Compare commits
	
		
			36 Commits
		
	
	
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
|  | 47bc661a91 | ||
|  | 3b6db89be1 | ||
|  | 352f5f9da9 | ||
|  | b9273b6696 | ||
|  | d0e4630dd6 | ||
|  | 08a3780ba6 | ||
|  | 6fc56b920f | ||
|  | fddea4769f | ||
|  | d9209a7ef1 | ||
|  | 0f986d7517 | ||
|  | 4daa40527b | ||
|  | 541c4fa2b3 | ||
|  | 68a94bd1e2 | ||
|  | b01e504874 | ||
|  | 23c44d3582 | ||
|  | 41a5c7b05a | ||
|  | f8e969cbd1 | ||
|  | ae0f43ab4d | ||
|  | dda7f13dbd | ||
|  | 1dd423edf0 | ||
|  | a1bf2d7389 | ||
|  | c31588cc5f | ||
|  | c03e24f4c2 | ||
|  | a47a60f6a1 | ||
|  | ba388148d4 | ||
|  | 1b816fed50 | ||
|  | 32962bf421 | ||
|  | b9efe68d3c | ||
|  | 465f98bef8 | ||
|  | d4ac470c54 | ||
|  | 28a8352044 | ||
|  | b77c79708e | ||
|  | 22d44d1a99 | ||
|  | 63ccb4ec75 | ||
|  | 6ec566505f | ||
|  | 30805a0af9 | 
							
								
								
									
										30
									
								
								main.py
									
									
									
									
									
								
							
							
						
						
									
										30
									
								
								main.py
									
									
									
									
									
								
							| @@ -20,6 +20,7 @@ from data_loader import TrainDataset, TestDataset | ||||
| from utils import get_logger, get_combined_results, set_gpu, prepare_env, set_seed | ||||
|  | ||||
| from models import ComplEx, ConvE, HypER, InteractE, FouriER, TuckER | ||||
| import traceback | ||||
|  | ||||
|  | ||||
| class Main(object): | ||||
| @@ -715,16 +716,19 @@ if __name__ == "__main__": | ||||
|         model.load_model(save_path) | ||||
|         model.evaluate('test') | ||||
|     else: | ||||
|         while True: | ||||
|             try: | ||||
|                 model = Main(args, logger) | ||||
|                 model.fit() | ||||
|             except Exception as e: | ||||
|                 print(e) | ||||
|                 try: | ||||
|                     del model | ||||
|                 except Exception: | ||||
|                     pass | ||||
|                 time.sleep(30) | ||||
|                 continue | ||||
|             break | ||||
|         model = Main(args, logger) | ||||
|         model.fit() | ||||
|         # while True: | ||||
|         #     try: | ||||
|         #         model = Main(args, logger) | ||||
|         #         model.fit() | ||||
|         #     except Exception as e: | ||||
|         #         print(e) | ||||
|         #         traceback.print_exc() | ||||
|         #         try: | ||||
|         #             del model | ||||
|         #         except Exception: | ||||
|         #             pass | ||||
|         #         time.sleep(30) | ||||
|         #         continue | ||||
|         #     break | ||||
|   | ||||
							
								
								
									
										518
									
								
								models.py
									
									
									
									
									
								
							
							
						
						
									
										518
									
								
								models.py
									
									
									
									
									
								
							| @@ -9,7 +9,9 @@ from layers import * | ||||
| from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | ||||
| from timm.models.layers import DropPath, trunc_normal_ | ||||
| from timm.models.registry import register_model | ||||
| from timm.models.layers.helpers import to_2tuple | ||||
| from timm.layers.helpers import to_2tuple | ||||
| from typing import * | ||||
| import math | ||||
|  | ||||
|  | ||||
| class ConvE(torch.nn.Module): | ||||
| @@ -526,6 +528,22 @@ class FouriER(torch.nn.Module): | ||||
|  | ||||
|         self.network = nn.ModuleList(network) | ||||
|         self.norm = norm_layer(embed_dims[-1]) | ||||
|         self.graph_type = 'Spatial' | ||||
|         N = (image_h // patch_size)**2 | ||||
|         if self.graph_type in ["Spatial", "Mixed"]: | ||||
|             # Create a range tensor of node indices | ||||
|             indices = torch.arange(N) | ||||
|             # Reshape the indices tensor to create a grid of row and column indices | ||||
|             row_indices = indices.view(-1, 1).expand(-1, N) | ||||
|             col_indices = indices.view(1, -1).expand(N, -1) | ||||
|             # Compute the adjacency matrix | ||||
|             row1, col1 = row_indices // int(math.sqrt(N)), row_indices % int(math.sqrt(N)) | ||||
|             row2, col2 = col_indices // int(math.sqrt(N)), col_indices % int(math.sqrt(N)) | ||||
|             graph = ((abs(row1 - row2) <= 1).float() * (abs(col1 - col2) <= 1).float()) | ||||
|             graph = graph - torch.eye(N) | ||||
|             self.spatial_graph = graph.cuda() # comment .to("cuda") if the environment is cpu | ||||
|         self.class_token = False | ||||
|         self.token_scale = False | ||||
|         self.head = nn.Linear( | ||||
|                 embed_dims[-1], num_classes) if num_classes > 0 \ | ||||
|                 else nn.Identity() | ||||
| @@ -543,8 +561,45 @@ class FouriER(torch.nn.Module): | ||||
|  | ||||
|     def forward_tokens(self, x): | ||||
|         outs = [] | ||||
|         B, C, H, W = x.shape | ||||
|         N = H*W | ||||
|         if self.graph_type in ["Semantic", "Mixed"]: | ||||
|             # Generate the semantic graph w.r.t. the cosine similarity between tokens | ||||
|             # Compute cosine similarity | ||||
|             if self.class_token: | ||||
|                 x_normed = x[:, 1:] / x[:, 1:].norm(dim=-1, keepdim=True) | ||||
|             else: | ||||
|                 x_normed = x / x.norm(dim=-1, keepdim=True) | ||||
|             x_cossim = x_normed @ x_normed.transpose(-1, -2) | ||||
|             threshold = torch.kthvalue(x_cossim, N-1-self.num_neighbours, dim=-1, keepdim=True)[0] # B,H,1,1  | ||||
|             semantic_graph = torch.where(x_cossim>=threshold, 1.0, 0.0) | ||||
|             if self.class_token: | ||||
|                 semantic_graph = semantic_graph - torch.eye(N-1, device=semantic_graph.device).unsqueeze(0) | ||||
|             else: | ||||
|                 semantic_graph = semantic_graph - torch.eye(N, device=semantic_graph.device).unsqueeze(0) | ||||
|          | ||||
|         if self.graph_type == "None": | ||||
|             graph = None | ||||
|         else: | ||||
|             if self.graph_type == "Spatial": | ||||
|                 graph = self.spatial_graph.unsqueeze(0).expand(B,-1,-1)#.to(x.device) | ||||
|             elif self.graph_type == "Semantic": | ||||
|                 graph = semantic_graph | ||||
|             elif self.graph_type == "Mixed": | ||||
|                 # Integrate the spatial graph and semantic graph | ||||
|                 spatial_graph = self.spatial_graph.unsqueeze(0).expand(B,-1,-1).to(x.device) | ||||
|                 graph = torch.bitwise_or(semantic_graph.int(), spatial_graph.int()).float() | ||||
|              | ||||
|             # Symmetrically normalize the graph | ||||
|             degree = graph.sum(-1) # B, N | ||||
|             degree = torch.diag_embed(degree**(-1/2)) | ||||
|             graph = degree @ graph @ degree | ||||
|  | ||||
|         for idx, block in enumerate(self.network): | ||||
|             x = block(x) | ||||
|             try: | ||||
|                 x = block(x, graph) | ||||
|             except: | ||||
|                 x = block(x) | ||||
|         # output only the features of last layer for image classification | ||||
|         return x | ||||
|  | ||||
| @@ -703,10 +758,443 @@ def basic_blocks(dim, index, layers, | ||||
|             use_layer_scale=use_layer_scale,  | ||||
|             layer_scale_init_value=layer_scale_init_value,  | ||||
|             )) | ||||
|     blocks = nn.Sequential(*blocks) | ||||
|     blocks = SeqModel(*blocks) | ||||
|  | ||||
|     return blocks | ||||
|  | ||||
| def window_partition(x, window_size): | ||||
|     """ | ||||
|     Args: | ||||
|         x: (B, H, W, C) | ||||
|         window_size (int): window size | ||||
|  | ||||
|     Returns: | ||||
|         windows: (num_windows*B, window_size, window_size, C) | ||||
|     """ | ||||
|     B, C, H, W = x.shape | ||||
|     x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) | ||||
|     windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) | ||||
|     return windows | ||||
|  | ||||
| class WindowAttention(nn.Module): | ||||
|     r""" Window based multi-head self attention (W-MSA) module with relative position bias. | ||||
|     It supports both of shifted and non-shifted window. | ||||
|  | ||||
|     Args: | ||||
|         dim (int): Number of input channels. | ||||
|         window_size (tuple[int]): The height and width of the window. | ||||
|         num_heads (int): Number of attention heads. | ||||
|         qkv_bias (bool, optional):  If True, add a learnable bias to query, key, value. Default: True | ||||
|         attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 | ||||
|         proj_drop (float, optional): Dropout ratio of output. Default: 0.0 | ||||
|         pretrained_window_size (tuple[int]): The height and width of the window in pre-training. | ||||
|     """ | ||||
|  | ||||
|     def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0., | ||||
|                  pretrained_window_size=[0, 0]): | ||||
|  | ||||
|         super().__init__() | ||||
|         self.dim = dim | ||||
|         self.window_size = window_size  # Wh, Ww | ||||
|         self.pretrained_window_size = pretrained_window_size | ||||
|         self.num_heads = num_heads | ||||
|  | ||||
|         self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True) | ||||
|  | ||||
|         # mlp to generate continuous relative position bias | ||||
|         self.cpb_mlp = nn.Sequential(nn.Linear(2, 512, bias=True), | ||||
|                                      nn.ReLU(inplace=True), | ||||
|                                      nn.Linear(512, num_heads, bias=False)) | ||||
|  | ||||
|         # get relative_coords_table | ||||
|         relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0], dtype=torch.float32) | ||||
|         relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1], dtype=torch.float32) | ||||
|         relative_coords_table = torch.stack( | ||||
|             torch.meshgrid([relative_coords_h, | ||||
|                             relative_coords_w])).permute(1, 2, 0).contiguous().unsqueeze(0)  # 1, 2*Wh-1, 2*Ww-1, 2 | ||||
|         if pretrained_window_size[0] > 0: | ||||
|             relative_coords_table[:, :, :, 0] /= (pretrained_window_size[0] - 1) | ||||
|             relative_coords_table[:, :, :, 1] /= (pretrained_window_size[1] - 1) | ||||
|         else: | ||||
|             relative_coords_table[:, :, :, 0] /= (self.window_size[0] - 1) | ||||
|             relative_coords_table[:, :, :, 1] /= (self.window_size[1] - 1) | ||||
|         relative_coords_table *= 8  # normalize to -8, 8 | ||||
|         relative_coords_table = torch.sign(relative_coords_table) * torch.log2( | ||||
|             torch.abs(relative_coords_table) + 1.0) / np.log2(8) | ||||
|  | ||||
|         self.register_buffer("relative_coords_table", relative_coords_table) | ||||
|  | ||||
|         # get pair-wise relative position index for each token inside the window | ||||
|         coords_h = torch.arange(self.window_size[0]) | ||||
|         coords_w = torch.arange(self.window_size[1]) | ||||
|         coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, Wh, Ww | ||||
|         coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww | ||||
|         relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Ww | ||||
|         relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2 | ||||
|         relative_coords[:, :, 0] += self.window_size[0] - 1  # shift to start from 0 | ||||
|         relative_coords[:, :, 1] += self.window_size[1] - 1 | ||||
|         relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 | ||||
|         relative_position_index = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww | ||||
|         self.register_buffer("relative_position_index", relative_position_index) | ||||
|  | ||||
|         self.qkv = nn.Linear(dim, dim * 3, bias=False) | ||||
|         if qkv_bias: | ||||
|             self.q_bias = nn.Parameter(torch.zeros(dim)) | ||||
|             self.v_bias = nn.Parameter(torch.zeros(dim)) | ||||
|         else: | ||||
|             self.q_bias = None | ||||
|             self.v_bias = None | ||||
|         self.attn_drop = nn.Dropout(attn_drop) | ||||
|         self.proj = nn.Linear(dim, dim) | ||||
|         self.proj_drop = nn.Dropout(proj_drop) | ||||
|         self.softmax = nn.Softmax(dim=-1) | ||||
|  | ||||
|     def forward(self, x, mask=None): | ||||
|         """ | ||||
|         Args: | ||||
|             x: input features with shape of (num_windows*B, N, C) | ||||
|             mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None | ||||
|         """ | ||||
|         B_, N, C = x.shape | ||||
|         qkv_bias = None | ||||
|         if self.q_bias is not None: | ||||
|             qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias)) | ||||
|         qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) | ||||
|         qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) | ||||
|         q, k, v = qkv[0], qkv[1], qkv[2]  # make torchscript happy (cannot use tensor as tuple) | ||||
|  | ||||
|         # cosine attention | ||||
|         attn = (F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1)) | ||||
|         logit_scale = torch.clamp(self.logit_scale, max=torch.log(torch.tensor(1. / 0.01)).cuda()).exp() | ||||
|         attn = attn * logit_scale | ||||
|  | ||||
|         relative_position_bias_table = self.cpb_mlp(self.relative_coords_table).view(-1, self.num_heads) | ||||
|         relative_position_bias = relative_position_bias_table[self.relative_position_index.view(-1)].view( | ||||
|             self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1)  # Wh*Ww,Wh*Ww,nH | ||||
|         relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww | ||||
|         relative_position_bias = 16 * torch.sigmoid(relative_position_bias) | ||||
|         attn = attn + relative_position_bias.unsqueeze(0) | ||||
|  | ||||
|         if mask is not None: | ||||
|             nW = mask.shape[0] | ||||
|             attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) | ||||
|             attn = attn.view(-1, self.num_heads, N, N) | ||||
|             attn = self.softmax(attn) | ||||
|         else: | ||||
|             attn = self.softmax(attn) | ||||
|  | ||||
|         attn = self.attn_drop(attn) | ||||
|  | ||||
|         x = (attn @ v).transpose(1, 2).reshape(B_, N, C) | ||||
|         x = self.proj(x) | ||||
|         x = self.proj_drop(x) | ||||
|         return x | ||||
|  | ||||
|     def extra_repr(self) -> str: | ||||
|         return f'dim={self.dim}, window_size={self.window_size}, ' \ | ||||
|                f'pretrained_window_size={self.pretrained_window_size}, num_heads={self.num_heads}' | ||||
|  | ||||
|     def flops(self, N): | ||||
|         # calculate flops for 1 window with token length of N | ||||
|         flops = 0 | ||||
|         # qkv = self.qkv(x) | ||||
|         flops += N * self.dim * 3 * self.dim | ||||
|         # attn = (q @ k.transpose(-2, -1)) | ||||
|         flops += self.num_heads * N * (self.dim // self.num_heads) * N | ||||
|         #  x = (attn @ v) | ||||
|         flops += self.num_heads * N * N * (self.dim // self.num_heads) | ||||
|         # x = self.proj(x) | ||||
|         flops += N * self.dim * self.dim | ||||
|         return flops | ||||
|      | ||||
| def window_reverse(windows, window_size, H, W): | ||||
|     """ | ||||
|     Args: | ||||
|         windows: (num_windows*B, window_size, window_size, C) | ||||
|         window_size (int): Window size | ||||
|         H (int): Height of image | ||||
|         W (int): Width of image | ||||
|  | ||||
|     Returns: | ||||
|         x: (B, H, W, C) | ||||
|     """ | ||||
|     B = int(windows.shape[0] / (H * W / window_size / window_size)) | ||||
|     x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1) | ||||
|     x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, -1, H, W) | ||||
|     return x | ||||
|  | ||||
| class SeqModel(nn.Sequential): | ||||
| 	def forward(self, *inputs): | ||||
| 		for module in self._modules.values(): | ||||
| 			if type(inputs) == tuple: | ||||
| 				inputs = module(*inputs) | ||||
| 			else: | ||||
| 				inputs = module(inputs) | ||||
| 		return inputs | ||||
|  | ||||
| def propagate(x: torch.Tensor, weight: torch.Tensor,  | ||||
|               index_kept: torch.Tensor, index_prop: torch.Tensor,  | ||||
|               standard: str = "None", alpha: Optional[float] = 0,  | ||||
|               token_scales: Optional[torch.Tensor] = None, | ||||
|               cls_token=True): | ||||
|     """ | ||||
|     Propagate tokens based on the selection results. | ||||
|     ================================================ | ||||
|     Args: | ||||
|         - x: Tensor([B, N, C]): the feature map of N tokens, including the [CLS] token. | ||||
|          | ||||
|         - weight: Tensor([B, N-1, N-1]): the weight of each token propagated to the other tokens,  | ||||
|                                          excluding the [CLS] token. weight could be a pre-defined  | ||||
|                                          graph of the current feature map (by default) or the | ||||
|                                          attention map (need to manually modify the Block Module). | ||||
|                                           | ||||
|         - index_kept: Tensor([B, N-1-num_prop]): the index of kept image tokens in the feature map X | ||||
|          | ||||
|         - index_prop: Tensor([B, num_prop]): the index of propagated image tokens in the feature map X | ||||
|          | ||||
|         - standard: str: the method applied to propagate the tokens, including "None", "Mean" and  | ||||
|                          "GraphProp" | ||||
|          | ||||
|         - alpha: float: the coefficient of propagated features | ||||
|          | ||||
|         - token_scales: Tensor([B, N]): the scale of tokens, including the [CLS] token. token_scales | ||||
|                                         is None by default. If it is not None, then token_scales  | ||||
|                                         represents the scales of each token and should sum up to N. | ||||
|          | ||||
|     Return: | ||||
|         - x: Tensor([B, N-1-num_prop, C]): the feature map after propagation | ||||
|          | ||||
|         - weight: Tensor([B, N-1-num_prop, N-1-num_prop]): the graph of feature map after propagation | ||||
|          | ||||
|         - token_scales: Tensor([B, N-1-num_prop]): the scale of tokens after propagation | ||||
|     """ | ||||
|      | ||||
|     B, N, C = x.shape | ||||
|      | ||||
|     # Step 1: divide tokens | ||||
|     if cls_token: | ||||
|         x_cls = x[:, 0:1] # B, 1, C | ||||
|     x_kept = x.gather(dim=1, index=index_kept.unsqueeze(-1).expand(-1,-1,C)) # B, N-1-num_prop, C | ||||
|     x_prop = x.gather(dim=1, index=index_prop.unsqueeze(-1).expand(-1,-1,C)) # B, num_prop, C | ||||
|      | ||||
|     # Step 2: divide token_scales if it is not None | ||||
|     if token_scales is not None: | ||||
|         if cls_token: | ||||
|             token_scales_cls = token_scales[:, 0:1] # B, 1 | ||||
|         token_scales_kept = token_scales.gather(dim=1, index=index_kept) # B, N-1-num_prop | ||||
|         token_scales_prop = token_scales.gather(dim=1, index=index_prop) # B, num_prop | ||||
|      | ||||
|     # Step 3: propagate tokens | ||||
|     if standard == "None": | ||||
|         """ | ||||
|         No further propagation | ||||
|         """ | ||||
|         pass | ||||
|          | ||||
|     elif standard == "Mean": | ||||
|         """ | ||||
|         Calculate the mean of all the propagated tokens, | ||||
|         and concatenate the result token back to kept tokens. | ||||
|         """ | ||||
|         # naive average | ||||
|         x_prop = x_prop.mean(1, keepdim=True) # B, 1, C | ||||
|         # Concatenate the average token  | ||||
|         x_kept = torch.cat((x_kept, x_prop), dim=1) # B, N-num_prop, C | ||||
|              | ||||
|     elif standard == "GraphProp": | ||||
|         """ | ||||
|         Propagate all the propagated token to kept token | ||||
|         with respect to the weights and token scales. | ||||
|         """ | ||||
|         assert weight is not None, "The graph weight is needed for graph propagation" | ||||
|          | ||||
|         # Step 3.1: divide propagation weights. | ||||
|         if cls_token: | ||||
|             index_kept = index_kept - 1 # since weights do not include the [CLS] token | ||||
|             index_prop = index_prop - 1 # since weights do not include the [CLS] token | ||||
|             weight = weight.gather(dim=1, index=index_kept.unsqueeze(-1).expand(-1,-1,N-1)) # B, N-1-num_prop, N-1 | ||||
|             weight_prop = weight.gather(dim=2, index=index_prop.unsqueeze(1).expand(-1,weight.shape[1],-1)) # B, N-1-num_prop, num_prop | ||||
|             weight = weight.gather(dim=2, index=index_kept.unsqueeze(1).expand(-1,weight.shape[1],-1)) # B, N-1-num_prop, N-1-num_prop | ||||
|         else: | ||||
|             weight = weight.gather(dim=1, index=index_kept.unsqueeze(-1).expand(-1,-1,N)) # B, N-1-num_prop, N-1 | ||||
|             weight_prop = weight.gather(dim=2, index=index_prop.unsqueeze(1).expand(-1,weight.shape[1],-1)) # B, N-1-num_prop, num_prop | ||||
|             weight = weight.gather(dim=2, index=index_kept.unsqueeze(1).expand(-1,weight.shape[1],-1)) # B, N-1-num_prop, N-1-num_prop | ||||
|          | ||||
|         # Step 3.2: generate the broadcast message and propagate the message to corresponding kept tokens | ||||
|         # Simple implementation | ||||
|         x_prop = weight_prop @ x_prop # B, N-1-num_prop, C | ||||
|         x_kept = x_kept + alpha * x_prop # B, N-1-num_prop, C | ||||
|          | ||||
|         """ scatter_reduce implementation for batched inputs | ||||
|         # Get the non-zero values | ||||
|         non_zero_indices = torch.nonzero(weight_prop, as_tuple=True) | ||||
|         non_zero_values = weight_prop[non_zero_indices] | ||||
|          | ||||
|         # Sparse multiplication | ||||
|         batch_indices, row_indices, col_indices = non_zero_indices | ||||
|         sparse_matmul = alpha * non_zero_values[:, None] * x_prop[batch_indices, col_indices, :] | ||||
|         reduce_indices = batch_indices * x_kept.shape[1] + row_indices | ||||
|          | ||||
|         x_kept = x_kept.reshape(-1, C).scatter_reduce(dim=0,  | ||||
|                                                       index=reduce_indices[:, None],  | ||||
|                                                       src=sparse_matmul,  | ||||
|                                                       reduce="sum", | ||||
|                                                       include_self=True) | ||||
|         x_kept = x_kept.reshape(B, -1, C) | ||||
|         """ | ||||
|          | ||||
|         # Step 3.3: calculate the scale of each token if token_scales is not None | ||||
|         if token_scales is not None: | ||||
|             if cls_token: | ||||
|                 token_scales_cls = token_scales[:, 0:1] # B, 1 | ||||
|                 token_scales = token_scales[:, 1:] | ||||
|             token_scales_kept = token_scales.gather(dim=1, index=index_kept) # B, N-1-num_prop | ||||
|             token_scales_prop = token_scales.gather(dim=1, index=index_prop) # B, num_prop | ||||
|             token_scales_prop = weight_prop @ token_scales_prop.unsqueeze(-1) # B, N-1-num_prop, 1 | ||||
|             token_scales = token_scales_kept + alpha * token_scales_prop.squeeze(-1) # B, N-1-num_prop | ||||
|             if cls_token: | ||||
|                 token_scales = torch.cat((token_scales_cls, token_scales), dim=1) # B, N-num_prop | ||||
|     else: | ||||
|         assert False, "Propagation method \'%f\' has not been supported yet." % standard | ||||
|      | ||||
|      | ||||
|     if cls_token: | ||||
|         # Step 4: concatenate the [CLS] token and generate returned value | ||||
|         x = torch.cat((x_cls, x_kept), dim=1) # B, N-num_prop, C | ||||
|     else: | ||||
|         x = x_kept | ||||
|     return x, weight, token_scales | ||||
|  | ||||
|  | ||||
|  | ||||
| def select(weight: torch.Tensor, standard: str = "None", num_prop: int = 0, cls_token = True): | ||||
|     """ | ||||
|     Select image tokens to be propagated. The [CLS] token will be ignored.  | ||||
|     ====================================================================== | ||||
|     Args: | ||||
|         - weight: Tensor([B, H, N, N]): used for selecting the kept tokens. Only support the | ||||
|                                         attention map of tokens at the moment. | ||||
|          | ||||
|         - standard: str: the method applied to select the tokens | ||||
|          | ||||
|         - num_prop: int: the number of tokens to be propagated | ||||
|          | ||||
|     Return: | ||||
|         - index_kept: Tensor([B, N-1-num_prop]): the index of kept tokens  | ||||
|          | ||||
|         - index_prop: Tensor([B, num_prop]): the index of propagated tokens | ||||
|     """ | ||||
|      | ||||
|     assert len(weight.shape) == 4, "Selection methods on tensors other than the attention map haven't been supported yet." | ||||
|     B, H, N1, N2 = weight.shape | ||||
|     assert N1 == N2, "Selection methods on tensors other than the attention map haven't been supported yet." | ||||
|     N = N1 | ||||
|     assert num_prop >= 0, "The number of propagated/pruned tokens must be non-negative." | ||||
|      | ||||
|     if cls_token: | ||||
|         if standard == "CLSAttnMean": | ||||
|             token_rank = weight[:,:,0,1:].mean(1) | ||||
|              | ||||
|         elif standard == "CLSAttnMax": | ||||
|             token_rank = weight[:,:,0,1:].max(1)[0] | ||||
|                  | ||||
|         elif standard == "IMGAttnMean": | ||||
|             token_rank = weight[:,:,:,1:].sum(-2).mean(1) | ||||
|          | ||||
|         elif standard == "IMGAttnMax": | ||||
|             token_rank = weight[:,:,:,1:].sum(-2).max(1)[0] | ||||
|                  | ||||
|         elif standard == "DiagAttnMean": | ||||
|             token_rank = torch.diagonal(weight, dim1=-2, dim2=-1)[:,:,1:].mean(1) | ||||
|              | ||||
|         elif standard == "DiagAttnMax": | ||||
|             token_rank = torch.diagonal(weight, dim1=-2, dim2=-1)[:,:,1:].max(1)[0] | ||||
|              | ||||
|         elif standard == "MixedAttnMean": | ||||
|             token_rank_1 = torch.diagonal(weight, dim1=-2, dim2=-1)[:,:,1:].mean(1) | ||||
|             token_rank_2 = weight[:,:,:,1:].sum(-2).mean(1) | ||||
|             token_rank = token_rank_1 * token_rank_2 | ||||
|              | ||||
|         elif standard == "MixedAttnMax": | ||||
|             token_rank_1 = torch.diagonal(weight, dim1=-2, dim2=-1)[:,:,1:].max(1)[0] | ||||
|             token_rank_2 = weight[:,:,:,1:].sum(-2).max(1)[0] | ||||
|             token_rank = token_rank_1 * token_rank_2 | ||||
|              | ||||
|         elif standard == "SumAttnMax": | ||||
|             token_rank_1 = torch.diagonal(weight, dim1=-2, dim2=-1)[:,:,1:].max(1)[0] | ||||
|             token_rank_2 = weight[:,:,:,1:].sum(-2).max(1)[0] | ||||
|             token_rank = token_rank_1 + token_rank_2 | ||||
|              | ||||
|         elif standard == "CosSimMean": | ||||
|             weight = weight[:,:,1:,:].mean(1) | ||||
|             weight = weight / weight.norm(dim=-1, keepdim=True) | ||||
|             token_rank = -(weight @ weight.transpose(-1, -2)).sum(-1) | ||||
|          | ||||
|         elif standard == "CosSimMax": | ||||
|             weight = weight[:,:,1:,:].max(1)[0] | ||||
|             weight = weight / weight.norm(dim=-1, keepdim=True) | ||||
|             token_rank = -(weight @ weight.transpose(-1, -2)).sum(-1) | ||||
|              | ||||
|         elif standard == "Random": | ||||
|             token_rank = torch.randn((B, N-1), device=weight.device) | ||||
|                  | ||||
|         else: | ||||
|             print("Type\'", standard, "\' selection not supported.") | ||||
|             assert False | ||||
|          | ||||
|         token_rank = torch.argsort(token_rank, dim=1, descending=True) # B, N-1 | ||||
|         index_kept = token_rank[:, :-num_prop]+1 # B, N-1-num_prop | ||||
|         index_prop = token_rank[:, -num_prop:]+1 # B, num_prop | ||||
|              | ||||
|     else: | ||||
|         if standard == "IMGAttnMean": | ||||
|             token_rank = weight.sum(-2).mean(1) | ||||
|          | ||||
|         elif standard == "IMGAttnMax": | ||||
|             token_rank = weight.sum(-2).max(1)[0] | ||||
|                  | ||||
|         elif standard == "DiagAttnMean": | ||||
|             token_rank = torch.diagonal(weight, dim1=-2, dim2=-1).mean(1) | ||||
|              | ||||
|         elif standard == "DiagAttnMax": | ||||
|             token_rank = torch.diagonal(weight, dim1=-2, dim2=-1).max(1)[0] | ||||
|              | ||||
|         elif standard == "MixedAttnMean": | ||||
|             token_rank_1 = torch.diagonal(weight, dim1=-2, dim2=-1).mean(1) | ||||
|             token_rank_2 = weight.sum(-2).mean(1) | ||||
|             token_rank = token_rank_1 * token_rank_2 | ||||
|              | ||||
|         elif standard == "MixedAttnMax": | ||||
|             token_rank_1 = torch.diagonal(weight, dim1=-2, dim2=-1).max(1)[0] | ||||
|             token_rank_2 = weight.sum(-2).max(1)[0] | ||||
|             token_rank = token_rank_1 * token_rank_2 | ||||
|              | ||||
|         elif standard == "SumAttnMax": | ||||
|             token_rank_1 = torch.diagonal(weight, dim1=-2, dim2=-1).max(1)[0] | ||||
|             token_rank_2 = weight.sum(-2).max(1)[0] | ||||
|             token_rank = token_rank_1 + token_rank_2 | ||||
|              | ||||
|         elif standard == "CosSimMean": | ||||
|             weight = weight.mean(1) | ||||
|             weight = weight / weight.norm(dim=-1, keepdim=True) | ||||
|             token_rank = -(weight @ weight.transpose(-1, -2)).sum(-1) | ||||
|          | ||||
|         elif standard == "CosSimMax": | ||||
|             weight = weight.max(1)[0] | ||||
|             weight = weight / weight.norm(dim=-1, keepdim=True) | ||||
|             token_rank = -(weight @ weight.transpose(-1, -2)).sum(-1) | ||||
|              | ||||
|         elif standard == "Random": | ||||
|             token_rank = torch.randn((B, N-1), device=weight.device) | ||||
|                  | ||||
|         else: | ||||
|             print("Type\'", standard, "\' selection not supported.") | ||||
|             assert False | ||||
|          | ||||
|         token_rank = torch.argsort(token_rank, dim=1, descending=True) # B, N-1 | ||||
|         index_kept = token_rank[:, :-num_prop] # B, N-1-num_prop | ||||
|         index_prop = token_rank[:, -num_prop:] # B, num_prop | ||||
|     return index_kept, index_prop | ||||
|  | ||||
| class PoolFormerBlock(nn.Module): | ||||
|     """ | ||||
| @@ -731,7 +1219,10 @@ class PoolFormerBlock(nn.Module): | ||||
|  | ||||
|         self.norm1 = norm_layer(dim) | ||||
|         #self.token_mixer = Pooling(pool_size=pool_size) | ||||
|         self.token_mixer = FNetBlock() | ||||
|         # self.token_mixer = FNetBlock() | ||||
|         self.window_size = 4 | ||||
|         self.attn_mask = None | ||||
|         self.token_mixer = WindowAttention(dim=dim, window_size=to_2tuple(self.window_size), num_heads=4) | ||||
|         self.norm2 = norm_layer(dim) | ||||
|         mlp_hidden_dim = int(dim * mlp_ratio) | ||||
|         self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim,  | ||||
| @@ -747,16 +1238,29 @@ class PoolFormerBlock(nn.Module): | ||||
|             self.layer_scale_2 = nn.Parameter( | ||||
|                 layer_scale_init_value * torch.ones((dim)), requires_grad=True) | ||||
|  | ||||
|     def forward(self, x): | ||||
|     def forward(self, x, weight, token_scales = None): | ||||
|         B, C, H, W = x.shape | ||||
|         x_windows = window_partition(x, self.window_size) | ||||
|         x_windows = x_windows.view(-1, self.window_size * self.window_size, C) | ||||
|         attn_windows = self.token_mixer(x_windows, mask=self.attn_mask) | ||||
|         attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) | ||||
|         x_attn = window_reverse(attn_windows, self.window_size, H, W) | ||||
|         index_kept, index_prop = select(x_attn, standard="MixedAttnMax", num_prop=0, | ||||
|                                             cls_token=False) | ||||
|         original_shape = x_attn.shape | ||||
|         x_attn = x_attn.view(-1, self.window_size * self.window_size, C) | ||||
|         x_attn, weight, token_scales = propagate(x_attn, weight, index_kept, index_prop, standard="GraphProp", | ||||
|                                         alpha=0.1, token_scales=token_scales, cls_token=False) | ||||
|         x_attn = x_attn.view(*original_shape) | ||||
|         if self.use_layer_scale: | ||||
|             x = x + self.drop_path( | ||||
|                 self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) | ||||
|                 * self.token_mixer(self.norm1(x))) | ||||
|                 * x_attn) | ||||
|             x = x + self.drop_path( | ||||
|                 self.layer_scale_2.unsqueeze(-1).unsqueeze(-1) | ||||
|                 * self.mlp(self.norm2(x))) | ||||
|         else: | ||||
|             x = x + self.drop_path(self.token_mixer(self.norm1(x))) | ||||
|             x = x + self.drop_path(x_attn) | ||||
|             x = x + self.drop_path(self.mlp(self.norm2(x))) | ||||
|         return x | ||||
| class PatchEmbed(nn.Module): | ||||
|   | ||||
| @@ -2,3 +2,5 @@ torch==1.12.1+cu116 | ||||
| ordered-set==4.1.0 | ||||
| numpy==1.21.5 | ||||
| einops==0.4.1 | ||||
| pandas | ||||
| timm==0.9.16 | ||||
		Reference in New Issue
	
	Block a user