26 Commits

Author SHA1 Message Date
9075b53be6 try sep vit 2024-04-28 11:04:26 +07:00
ab5c1d0b4b try sep vit 2024-04-28 11:00:08 +07:00
3243b1d963 try sep vit 2024-04-28 09:42:39 +07:00
37b01708b4 try sep vit 2024-04-28 01:44:33 +07:00
a246d2bb64 try sep vit 2024-04-28 01:01:31 +07:00
4a962a02ad try sep vit 2024-04-27 21:57:24 +07:00
f8e969cbd1 try swin 2024-04-27 11:52:23 +07:00
ae0f43ab4d try swin 2024-04-27 11:51:35 +07:00
dda7f13dbd try swin 2024-04-27 11:49:07 +07:00
1dd423edf0 try swin 2024-04-27 11:48:25 +07:00
a1bf2d7389 try swin 2024-04-27 11:46:32 +07:00
c31588cc5f try swin 2024-04-27 11:45:24 +07:00
c03e24f4c2 try swin 2024-04-27 11:43:15 +07:00
a47a60f6a1 try swin 2024-04-27 11:40:27 +07:00
ba388148d4 try swin 2024-04-27 11:27:38 +07:00
1b816fed50 try swin 2024-04-27 11:24:57 +07:00
32962bf421 try swin 2024-04-27 11:23:28 +07:00
b9efe68d3c try swin 2024-04-27 11:12:52 +07:00
465f98bef8 try swin 2024-04-27 11:08:46 +07:00
d4ac470c54 try swin 2024-04-27 11:07:48 +07:00
28a8352044 try swin 2024-04-27 10:59:11 +07:00
b77c79708e try swin 2024-04-27 10:56:10 +07:00
22d44d1a99 try swin 2024-04-27 10:32:08 +07:00
63ccb4ec75 try swin 2024-04-27 10:26:58 +07:00
6ec566505f try swin 2024-04-27 10:18:48 +07:00
30805a0af9 try swin 2024-04-27 10:04:41 +07:00
3 changed files with 410 additions and 22 deletions

30
main.py
View File

@ -20,6 +20,7 @@ from data_loader import TrainDataset, TestDataset
from utils import get_logger, get_combined_results, set_gpu, prepare_env, set_seed
from models import ComplEx, ConvE, HypER, InteractE, FouriER, TuckER
import traceback
class Main(object):
@ -477,7 +478,11 @@ class Main(object):
batch, 'train')
pred = self.model.forward(sub, rel, neg_ent, self.p.train_strategy)
try:
loss = self.model.loss(pred, label, sub_samp)
except Exception as e:
print(pred)
raise e
loss.backward()
self.optimizer.step()
@ -715,16 +720,19 @@ if __name__ == "__main__":
model.load_model(save_path)
model.evaluate('test')
else:
while True:
try:
model = Main(args, logger)
model.fit()
except Exception as e:
print(e)
try:
del model
except Exception:
pass
time.sleep(30)
continue
break
# while True:
# try:
# model = Main(args, logger)
# model.fit()
# except Exception as e:
# print(e)
# traceback.print_exc()
# try:
# del model
# except Exception:
# pass
# time.sleep(30)
# continue
# break

392
models.py
View File

@ -1,15 +1,16 @@
import torch
from torch import nn
from torch import nn, einsum
import torch.nn.functional as F
import numpy as np
from functools import partial
from einops.layers.torch import Rearrange, Reduce
from einops import rearrange, repeat
from utils import *
from layers import *
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.models.layers import DropPath, trunc_normal_
from timm.models.registry import register_model
from timm.models.layers.helpers import to_2tuple
from timm.layers.helpers import to_2tuple
class ConvE(torch.nn.Module):
@ -557,6 +558,8 @@ class FouriER(torch.nn.Module):
z = self.forward_embeddings(y)
z = self.forward_tokens(z)
z = z.mean([-2, -1])
if np.count_nonzero(np.isnan(z)) > 0:
print("ZZZ")
z = self.norm(z)
x = self.head(z)
x = self.hidden_drop(x)
@ -707,6 +710,363 @@ def basic_blocks(dim, index, layers,
return blocks
def window_partition(x, window_size):
"""
Args:
x: (B, H, W, C)
window_size (int): window size
Returns:
windows: (num_windows*B, window_size, window_size, C)
"""
B, C, H, W = x.shape
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
return windows
class WindowAttention(nn.Module):
r""" Window based multi-head self attention (W-MSA) module with relative position bias.
It supports both of shifted and non-shifted window.
Args:
dim (int): Number of input channels.
window_size (tuple[int]): The height and width of the window.
num_heads (int): Number of attention heads.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
pretrained_window_size (tuple[int]): The height and width of the window in pre-training.
"""
def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0.,
pretrained_window_size=[0, 0]):
super().__init__()
self.dim = dim
self.window_size = window_size # Wh, Ww
self.pretrained_window_size = pretrained_window_size
self.num_heads = num_heads
self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True)
# mlp to generate continuous relative position bias
self.cpb_mlp = nn.Sequential(nn.Linear(2, 512, bias=True),
nn.ReLU(inplace=True),
nn.Linear(512, num_heads, bias=False))
# get relative_coords_table
relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0], dtype=torch.float32)
relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1], dtype=torch.float32)
relative_coords_table = torch.stack(
torch.meshgrid([relative_coords_h,
relative_coords_w])).permute(1, 2, 0).contiguous().unsqueeze(0) # 1, 2*Wh-1, 2*Ww-1, 2
if pretrained_window_size[0] > 0:
relative_coords_table[:, :, :, 0] /= (pretrained_window_size[0] - 1)
relative_coords_table[:, :, :, 1] /= (pretrained_window_size[1] - 1)
else:
relative_coords_table[:, :, :, 0] /= (self.window_size[0] - 1)
relative_coords_table[:, :, :, 1] /= (self.window_size[1] - 1)
relative_coords_table *= 8 # normalize to -8, 8
relative_coords_table = torch.sign(relative_coords_table) * torch.log2(
torch.abs(relative_coords_table) + 1.0) / np.log2(8)
self.register_buffer("relative_coords_table", relative_coords_table)
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(self.window_size[0])
coords_w = torch.arange(self.window_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += self.window_size[1] - 1
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
self.register_buffer("relative_position_index", relative_position_index)
self.qkv = nn.Linear(dim, dim * 3, bias=False)
if qkv_bias:
self.q_bias = nn.Parameter(torch.zeros(dim))
self.v_bias = nn.Parameter(torch.zeros(dim))
else:
self.q_bias = None
self.v_bias = None
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.softmax = nn.Softmax(dim=-1)
def forward(self, x, mask=None):
"""
Args:
x: input features with shape of (num_windows*B, N, C)
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
"""
B_, N, C = x.shape
qkv_bias = None
if self.q_bias is not None:
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
# cosine attention
attn = (F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1))
logit_scale = torch.clamp(self.logit_scale, max=torch.log(torch.tensor(1. / 0.01)).cuda()).exp()
attn = attn * logit_scale
relative_position_bias_table = self.cpb_mlp(self.relative_coords_table).view(-1, self.num_heads)
relative_position_bias = relative_position_bias_table[self.relative_position_index.view(-1)].view(
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
relative_position_bias = 16 * torch.sigmoid(relative_position_bias)
attn = attn + relative_position_bias.unsqueeze(0)
if mask is not None:
nW = mask.shape[0]
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
attn = attn.view(-1, self.num_heads, N, N)
attn = self.softmax(attn)
else:
attn = self.softmax(attn)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
def extra_repr(self) -> str:
return f'dim={self.dim}, window_size={self.window_size}, ' \
f'pretrained_window_size={self.pretrained_window_size}, num_heads={self.num_heads}'
def flops(self, N):
# calculate flops for 1 window with token length of N
flops = 0
# qkv = self.qkv(x)
flops += N * self.dim * 3 * self.dim
# attn = (q @ k.transpose(-2, -1))
flops += self.num_heads * N * (self.dim // self.num_heads) * N
# x = (attn @ v)
flops += self.num_heads * N * N * (self.dim // self.num_heads)
# x = self.proj(x)
flops += N * self.dim * self.dim
return flops
def window_reverse(windows, window_size, H, W):
"""
Args:
windows: (num_windows*B, window_size, window_size, C)
window_size (int): Window size
H (int): Height of image
W (int): Width of image
Returns:
x: (B, H, W, C)
"""
B = int(windows.shape[0] / (H * W / window_size / window_size))
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, -1, H, W)
return x
def cast_tuple(val, length = 1):
return val if isinstance(val, tuple) else ((val,) * length)
# helper classes
class ChanLayerNorm(nn.Module):
def __init__(self, dim, eps = 1e-5):
super().__init__()
self.eps = eps
self.g = nn.Parameter(torch.ones(1, dim, 1, 1))
self.b = nn.Parameter(torch.zeros(1, dim, 1, 1))
def forward(self, x):
var = torch.var(x, dim = 1, unbiased = False, keepdim = True)
mean = torch.mean(x, dim = 1, keepdim = True)
return (x - mean) / (var + self.eps).sqrt() * self.g + self.b
class OverlappingPatchEmbed(nn.Module):
def __init__(self, dim_in, dim_out, stride = 2):
super().__init__()
kernel_size = stride * 2 - 1
padding = kernel_size // 2
self.conv = nn.Conv2d(dim_in, dim_out, kernel_size, stride = stride, padding = padding)
def forward(self, x):
return self.conv(x)
class PEG(nn.Module):
def __init__(self, dim, kernel_size = 3):
super().__init__()
self.proj = nn.Conv2d(dim, dim, kernel_size = kernel_size, padding = kernel_size // 2, groups = dim, stride = 1)
def forward(self, x):
return self.proj(x) + x
# feedforward
class FeedForwardDSSA(nn.Module):
def __init__(self, dim, mult = 4, dropout = 0.):
super().__init__()
inner_dim = int(dim * mult)
self.net = nn.Sequential(
ChanLayerNorm(dim),
nn.Conv2d(dim, inner_dim, 1),
nn.GELU(),
nn.Dropout(dropout),
nn.Conv2d(inner_dim, dim, 1),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
# attention
class DSSA(nn.Module):
def __init__(
self,
dim,
heads = 8,
dim_head = 32,
dropout = 0.,
window_size = 7
):
super().__init__()
self.heads = heads
self.scale = dim_head ** -0.5
self.window_size = window_size
inner_dim = dim_head * heads
self.norm = ChanLayerNorm(dim)
self.attend = nn.Sequential(
nn.Softmax(dim = -1),
nn.Dropout(dropout)
)
self.to_qkv = nn.Conv1d(dim, inner_dim * 3, 1, bias = False)
# window tokens
self.window_tokens = nn.Parameter(torch.randn(dim))
# prenorm and non-linearity for window tokens
# then projection to queries and keys for window tokens
self.window_tokens_to_qk = nn.Sequential(
nn.LayerNorm(dim_head),
nn.GELU(),
Rearrange('b h n c -> b (h c) n'),
nn.Conv1d(inner_dim, inner_dim * 2, 1),
Rearrange('b (h c) n -> b h n c', h = heads),
)
# window attention
self.window_attend = nn.Sequential(
nn.Softmax(dim = -1),
nn.Dropout(dropout)
)
self.to_out = nn.Sequential(
nn.Conv2d(inner_dim, dim, 1),
nn.Dropout(dropout)
)
def forward(self, x):
"""
einstein notation
b - batch
c - channels
w1 - window size (height)
w2 - also window size (width)
i - sequence dimension (source)
j - sequence dimension (target dimension to be reduced)
h - heads
x - height of feature map divided by window size
y - width of feature map divided by window size
"""
batch, height, width, heads, wsz = x.shape[0], *x.shape[-2:], self.heads, self.window_size
assert (height % wsz) == 0 and (width % wsz) == 0, f'height {height} and width {width} must be divisible by window size {wsz}'
num_windows = (height // wsz) * (width // wsz)
x = self.norm(x)
# fold in windows for "depthwise" attention - not sure why it is named depthwise when it is just "windowed" attention
x = rearrange(x, 'b c (h w1) (w w2) -> (b h w) c (w1 w2)', w1 = wsz, w2 = wsz)
# add windowing tokens
w = repeat(self.window_tokens, 'c -> b c 1', b = x.shape[0])
x = torch.cat((w, x), dim = -1)
# project for queries, keys, value
q, k, v = self.to_qkv(x).chunk(3, dim = 1)
# split out heads
q, k, v = map(lambda t: rearrange(t, 'b (h d) ... -> b h (...) d', h = heads), (q, k, v))
# scale
q = q * self.scale
# similarity
dots = einsum('b h i d, b h j d -> b h i j', q, k)
# attention
attn = self.attend(dots)
# aggregate values
out = torch.matmul(attn, v)
# split out windowed tokens
window_tokens, windowed_fmaps = out[:, :, 0], out[:, :, 1:]
# early return if there is only 1 window
if num_windows == 1:
fmap = rearrange(windowed_fmaps, '(b x y) h (w1 w2) d -> b (h d) (x w1) (y w2)', x = height // wsz, y = width // wsz, w1 = wsz, w2 = wsz)
return self.to_out(fmap)
# carry out the pointwise attention, the main novelty in the paper
window_tokens = rearrange(window_tokens, '(b x y) h d -> b h (x y) d', x = height // wsz, y = width // wsz)
windowed_fmaps = rearrange(windowed_fmaps, '(b x y) h n d -> b h (x y) n d', x = height // wsz, y = width // wsz)
# windowed queries and keys (preceded by prenorm activation)
w_q, w_k = self.window_tokens_to_qk(window_tokens).chunk(2, dim = -1)
# scale
w_q = w_q * self.scale
# similarities
w_dots = einsum('b h i d, b h j d -> b h i j', w_q, w_k)
w_attn = self.window_attend(w_dots)
# aggregate the feature maps from the "depthwise" attention step (the most interesting part of the paper, one i haven't seen before)
aggregated_windowed_fmap = einsum('b h i j, b h j w d -> b h i w d', w_attn, windowed_fmaps)
# fold back the windows and then combine heads for aggregation
fmap = rearrange(aggregated_windowed_fmap, 'b h (x y) (w1 w2) d -> b (h d) (x w1) (y w2)', x = height // wsz, y = width // wsz, w1 = wsz, w2 = wsz)
return self.to_out(fmap)
class PoolFormerBlock(nn.Module):
"""
@ -731,7 +1091,15 @@ class PoolFormerBlock(nn.Module):
self.norm1 = norm_layer(dim)
#self.token_mixer = Pooling(pool_size=pool_size)
self.token_mixer = FNetBlock()
# self.token_mixer = FNetBlock()
self.window_size = 4
self.attn_heads = 4
self.attn_mask = None
# self.token_mixer = WindowAttention(dim=dim, window_size=to_2tuple(self.window_size), num_heads=4)
self.token_mixer = nn.ModuleList([
DSSA(dim, heads=self.attn_heads, window_size=self.window_size),
FeedForwardDSSA(dim)
])
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim,
@ -748,16 +1116,26 @@ class PoolFormerBlock(nn.Module):
layer_scale_init_value * torch.ones((dim)), requires_grad=True)
def forward(self, x):
B, C, H, W = x.shape
# x_windows = window_partition(x, self.window_size)
# x_windows = x_windows.view(-1, self.window_size * self.window_size, C)
# attn_windows = self.token_mixer(x_windows, mask=self.attn_mask)
# attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
# x_attn = window_reverse(attn_windows, self.window_size, H, W)
x_attn = self.token_mixer(x)
if self.use_layer_scale:
x = x + self.drop_path(
self.layer_scale_1.unsqueeze(-1).unsqueeze(-1)
* self.token_mixer(self.norm1(x)))
* x_attn)
x = x + self.drop_path(
self.layer_scale_2.unsqueeze(-1).unsqueeze(-1)
* self.mlp(self.norm2(x)))
else:
x = x + self.drop_path(self.token_mixer(self.norm1(x)))
x = x + self.drop_path(x_attn)
x = x + self.drop_path(self.mlp(self.norm2(x)))
if np.count_nonzero(np.isnan(x)) > 0:
print("PFBlock")
return x
class PatchEmbed(nn.Module):
"""
@ -843,7 +1221,7 @@ class LayerNormChannel(nn.Module):
+ self.bias.unsqueeze(-1).unsqueeze(-1)
return x
class FeedForward(nn.Module):
class FeedForwardFNet(nn.Module):
def __init__(self, dim, hidden_dim, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
@ -879,7 +1257,7 @@ class FNet(nn.Module):
for _ in range(depth):
self.layers.append(nn.ModuleList([
PreNorm(dim, FNetBlock()),
PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))
PreNorm(dim, FeedForwardFNet(dim, mlp_dim, dropout = dropout))
]))
def forward(self, x):
for attn, ff in self.layers:

View File

@ -2,3 +2,5 @@ torch==1.12.1+cu116
ordered-set==4.1.0
numpy==1.21.5
einops==0.4.1
pandas
timm==0.9.16