Compare commits
20 Commits
Author | SHA1 | Date | |
---|---|---|---|
f8e969cbd1 | |||
ae0f43ab4d | |||
dda7f13dbd | |||
1dd423edf0 | |||
a1bf2d7389 | |||
c31588cc5f | |||
c03e24f4c2 | |||
a47a60f6a1 | |||
ba388148d4 | |||
1b816fed50 | |||
32962bf421 | |||
b9efe68d3c | |||
465f98bef8 | |||
d4ac470c54 | |||
28a8352044 | |||
b77c79708e | |||
22d44d1a99 | |||
63ccb4ec75 | |||
6ec566505f | |||
30805a0af9 |
30
main.py
30
main.py
@ -20,6 +20,7 @@ from data_loader import TrainDataset, TestDataset
|
|||||||
from utils import get_logger, get_combined_results, set_gpu, prepare_env, set_seed
|
from utils import get_logger, get_combined_results, set_gpu, prepare_env, set_seed
|
||||||
|
|
||||||
from models import ComplEx, ConvE, HypER, InteractE, FouriER, TuckER
|
from models import ComplEx, ConvE, HypER, InteractE, FouriER, TuckER
|
||||||
|
import traceback
|
||||||
|
|
||||||
|
|
||||||
class Main(object):
|
class Main(object):
|
||||||
@ -715,16 +716,19 @@ if __name__ == "__main__":
|
|||||||
model.load_model(save_path)
|
model.load_model(save_path)
|
||||||
model.evaluate('test')
|
model.evaluate('test')
|
||||||
else:
|
else:
|
||||||
while True:
|
model = Main(args, logger)
|
||||||
try:
|
model.fit()
|
||||||
model = Main(args, logger)
|
# while True:
|
||||||
model.fit()
|
# try:
|
||||||
except Exception as e:
|
# model = Main(args, logger)
|
||||||
print(e)
|
# model.fit()
|
||||||
try:
|
# except Exception as e:
|
||||||
del model
|
# print(e)
|
||||||
except Exception:
|
# traceback.print_exc()
|
||||||
pass
|
# try:
|
||||||
time.sleep(30)
|
# del model
|
||||||
continue
|
# except Exception:
|
||||||
break
|
# pass
|
||||||
|
# time.sleep(30)
|
||||||
|
# continue
|
||||||
|
# break
|
||||||
|
177
models.py
177
models.py
@ -9,7 +9,7 @@ from layers import *
|
|||||||
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
||||||
from timm.models.layers import DropPath, trunc_normal_
|
from timm.models.layers import DropPath, trunc_normal_
|
||||||
from timm.models.registry import register_model
|
from timm.models.registry import register_model
|
||||||
from timm.models.layers.helpers import to_2tuple
|
from timm.layers.helpers import to_2tuple
|
||||||
|
|
||||||
|
|
||||||
class ConvE(torch.nn.Module):
|
class ConvE(torch.nn.Module):
|
||||||
@ -707,6 +707,166 @@ def basic_blocks(dim, index, layers,
|
|||||||
|
|
||||||
return blocks
|
return blocks
|
||||||
|
|
||||||
|
def window_partition(x, window_size):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
x: (B, H, W, C)
|
||||||
|
window_size (int): window size
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
windows: (num_windows*B, window_size, window_size, C)
|
||||||
|
"""
|
||||||
|
B, C, H, W = x.shape
|
||||||
|
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
|
||||||
|
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
||||||
|
return windows
|
||||||
|
|
||||||
|
class WindowAttention(nn.Module):
|
||||||
|
r""" Window based multi-head self attention (W-MSA) module with relative position bias.
|
||||||
|
It supports both of shifted and non-shifted window.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
dim (int): Number of input channels.
|
||||||
|
window_size (tuple[int]): The height and width of the window.
|
||||||
|
num_heads (int): Number of attention heads.
|
||||||
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
||||||
|
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
|
||||||
|
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
|
||||||
|
pretrained_window_size (tuple[int]): The height and width of the window in pre-training.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0.,
|
||||||
|
pretrained_window_size=[0, 0]):
|
||||||
|
|
||||||
|
super().__init__()
|
||||||
|
self.dim = dim
|
||||||
|
self.window_size = window_size # Wh, Ww
|
||||||
|
self.pretrained_window_size = pretrained_window_size
|
||||||
|
self.num_heads = num_heads
|
||||||
|
|
||||||
|
self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True)
|
||||||
|
|
||||||
|
# mlp to generate continuous relative position bias
|
||||||
|
self.cpb_mlp = nn.Sequential(nn.Linear(2, 512, bias=True),
|
||||||
|
nn.ReLU(inplace=True),
|
||||||
|
nn.Linear(512, num_heads, bias=False))
|
||||||
|
|
||||||
|
# get relative_coords_table
|
||||||
|
relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0], dtype=torch.float32)
|
||||||
|
relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1], dtype=torch.float32)
|
||||||
|
relative_coords_table = torch.stack(
|
||||||
|
torch.meshgrid([relative_coords_h,
|
||||||
|
relative_coords_w])).permute(1, 2, 0).contiguous().unsqueeze(0) # 1, 2*Wh-1, 2*Ww-1, 2
|
||||||
|
if pretrained_window_size[0] > 0:
|
||||||
|
relative_coords_table[:, :, :, 0] /= (pretrained_window_size[0] - 1)
|
||||||
|
relative_coords_table[:, :, :, 1] /= (pretrained_window_size[1] - 1)
|
||||||
|
else:
|
||||||
|
relative_coords_table[:, :, :, 0] /= (self.window_size[0] - 1)
|
||||||
|
relative_coords_table[:, :, :, 1] /= (self.window_size[1] - 1)
|
||||||
|
relative_coords_table *= 8 # normalize to -8, 8
|
||||||
|
relative_coords_table = torch.sign(relative_coords_table) * torch.log2(
|
||||||
|
torch.abs(relative_coords_table) + 1.0) / np.log2(8)
|
||||||
|
|
||||||
|
self.register_buffer("relative_coords_table", relative_coords_table)
|
||||||
|
|
||||||
|
# get pair-wise relative position index for each token inside the window
|
||||||
|
coords_h = torch.arange(self.window_size[0])
|
||||||
|
coords_w = torch.arange(self.window_size[1])
|
||||||
|
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
||||||
|
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
||||||
|
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
||||||
|
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
||||||
|
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
|
||||||
|
relative_coords[:, :, 1] += self.window_size[1] - 1
|
||||||
|
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
||||||
|
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
||||||
|
self.register_buffer("relative_position_index", relative_position_index)
|
||||||
|
|
||||||
|
self.qkv = nn.Linear(dim, dim * 3, bias=False)
|
||||||
|
if qkv_bias:
|
||||||
|
self.q_bias = nn.Parameter(torch.zeros(dim))
|
||||||
|
self.v_bias = nn.Parameter(torch.zeros(dim))
|
||||||
|
else:
|
||||||
|
self.q_bias = None
|
||||||
|
self.v_bias = None
|
||||||
|
self.attn_drop = nn.Dropout(attn_drop)
|
||||||
|
self.proj = nn.Linear(dim, dim)
|
||||||
|
self.proj_drop = nn.Dropout(proj_drop)
|
||||||
|
self.softmax = nn.Softmax(dim=-1)
|
||||||
|
|
||||||
|
def forward(self, x, mask=None):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
x: input features with shape of (num_windows*B, N, C)
|
||||||
|
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
|
||||||
|
"""
|
||||||
|
B_, N, C = x.shape
|
||||||
|
qkv_bias = None
|
||||||
|
if self.q_bias is not None:
|
||||||
|
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
|
||||||
|
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
|
||||||
|
qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||||
|
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
||||||
|
|
||||||
|
# cosine attention
|
||||||
|
attn = (F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1))
|
||||||
|
logit_scale = torch.clamp(self.logit_scale, max=torch.log(torch.tensor(1. / 0.01)).cuda()).exp()
|
||||||
|
attn = attn * logit_scale
|
||||||
|
|
||||||
|
relative_position_bias_table = self.cpb_mlp(self.relative_coords_table).view(-1, self.num_heads)
|
||||||
|
relative_position_bias = relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
||||||
|
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
|
||||||
|
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
||||||
|
relative_position_bias = 16 * torch.sigmoid(relative_position_bias)
|
||||||
|
attn = attn + relative_position_bias.unsqueeze(0)
|
||||||
|
|
||||||
|
if mask is not None:
|
||||||
|
nW = mask.shape[0]
|
||||||
|
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
|
||||||
|
attn = attn.view(-1, self.num_heads, N, N)
|
||||||
|
attn = self.softmax(attn)
|
||||||
|
else:
|
||||||
|
attn = self.softmax(attn)
|
||||||
|
|
||||||
|
attn = self.attn_drop(attn)
|
||||||
|
|
||||||
|
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
||||||
|
x = self.proj(x)
|
||||||
|
x = self.proj_drop(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
def extra_repr(self) -> str:
|
||||||
|
return f'dim={self.dim}, window_size={self.window_size}, ' \
|
||||||
|
f'pretrained_window_size={self.pretrained_window_size}, num_heads={self.num_heads}'
|
||||||
|
|
||||||
|
def flops(self, N):
|
||||||
|
# calculate flops for 1 window with token length of N
|
||||||
|
flops = 0
|
||||||
|
# qkv = self.qkv(x)
|
||||||
|
flops += N * self.dim * 3 * self.dim
|
||||||
|
# attn = (q @ k.transpose(-2, -1))
|
||||||
|
flops += self.num_heads * N * (self.dim // self.num_heads) * N
|
||||||
|
# x = (attn @ v)
|
||||||
|
flops += self.num_heads * N * N * (self.dim // self.num_heads)
|
||||||
|
# x = self.proj(x)
|
||||||
|
flops += N * self.dim * self.dim
|
||||||
|
return flops
|
||||||
|
|
||||||
|
def window_reverse(windows, window_size, H, W):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
windows: (num_windows*B, window_size, window_size, C)
|
||||||
|
window_size (int): Window size
|
||||||
|
H (int): Height of image
|
||||||
|
W (int): Width of image
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
x: (B, H, W, C)
|
||||||
|
"""
|
||||||
|
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
||||||
|
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
|
||||||
|
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, -1, H, W)
|
||||||
|
return x
|
||||||
|
|
||||||
class PoolFormerBlock(nn.Module):
|
class PoolFormerBlock(nn.Module):
|
||||||
"""
|
"""
|
||||||
@ -731,7 +891,10 @@ class PoolFormerBlock(nn.Module):
|
|||||||
|
|
||||||
self.norm1 = norm_layer(dim)
|
self.norm1 = norm_layer(dim)
|
||||||
#self.token_mixer = Pooling(pool_size=pool_size)
|
#self.token_mixer = Pooling(pool_size=pool_size)
|
||||||
self.token_mixer = FNetBlock()
|
# self.token_mixer = FNetBlock()
|
||||||
|
self.window_size = 4
|
||||||
|
self.attn_mask = None
|
||||||
|
self.token_mixer = WindowAttention(dim=dim, window_size=to_2tuple(self.window_size), num_heads=4)
|
||||||
self.norm2 = norm_layer(dim)
|
self.norm2 = norm_layer(dim)
|
||||||
mlp_hidden_dim = int(dim * mlp_ratio)
|
mlp_hidden_dim = int(dim * mlp_ratio)
|
||||||
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim,
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim,
|
||||||
@ -748,15 +911,21 @@ class PoolFormerBlock(nn.Module):
|
|||||||
layer_scale_init_value * torch.ones((dim)), requires_grad=True)
|
layer_scale_init_value * torch.ones((dim)), requires_grad=True)
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
|
B, C, H, W = x.shape
|
||||||
|
x_windows = window_partition(x, self.window_size)
|
||||||
|
x_windows = x_windows.view(-1, self.window_size * self.window_size, C)
|
||||||
|
attn_windows = self.token_mixer(x_windows, mask=self.attn_mask)
|
||||||
|
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
||||||
|
x_attn = window_reverse(attn_windows, self.window_size, H, W)
|
||||||
if self.use_layer_scale:
|
if self.use_layer_scale:
|
||||||
x = x + self.drop_path(
|
x = x + self.drop_path(
|
||||||
self.layer_scale_1.unsqueeze(-1).unsqueeze(-1)
|
self.layer_scale_1.unsqueeze(-1).unsqueeze(-1)
|
||||||
* self.token_mixer(self.norm1(x)))
|
* x_attn)
|
||||||
x = x + self.drop_path(
|
x = x + self.drop_path(
|
||||||
self.layer_scale_2.unsqueeze(-1).unsqueeze(-1)
|
self.layer_scale_2.unsqueeze(-1).unsqueeze(-1)
|
||||||
* self.mlp(self.norm2(x)))
|
* self.mlp(self.norm2(x)))
|
||||||
else:
|
else:
|
||||||
x = x + self.drop_path(self.token_mixer(self.norm1(x)))
|
x = x + self.drop_path(x_attn)
|
||||||
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
||||||
return x
|
return x
|
||||||
class PatchEmbed(nn.Module):
|
class PatchEmbed(nn.Module):
|
||||||
|
@ -1,4 +1,6 @@
|
|||||||
torch==1.12.1+cu116
|
torch==1.12.1+cu116
|
||||||
ordered-set==4.1.0
|
ordered-set==4.1.0
|
||||||
numpy==1.21.5
|
numpy==1.21.5
|
||||||
einops==0.4.1
|
einops==0.4.1
|
||||||
|
pandas
|
||||||
|
timm==0.9.16
|
Reference in New Issue
Block a user