36 Commits

Author SHA1 Message Date
47bc661a91 try gtp vit 2024-04-28 15:40:31 +07:00
3b6db89be1 try gtp vit 2024-04-28 15:35:24 +07:00
352f5f9da9 try gtp vit 2024-04-28 15:31:58 +07:00
b9273b6696 try gtp vit 2024-04-28 15:27:41 +07:00
d0e4630dd6 try gtp vit 2024-04-28 15:26:24 +07:00
08a3780ba6 try gtp vit 2024-04-28 15:25:44 +07:00
6fc56b920f try gtp vit 2024-04-28 15:24:05 +07:00
fddea4769f try gtp vit 2024-04-28 15:17:40 +07:00
d9209a7ef1 try gtp vit 2024-04-28 15:14:27 +07:00
0f986d7517 try gtp vit 2024-04-28 15:10:09 +07:00
4daa40527b try gtp vit 2024-04-28 15:08:08 +07:00
541c4fa2b3 try gtp vit 2024-04-28 12:05:57 +07:00
68a94bd1e2 try gtp vit 2024-04-28 12:05:04 +07:00
b01e504874 try gtp vit 2024-04-28 12:01:40 +07:00
23c44d3582 try gtp vit 2024-04-28 11:59:09 +07:00
41a5c7b05a try gtp vit 2024-04-28 11:57:17 +07:00
f8e969cbd1 try swin 2024-04-27 11:52:23 +07:00
ae0f43ab4d try swin 2024-04-27 11:51:35 +07:00
dda7f13dbd try swin 2024-04-27 11:49:07 +07:00
1dd423edf0 try swin 2024-04-27 11:48:25 +07:00
a1bf2d7389 try swin 2024-04-27 11:46:32 +07:00
c31588cc5f try swin 2024-04-27 11:45:24 +07:00
c03e24f4c2 try swin 2024-04-27 11:43:15 +07:00
a47a60f6a1 try swin 2024-04-27 11:40:27 +07:00
ba388148d4 try swin 2024-04-27 11:27:38 +07:00
1b816fed50 try swin 2024-04-27 11:24:57 +07:00
32962bf421 try swin 2024-04-27 11:23:28 +07:00
b9efe68d3c try swin 2024-04-27 11:12:52 +07:00
465f98bef8 try swin 2024-04-27 11:08:46 +07:00
d4ac470c54 try swin 2024-04-27 11:07:48 +07:00
28a8352044 try swin 2024-04-27 10:59:11 +07:00
b77c79708e try swin 2024-04-27 10:56:10 +07:00
22d44d1a99 try swin 2024-04-27 10:32:08 +07:00
63ccb4ec75 try swin 2024-04-27 10:26:58 +07:00
6ec566505f try swin 2024-04-27 10:18:48 +07:00
30805a0af9 try swin 2024-04-27 10:04:41 +07:00
3 changed files with 531 additions and 21 deletions

30
main.py
View File

@ -20,6 +20,7 @@ from data_loader import TrainDataset, TestDataset
from utils import get_logger, get_combined_results, set_gpu, prepare_env, set_seed from utils import get_logger, get_combined_results, set_gpu, prepare_env, set_seed
from models import ComplEx, ConvE, HypER, InteractE, FouriER, TuckER from models import ComplEx, ConvE, HypER, InteractE, FouriER, TuckER
import traceback
class Main(object): class Main(object):
@ -715,16 +716,19 @@ if __name__ == "__main__":
model.load_model(save_path) model.load_model(save_path)
model.evaluate('test') model.evaluate('test')
else: else:
while True: model = Main(args, logger)
try: model.fit()
model = Main(args, logger) # while True:
model.fit() # try:
except Exception as e: # model = Main(args, logger)
print(e) # model.fit()
try: # except Exception as e:
del model # print(e)
except Exception: # traceback.print_exc()
pass # try:
time.sleep(30) # del model
continue # except Exception:
break # pass
# time.sleep(30)
# continue
# break

518
models.py
View File

@ -9,7 +9,9 @@ from layers import *
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.models.layers import DropPath, trunc_normal_ from timm.models.layers import DropPath, trunc_normal_
from timm.models.registry import register_model from timm.models.registry import register_model
from timm.models.layers.helpers import to_2tuple from timm.layers.helpers import to_2tuple
from typing import *
import math
class ConvE(torch.nn.Module): class ConvE(torch.nn.Module):
@ -526,6 +528,22 @@ class FouriER(torch.nn.Module):
self.network = nn.ModuleList(network) self.network = nn.ModuleList(network)
self.norm = norm_layer(embed_dims[-1]) self.norm = norm_layer(embed_dims[-1])
self.graph_type = 'Spatial'
N = (image_h // patch_size)**2
if self.graph_type in ["Spatial", "Mixed"]:
# Create a range tensor of node indices
indices = torch.arange(N)
# Reshape the indices tensor to create a grid of row and column indices
row_indices = indices.view(-1, 1).expand(-1, N)
col_indices = indices.view(1, -1).expand(N, -1)
# Compute the adjacency matrix
row1, col1 = row_indices // int(math.sqrt(N)), row_indices % int(math.sqrt(N))
row2, col2 = col_indices // int(math.sqrt(N)), col_indices % int(math.sqrt(N))
graph = ((abs(row1 - row2) <= 1).float() * (abs(col1 - col2) <= 1).float())
graph = graph - torch.eye(N)
self.spatial_graph = graph.cuda() # comment .to("cuda") if the environment is cpu
self.class_token = False
self.token_scale = False
self.head = nn.Linear( self.head = nn.Linear(
embed_dims[-1], num_classes) if num_classes > 0 \ embed_dims[-1], num_classes) if num_classes > 0 \
else nn.Identity() else nn.Identity()
@ -543,8 +561,45 @@ class FouriER(torch.nn.Module):
def forward_tokens(self, x): def forward_tokens(self, x):
outs = [] outs = []
B, C, H, W = x.shape
N = H*W
if self.graph_type in ["Semantic", "Mixed"]:
# Generate the semantic graph w.r.t. the cosine similarity between tokens
# Compute cosine similarity
if self.class_token:
x_normed = x[:, 1:] / x[:, 1:].norm(dim=-1, keepdim=True)
else:
x_normed = x / x.norm(dim=-1, keepdim=True)
x_cossim = x_normed @ x_normed.transpose(-1, -2)
threshold = torch.kthvalue(x_cossim, N-1-self.num_neighbours, dim=-1, keepdim=True)[0] # B,H,1,1
semantic_graph = torch.where(x_cossim>=threshold, 1.0, 0.0)
if self.class_token:
semantic_graph = semantic_graph - torch.eye(N-1, device=semantic_graph.device).unsqueeze(0)
else:
semantic_graph = semantic_graph - torch.eye(N, device=semantic_graph.device).unsqueeze(0)
if self.graph_type == "None":
graph = None
else:
if self.graph_type == "Spatial":
graph = self.spatial_graph.unsqueeze(0).expand(B,-1,-1)#.to(x.device)
elif self.graph_type == "Semantic":
graph = semantic_graph
elif self.graph_type == "Mixed":
# Integrate the spatial graph and semantic graph
spatial_graph = self.spatial_graph.unsqueeze(0).expand(B,-1,-1).to(x.device)
graph = torch.bitwise_or(semantic_graph.int(), spatial_graph.int()).float()
# Symmetrically normalize the graph
degree = graph.sum(-1) # B, N
degree = torch.diag_embed(degree**(-1/2))
graph = degree @ graph @ degree
for idx, block in enumerate(self.network): for idx, block in enumerate(self.network):
x = block(x) try:
x = block(x, graph)
except:
x = block(x)
# output only the features of last layer for image classification # output only the features of last layer for image classification
return x return x
@ -703,10 +758,443 @@ def basic_blocks(dim, index, layers,
use_layer_scale=use_layer_scale, use_layer_scale=use_layer_scale,
layer_scale_init_value=layer_scale_init_value, layer_scale_init_value=layer_scale_init_value,
)) ))
blocks = nn.Sequential(*blocks) blocks = SeqModel(*blocks)
return blocks return blocks
def window_partition(x, window_size):
"""
Args:
x: (B, H, W, C)
window_size (int): window size
Returns:
windows: (num_windows*B, window_size, window_size, C)
"""
B, C, H, W = x.shape
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
return windows
class WindowAttention(nn.Module):
r""" Window based multi-head self attention (W-MSA) module with relative position bias.
It supports both of shifted and non-shifted window.
Args:
dim (int): Number of input channels.
window_size (tuple[int]): The height and width of the window.
num_heads (int): Number of attention heads.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
pretrained_window_size (tuple[int]): The height and width of the window in pre-training.
"""
def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0.,
pretrained_window_size=[0, 0]):
super().__init__()
self.dim = dim
self.window_size = window_size # Wh, Ww
self.pretrained_window_size = pretrained_window_size
self.num_heads = num_heads
self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True)
# mlp to generate continuous relative position bias
self.cpb_mlp = nn.Sequential(nn.Linear(2, 512, bias=True),
nn.ReLU(inplace=True),
nn.Linear(512, num_heads, bias=False))
# get relative_coords_table
relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0], dtype=torch.float32)
relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1], dtype=torch.float32)
relative_coords_table = torch.stack(
torch.meshgrid([relative_coords_h,
relative_coords_w])).permute(1, 2, 0).contiguous().unsqueeze(0) # 1, 2*Wh-1, 2*Ww-1, 2
if pretrained_window_size[0] > 0:
relative_coords_table[:, :, :, 0] /= (pretrained_window_size[0] - 1)
relative_coords_table[:, :, :, 1] /= (pretrained_window_size[1] - 1)
else:
relative_coords_table[:, :, :, 0] /= (self.window_size[0] - 1)
relative_coords_table[:, :, :, 1] /= (self.window_size[1] - 1)
relative_coords_table *= 8 # normalize to -8, 8
relative_coords_table = torch.sign(relative_coords_table) * torch.log2(
torch.abs(relative_coords_table) + 1.0) / np.log2(8)
self.register_buffer("relative_coords_table", relative_coords_table)
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(self.window_size[0])
coords_w = torch.arange(self.window_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += self.window_size[1] - 1
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
self.register_buffer("relative_position_index", relative_position_index)
self.qkv = nn.Linear(dim, dim * 3, bias=False)
if qkv_bias:
self.q_bias = nn.Parameter(torch.zeros(dim))
self.v_bias = nn.Parameter(torch.zeros(dim))
else:
self.q_bias = None
self.v_bias = None
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.softmax = nn.Softmax(dim=-1)
def forward(self, x, mask=None):
"""
Args:
x: input features with shape of (num_windows*B, N, C)
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
"""
B_, N, C = x.shape
qkv_bias = None
if self.q_bias is not None:
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
# cosine attention
attn = (F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1))
logit_scale = torch.clamp(self.logit_scale, max=torch.log(torch.tensor(1. / 0.01)).cuda()).exp()
attn = attn * logit_scale
relative_position_bias_table = self.cpb_mlp(self.relative_coords_table).view(-1, self.num_heads)
relative_position_bias = relative_position_bias_table[self.relative_position_index.view(-1)].view(
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
relative_position_bias = 16 * torch.sigmoid(relative_position_bias)
attn = attn + relative_position_bias.unsqueeze(0)
if mask is not None:
nW = mask.shape[0]
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
attn = attn.view(-1, self.num_heads, N, N)
attn = self.softmax(attn)
else:
attn = self.softmax(attn)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
def extra_repr(self) -> str:
return f'dim={self.dim}, window_size={self.window_size}, ' \
f'pretrained_window_size={self.pretrained_window_size}, num_heads={self.num_heads}'
def flops(self, N):
# calculate flops for 1 window with token length of N
flops = 0
# qkv = self.qkv(x)
flops += N * self.dim * 3 * self.dim
# attn = (q @ k.transpose(-2, -1))
flops += self.num_heads * N * (self.dim // self.num_heads) * N
# x = (attn @ v)
flops += self.num_heads * N * N * (self.dim // self.num_heads)
# x = self.proj(x)
flops += N * self.dim * self.dim
return flops
def window_reverse(windows, window_size, H, W):
"""
Args:
windows: (num_windows*B, window_size, window_size, C)
window_size (int): Window size
H (int): Height of image
W (int): Width of image
Returns:
x: (B, H, W, C)
"""
B = int(windows.shape[0] / (H * W / window_size / window_size))
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, -1, H, W)
return x
class SeqModel(nn.Sequential):
def forward(self, *inputs):
for module in self._modules.values():
if type(inputs) == tuple:
inputs = module(*inputs)
else:
inputs = module(inputs)
return inputs
def propagate(x: torch.Tensor, weight: torch.Tensor,
index_kept: torch.Tensor, index_prop: torch.Tensor,
standard: str = "None", alpha: Optional[float] = 0,
token_scales: Optional[torch.Tensor] = None,
cls_token=True):
"""
Propagate tokens based on the selection results.
================================================
Args:
- x: Tensor([B, N, C]): the feature map of N tokens, including the [CLS] token.
- weight: Tensor([B, N-1, N-1]): the weight of each token propagated to the other tokens,
excluding the [CLS] token. weight could be a pre-defined
graph of the current feature map (by default) or the
attention map (need to manually modify the Block Module).
- index_kept: Tensor([B, N-1-num_prop]): the index of kept image tokens in the feature map X
- index_prop: Tensor([B, num_prop]): the index of propagated image tokens in the feature map X
- standard: str: the method applied to propagate the tokens, including "None", "Mean" and
"GraphProp"
- alpha: float: the coefficient of propagated features
- token_scales: Tensor([B, N]): the scale of tokens, including the [CLS] token. token_scales
is None by default. If it is not None, then token_scales
represents the scales of each token and should sum up to N.
Return:
- x: Tensor([B, N-1-num_prop, C]): the feature map after propagation
- weight: Tensor([B, N-1-num_prop, N-1-num_prop]): the graph of feature map after propagation
- token_scales: Tensor([B, N-1-num_prop]): the scale of tokens after propagation
"""
B, N, C = x.shape
# Step 1: divide tokens
if cls_token:
x_cls = x[:, 0:1] # B, 1, C
x_kept = x.gather(dim=1, index=index_kept.unsqueeze(-1).expand(-1,-1,C)) # B, N-1-num_prop, C
x_prop = x.gather(dim=1, index=index_prop.unsqueeze(-1).expand(-1,-1,C)) # B, num_prop, C
# Step 2: divide token_scales if it is not None
if token_scales is not None:
if cls_token:
token_scales_cls = token_scales[:, 0:1] # B, 1
token_scales_kept = token_scales.gather(dim=1, index=index_kept) # B, N-1-num_prop
token_scales_prop = token_scales.gather(dim=1, index=index_prop) # B, num_prop
# Step 3: propagate tokens
if standard == "None":
"""
No further propagation
"""
pass
elif standard == "Mean":
"""
Calculate the mean of all the propagated tokens,
and concatenate the result token back to kept tokens.
"""
# naive average
x_prop = x_prop.mean(1, keepdim=True) # B, 1, C
# Concatenate the average token
x_kept = torch.cat((x_kept, x_prop), dim=1) # B, N-num_prop, C
elif standard == "GraphProp":
"""
Propagate all the propagated token to kept token
with respect to the weights and token scales.
"""
assert weight is not None, "The graph weight is needed for graph propagation"
# Step 3.1: divide propagation weights.
if cls_token:
index_kept = index_kept - 1 # since weights do not include the [CLS] token
index_prop = index_prop - 1 # since weights do not include the [CLS] token
weight = weight.gather(dim=1, index=index_kept.unsqueeze(-1).expand(-1,-1,N-1)) # B, N-1-num_prop, N-1
weight_prop = weight.gather(dim=2, index=index_prop.unsqueeze(1).expand(-1,weight.shape[1],-1)) # B, N-1-num_prop, num_prop
weight = weight.gather(dim=2, index=index_kept.unsqueeze(1).expand(-1,weight.shape[1],-1)) # B, N-1-num_prop, N-1-num_prop
else:
weight = weight.gather(dim=1, index=index_kept.unsqueeze(-1).expand(-1,-1,N)) # B, N-1-num_prop, N-1
weight_prop = weight.gather(dim=2, index=index_prop.unsqueeze(1).expand(-1,weight.shape[1],-1)) # B, N-1-num_prop, num_prop
weight = weight.gather(dim=2, index=index_kept.unsqueeze(1).expand(-1,weight.shape[1],-1)) # B, N-1-num_prop, N-1-num_prop
# Step 3.2: generate the broadcast message and propagate the message to corresponding kept tokens
# Simple implementation
x_prop = weight_prop @ x_prop # B, N-1-num_prop, C
x_kept = x_kept + alpha * x_prop # B, N-1-num_prop, C
""" scatter_reduce implementation for batched inputs
# Get the non-zero values
non_zero_indices = torch.nonzero(weight_prop, as_tuple=True)
non_zero_values = weight_prop[non_zero_indices]
# Sparse multiplication
batch_indices, row_indices, col_indices = non_zero_indices
sparse_matmul = alpha * non_zero_values[:, None] * x_prop[batch_indices, col_indices, :]
reduce_indices = batch_indices * x_kept.shape[1] + row_indices
x_kept = x_kept.reshape(-1, C).scatter_reduce(dim=0,
index=reduce_indices[:, None],
src=sparse_matmul,
reduce="sum",
include_self=True)
x_kept = x_kept.reshape(B, -1, C)
"""
# Step 3.3: calculate the scale of each token if token_scales is not None
if token_scales is not None:
if cls_token:
token_scales_cls = token_scales[:, 0:1] # B, 1
token_scales = token_scales[:, 1:]
token_scales_kept = token_scales.gather(dim=1, index=index_kept) # B, N-1-num_prop
token_scales_prop = token_scales.gather(dim=1, index=index_prop) # B, num_prop
token_scales_prop = weight_prop @ token_scales_prop.unsqueeze(-1) # B, N-1-num_prop, 1
token_scales = token_scales_kept + alpha * token_scales_prop.squeeze(-1) # B, N-1-num_prop
if cls_token:
token_scales = torch.cat((token_scales_cls, token_scales), dim=1) # B, N-num_prop
else:
assert False, "Propagation method \'%f\' has not been supported yet." % standard
if cls_token:
# Step 4 concatenate the [CLS] token and generate returned value
x = torch.cat((x_cls, x_kept), dim=1) # B, N-num_prop, C
else:
x = x_kept
return x, weight, token_scales
def select(weight: torch.Tensor, standard: str = "None", num_prop: int = 0, cls_token = True):
"""
Select image tokens to be propagated. The [CLS] token will be ignored.
======================================================================
Args:
- weight: Tensor([B, H, N, N]): used for selecting the kept tokens. Only support the
attention map of tokens at the moment.
- standard: str: the method applied to select the tokens
- num_prop: int: the number of tokens to be propagated
Return:
- index_kept: Tensor([B, N-1-num_prop]): the index of kept tokens
- index_prop: Tensor([B, num_prop]): the index of propagated tokens
"""
assert len(weight.shape) == 4, "Selection methods on tensors other than the attention map haven't been supported yet."
B, H, N1, N2 = weight.shape
assert N1 == N2, "Selection methods on tensors other than the attention map haven't been supported yet."
N = N1
assert num_prop >= 0, "The number of propagated/pruned tokens must be non-negative."
if cls_token:
if standard == "CLSAttnMean":
token_rank = weight[:,:,0,1:].mean(1)
elif standard == "CLSAttnMax":
token_rank = weight[:,:,0,1:].max(1)[0]
elif standard == "IMGAttnMean":
token_rank = weight[:,:,:,1:].sum(-2).mean(1)
elif standard == "IMGAttnMax":
token_rank = weight[:,:,:,1:].sum(-2).max(1)[0]
elif standard == "DiagAttnMean":
token_rank = torch.diagonal(weight, dim1=-2, dim2=-1)[:,:,1:].mean(1)
elif standard == "DiagAttnMax":
token_rank = torch.diagonal(weight, dim1=-2, dim2=-1)[:,:,1:].max(1)[0]
elif standard == "MixedAttnMean":
token_rank_1 = torch.diagonal(weight, dim1=-2, dim2=-1)[:,:,1:].mean(1)
token_rank_2 = weight[:,:,:,1:].sum(-2).mean(1)
token_rank = token_rank_1 * token_rank_2
elif standard == "MixedAttnMax":
token_rank_1 = torch.diagonal(weight, dim1=-2, dim2=-1)[:,:,1:].max(1)[0]
token_rank_2 = weight[:,:,:,1:].sum(-2).max(1)[0]
token_rank = token_rank_1 * token_rank_2
elif standard == "SumAttnMax":
token_rank_1 = torch.diagonal(weight, dim1=-2, dim2=-1)[:,:,1:].max(1)[0]
token_rank_2 = weight[:,:,:,1:].sum(-2).max(1)[0]
token_rank = token_rank_1 + token_rank_2
elif standard == "CosSimMean":
weight = weight[:,:,1:,:].mean(1)
weight = weight / weight.norm(dim=-1, keepdim=True)
token_rank = -(weight @ weight.transpose(-1, -2)).sum(-1)
elif standard == "CosSimMax":
weight = weight[:,:,1:,:].max(1)[0]
weight = weight / weight.norm(dim=-1, keepdim=True)
token_rank = -(weight @ weight.transpose(-1, -2)).sum(-1)
elif standard == "Random":
token_rank = torch.randn((B, N-1), device=weight.device)
else:
print("Type\'", standard, "\' selection not supported.")
assert False
token_rank = torch.argsort(token_rank, dim=1, descending=True) # B, N-1
index_kept = token_rank[:, :-num_prop]+1 # B, N-1-num_prop
index_prop = token_rank[:, -num_prop:]+1 # B, num_prop
else:
if standard == "IMGAttnMean":
token_rank = weight.sum(-2).mean(1)
elif standard == "IMGAttnMax":
token_rank = weight.sum(-2).max(1)[0]
elif standard == "DiagAttnMean":
token_rank = torch.diagonal(weight, dim1=-2, dim2=-1).mean(1)
elif standard == "DiagAttnMax":
token_rank = torch.diagonal(weight, dim1=-2, dim2=-1).max(1)[0]
elif standard == "MixedAttnMean":
token_rank_1 = torch.diagonal(weight, dim1=-2, dim2=-1).mean(1)
token_rank_2 = weight.sum(-2).mean(1)
token_rank = token_rank_1 * token_rank_2
elif standard == "MixedAttnMax":
token_rank_1 = torch.diagonal(weight, dim1=-2, dim2=-1).max(1)[0]
token_rank_2 = weight.sum(-2).max(1)[0]
token_rank = token_rank_1 * token_rank_2
elif standard == "SumAttnMax":
token_rank_1 = torch.diagonal(weight, dim1=-2, dim2=-1).max(1)[0]
token_rank_2 = weight.sum(-2).max(1)[0]
token_rank = token_rank_1 + token_rank_2
elif standard == "CosSimMean":
weight = weight.mean(1)
weight = weight / weight.norm(dim=-1, keepdim=True)
token_rank = -(weight @ weight.transpose(-1, -2)).sum(-1)
elif standard == "CosSimMax":
weight = weight.max(1)[0]
weight = weight / weight.norm(dim=-1, keepdim=True)
token_rank = -(weight @ weight.transpose(-1, -2)).sum(-1)
elif standard == "Random":
token_rank = torch.randn((B, N-1), device=weight.device)
else:
print("Type\'", standard, "\' selection not supported.")
assert False
token_rank = torch.argsort(token_rank, dim=1, descending=True) # B, N-1
index_kept = token_rank[:, :-num_prop] # B, N-1-num_prop
index_prop = token_rank[:, -num_prop:] # B, num_prop
return index_kept, index_prop
class PoolFormerBlock(nn.Module): class PoolFormerBlock(nn.Module):
""" """
@ -731,7 +1219,10 @@ class PoolFormerBlock(nn.Module):
self.norm1 = norm_layer(dim) self.norm1 = norm_layer(dim)
#self.token_mixer = Pooling(pool_size=pool_size) #self.token_mixer = Pooling(pool_size=pool_size)
self.token_mixer = FNetBlock() # self.token_mixer = FNetBlock()
self.window_size = 4
self.attn_mask = None
self.token_mixer = WindowAttention(dim=dim, window_size=to_2tuple(self.window_size), num_heads=4)
self.norm2 = norm_layer(dim) self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio) mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim,
@ -747,16 +1238,29 @@ class PoolFormerBlock(nn.Module):
self.layer_scale_2 = nn.Parameter( self.layer_scale_2 = nn.Parameter(
layer_scale_init_value * torch.ones((dim)), requires_grad=True) layer_scale_init_value * torch.ones((dim)), requires_grad=True)
def forward(self, x): def forward(self, x, weight, token_scales = None):
B, C, H, W = x.shape
x_windows = window_partition(x, self.window_size)
x_windows = x_windows.view(-1, self.window_size * self.window_size, C)
attn_windows = self.token_mixer(x_windows, mask=self.attn_mask)
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
x_attn = window_reverse(attn_windows, self.window_size, H, W)
index_kept, index_prop = select(x_attn, standard="MixedAttnMax", num_prop=0,
cls_token=False)
original_shape = x_attn.shape
x_attn = x_attn.view(-1, self.window_size * self.window_size, C)
x_attn, weight, token_scales = propagate(x_attn, weight, index_kept, index_prop, standard="GraphProp",
alpha=0.1, token_scales=token_scales, cls_token=False)
x_attn = x_attn.view(*original_shape)
if self.use_layer_scale: if self.use_layer_scale:
x = x + self.drop_path( x = x + self.drop_path(
self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) self.layer_scale_1.unsqueeze(-1).unsqueeze(-1)
* self.token_mixer(self.norm1(x))) * x_attn)
x = x + self.drop_path( x = x + self.drop_path(
self.layer_scale_2.unsqueeze(-1).unsqueeze(-1) self.layer_scale_2.unsqueeze(-1).unsqueeze(-1)
* self.mlp(self.norm2(x))) * self.mlp(self.norm2(x)))
else: else:
x = x + self.drop_path(self.token_mixer(self.norm1(x))) x = x + self.drop_path(x_attn)
x = x + self.drop_path(self.mlp(self.norm2(x))) x = x + self.drop_path(self.mlp(self.norm2(x)))
return x return x
class PatchEmbed(nn.Module): class PatchEmbed(nn.Module):

View File

@ -1,4 +1,6 @@
torch==1.12.1+cu116 torch==1.12.1+cu116
ordered-set==4.1.0 ordered-set==4.1.0
numpy==1.21.5 numpy==1.21.5
einops==0.4.1 einops==0.4.1
pandas
timm==0.9.16