_0.001
|
||||
2023-05-27 08:33:35,484 - [INFO] - [E:12| 400]: Train Loss:0.0011313, Val MRR:0.34123, wikidata12k_0.001
|
||||
2023-05-27 08:34:39,656 - [INFO] - [E:12| 500]: Train Loss:0.0011302, Val MRR:0.34123, wikidata12k_0.001
|
||||
2023-05-27 08:35:43,783 - [INFO] - [E:12| 600]: Train Loss:0.0011318, Val MRR:0.34123, wikidata12k_0.001
|
||||
2023-05-27 08:36:47,900 - [INFO] - [E:12| 700]: Train Loss:0.0011316, Val MRR:0.34123, wikidata12k_0.001
|
||||
2023-05-27 08:37:52,082 - [INFO] - [E:12| 800]: Train Loss:0.0011323, Val MRR:0.34123, wikidata12k_0.001
|
||||
2023-05-27 08:38:56,174 - [INFO] - [E:12| 900]: Train Loss:0.001132, Val MRR:0.34123, wikidata12k_0.001
|
||||
2023-05-27 08:40:00,316 - [INFO] - [E:12| 1000]: Train Loss:0.0011317, Val MRR:0.34123, wikidata12k_0.001
|
||||
2023-05-27 08:41:04,530 - [INFO] - [E:12| 1100]: Train Loss:0.0011322, Val MRR:0.34123, wikidata12k_0.001
|
||||
2023-05-27 08:42:08,648 - [INFO] - [E:12| 1200]: Train Loss:0.0011318, Val MRR:0.34123, wikidata12k_0.001
|
||||
2023-05-27 08:43:12,819 - [INFO] - [E:12| 1300]: Train Loss:0.0011314, Val MRR:0.34123, wikidata12k_0.001
|
||||
2023-05-27 08:44:18,052 - [INFO] - [E:12| 1400]: Train Loss:0.0011312, Val MRR:0.34123, wikidata12k_0.001
|
@ -10,15 +10,36 @@ def extract_learning_curves(args):
|
||||
if len(paths) == 1 and os.path.isdir(paths[0]):
|
||||
paths = [os.path.join(paths[0], f) for f in os.listdir(paths[0]) if os.path.isfile(os.path.join(paths[0], f))]
|
||||
learning_curves = {}
|
||||
print(paths)
|
||||
for path in paths:
|
||||
print(path)
|
||||
learning_curve = []
|
||||
lines = open(path, 'r').readlines()
|
||||
last_epoch = -1
|
||||
stacked_epoch = -1
|
||||
max_epoch = -1
|
||||
for line in lines:
|
||||
matched = re.match(r'[0-9\- :,]*\[INFO\] - \[Epoch ([0-9]+)\].*Valid MRR: ([0-9\.]+).*', line)
|
||||
# matched = re.match(r'\tMRR: Tail : [0-9\.]+, Head : [0-9\.]+, Avg : ([0-9\.]+)', line)
|
||||
if matched:
|
||||
this_epoch = int(matched.group(1))
|
||||
if (this_epoch > max_epoch):
|
||||
learning_curve.append(float(matched.group(2)))
|
||||
if int(matched.group(1)) >= args.num_epochs:
|
||||
max_epoch = this_epoch
|
||||
stacked_epoch = this_epoch
|
||||
elif (this_epoch < max_epoch and this_epoch > last_epoch):
|
||||
last_epoch = this_epoch
|
||||
max_epoch = stacked_epoch + 1 + this_epoch
|
||||
learning_curve.append(float(matched.group(2)))
|
||||
if max_epoch >= args.num_epochs:
|
||||
break
|
||||
# if matched:
|
||||
# max_epoch += 1
|
||||
# learning_curve.append(float(matched.group(1)))
|
||||
# if max_epoch >= args.num_epochs:
|
||||
# break
|
||||
while len(learning_curve) < args.num_epochs:
|
||||
learning_curve.append(learning_curve[-1])
|
||||
learning_curves[os.path.basename(path)] = learning_curve
|
||||
return learning_curves
|
||||
|
||||
@ -32,7 +53,7 @@ def draw_learning_curves(args, learning_curves):
|
||||
label = name
|
||||
plt.plot(epochs, learning_curves[name], label = label)
|
||||
plt.xlabel("Epochs")
|
||||
plt.ylabel("MRR")
|
||||
plt.ylabel("Best Valid MRR")
|
||||
plt.legend(title=args.legend_title)
|
||||
plt.savefig(os.path.join(args.out_path, str(round(datetime.utcnow().timestamp() * 1000)) + '.' + args.fig_filetype))
|
||||
|
||||
|
@ -1,75 +0,0 @@
|
||||
nohup: ignoring input
|
||||
2023-05-27 08:51:48,116 - [INFO] - {'dataset': 'wikidata12k', 'name': 'wikidata12k_at', 'gpu': '3', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': False}
|
||||
{'batch_size': 128,
|
||||
'bias': False,
|
||||
'config_dir': './config/',
|
||||
'dataset': 'wikidata12k',
|
||||
'drop': 0.0,
|
||||
'drop_path': 0.0,
|
||||
'embed_dim': 400,
|
||||
'ent_vec_dim': 400,
|
||||
'expansion_factor': 4,
|
||||
'expansion_factor_token': 0.5,
|
||||
'feat_drop': 0.2,
|
||||
'filt_h': 1,
|
||||
'filt_w': 9,
|
||||
'form': 'plain',
|
||||
'gpu': '3',
|
||||
'grid_search': False,
|
||||
'hid_drop': 0.5,
|
||||
'image_h': 128,
|
||||
'image_w': 128,
|
||||
'in_channels': 1,
|
||||
'inp_drop': 0.2,
|
||||
'k_h': 20,
|
||||
'k_w': 10,
|
||||
'ker_sz': 9,
|
||||
'l2': 0.0,
|
||||
'lbl_smooth': 0.1,
|
||||
'log_dir': './log/',
|
||||
'lr': 0.0001,
|
||||
'max_epochs': 500,
|
||||
'mixer_depth': 16,
|
||||
'mixer_dim': 256,
|
||||
'mixer_dropout': 0.2,
|
||||
'name': 'wikidata12k_at',
|
||||
'neg_num': 1000,
|
||||
'num_filt': 96,
|
||||
'num_workers': 0,
|
||||
'opt': 'adam',
|
||||
'out_channels': 32,
|
||||
'patch_size': 8,
|
||||
'perm': 1,
|
||||
'rel_vec_dim': 400,
|
||||
'restore': False,
|
||||
'seed': 42,
|
||||
'test_only': False,
|
||||
'train_strategy': 'one_to_n'}
|
||||
Traceback (most recent call last):
|
||||
File "main.py", line 693, in <module>
|
||||
model.fit()
|
||||
File "main.py", line 492, in fit
|
||||
train_loss = self.run_epoch(epoch)
|
||||
File "main.py", line 458, in run_epoch
|
||||
pred = self.model.forward(sub, rel, neg_ent, self.p.train_strategy)
|
||||
File "/root/kg_374/Thesis_split/models.py", line 558, in forward
|
||||
z = self.forward_tokens(z)
|
||||
File "/root/kg_374/Thesis_split/models.py", line 547, in forward_tokens
|
||||
x = block(x)
|
||||
File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
|
||||
return forward_call(*input, **kwargs)
|
||||
File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/torch/nn/modules/container.py", line 139, in forward
|
||||
input = module(input)
|
||||
File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
|
||||
return forward_call(*input, **kwargs)
|
||||
File "/root/kg_374/Thesis_split/models.py", line 757, in forward
|
||||
* self.mlp(self.norm2(x)))
|
||||
File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
|
||||
return forward_call(*input, **kwargs)
|
||||
File "/root/kg_374/Thesis_split/models.py", line 821, in forward
|
||||
x = self.act(x)
|
||||
File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
|
||||
return forward_call(*input, **kwargs)
|
||||
File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/torch/nn/modules/activation.py", line 681, in forward
|
||||
return F.gelu(input, approximate=self.approximate)
|
||||
RuntimeError: CUDA out of memory. Tried to allocate 800.00 MiB (GPU 0; 31.72 GiB total capacity; 10.92 GiB already allocated; 669.94 MiB free; 10.98 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
Reference in New Issue
Block a user