Compare commits
36 Commits
Author | SHA1 | Date | |
---|---|---|---|
47bc661a91 | |||
3b6db89be1 | |||
352f5f9da9 | |||
b9273b6696 | |||
d0e4630dd6 | |||
08a3780ba6 | |||
6fc56b920f | |||
fddea4769f | |||
d9209a7ef1 | |||
0f986d7517 | |||
4daa40527b | |||
541c4fa2b3 | |||
68a94bd1e2 | |||
b01e504874 | |||
23c44d3582 | |||
41a5c7b05a | |||
f8e969cbd1 | |||
ae0f43ab4d | |||
dda7f13dbd | |||
1dd423edf0 | |||
a1bf2d7389 | |||
c31588cc5f | |||
c03e24f4c2 | |||
a47a60f6a1 | |||
ba388148d4 | |||
1b816fed50 | |||
32962bf421 | |||
b9efe68d3c | |||
465f98bef8 | |||
d4ac470c54 | |||
28a8352044 | |||
b77c79708e | |||
22d44d1a99 | |||
63ccb4ec75 | |||
6ec566505f | |||
30805a0af9 |
30
main.py
30
main.py
@ -20,6 +20,7 @@ from data_loader import TrainDataset, TestDataset
|
|||||||
from utils import get_logger, get_combined_results, set_gpu, prepare_env, set_seed
|
from utils import get_logger, get_combined_results, set_gpu, prepare_env, set_seed
|
||||||
|
|
||||||
from models import ComplEx, ConvE, HypER, InteractE, FouriER, TuckER
|
from models import ComplEx, ConvE, HypER, InteractE, FouriER, TuckER
|
||||||
|
import traceback
|
||||||
|
|
||||||
|
|
||||||
class Main(object):
|
class Main(object):
|
||||||
@ -715,16 +716,19 @@ if __name__ == "__main__":
|
|||||||
model.load_model(save_path)
|
model.load_model(save_path)
|
||||||
model.evaluate('test')
|
model.evaluate('test')
|
||||||
else:
|
else:
|
||||||
while True:
|
model = Main(args, logger)
|
||||||
try:
|
model.fit()
|
||||||
model = Main(args, logger)
|
# while True:
|
||||||
model.fit()
|
# try:
|
||||||
except Exception as e:
|
# model = Main(args, logger)
|
||||||
print(e)
|
# model.fit()
|
||||||
try:
|
# except Exception as e:
|
||||||
del model
|
# print(e)
|
||||||
except Exception:
|
# traceback.print_exc()
|
||||||
pass
|
# try:
|
||||||
time.sleep(30)
|
# del model
|
||||||
continue
|
# except Exception:
|
||||||
break
|
# pass
|
||||||
|
# time.sleep(30)
|
||||||
|
# continue
|
||||||
|
# break
|
||||||
|
518
models.py
518
models.py
@ -9,7 +9,9 @@ from layers import *
|
|||||||
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
||||||
from timm.models.layers import DropPath, trunc_normal_
|
from timm.models.layers import DropPath, trunc_normal_
|
||||||
from timm.models.registry import register_model
|
from timm.models.registry import register_model
|
||||||
from timm.models.layers.helpers import to_2tuple
|
from timm.layers.helpers import to_2tuple
|
||||||
|
from typing import *
|
||||||
|
import math
|
||||||
|
|
||||||
|
|
||||||
class ConvE(torch.nn.Module):
|
class ConvE(torch.nn.Module):
|
||||||
@ -526,6 +528,22 @@ class FouriER(torch.nn.Module):
|
|||||||
|
|
||||||
self.network = nn.ModuleList(network)
|
self.network = nn.ModuleList(network)
|
||||||
self.norm = norm_layer(embed_dims[-1])
|
self.norm = norm_layer(embed_dims[-1])
|
||||||
|
self.graph_type = 'Spatial'
|
||||||
|
N = (image_h // patch_size)**2
|
||||||
|
if self.graph_type in ["Spatial", "Mixed"]:
|
||||||
|
# Create a range tensor of node indices
|
||||||
|
indices = torch.arange(N)
|
||||||
|
# Reshape the indices tensor to create a grid of row and column indices
|
||||||
|
row_indices = indices.view(-1, 1).expand(-1, N)
|
||||||
|
col_indices = indices.view(1, -1).expand(N, -1)
|
||||||
|
# Compute the adjacency matrix
|
||||||
|
row1, col1 = row_indices // int(math.sqrt(N)), row_indices % int(math.sqrt(N))
|
||||||
|
row2, col2 = col_indices // int(math.sqrt(N)), col_indices % int(math.sqrt(N))
|
||||||
|
graph = ((abs(row1 - row2) <= 1).float() * (abs(col1 - col2) <= 1).float())
|
||||||
|
graph = graph - torch.eye(N)
|
||||||
|
self.spatial_graph = graph.cuda() # comment .to("cuda") if the environment is cpu
|
||||||
|
self.class_token = False
|
||||||
|
self.token_scale = False
|
||||||
self.head = nn.Linear(
|
self.head = nn.Linear(
|
||||||
embed_dims[-1], num_classes) if num_classes > 0 \
|
embed_dims[-1], num_classes) if num_classes > 0 \
|
||||||
else nn.Identity()
|
else nn.Identity()
|
||||||
@ -543,8 +561,45 @@ class FouriER(torch.nn.Module):
|
|||||||
|
|
||||||
def forward_tokens(self, x):
|
def forward_tokens(self, x):
|
||||||
outs = []
|
outs = []
|
||||||
|
B, C, H, W = x.shape
|
||||||
|
N = H*W
|
||||||
|
if self.graph_type in ["Semantic", "Mixed"]:
|
||||||
|
# Generate the semantic graph w.r.t. the cosine similarity between tokens
|
||||||
|
# Compute cosine similarity
|
||||||
|
if self.class_token:
|
||||||
|
x_normed = x[:, 1:] / x[:, 1:].norm(dim=-1, keepdim=True)
|
||||||
|
else:
|
||||||
|
x_normed = x / x.norm(dim=-1, keepdim=True)
|
||||||
|
x_cossim = x_normed @ x_normed.transpose(-1, -2)
|
||||||
|
threshold = torch.kthvalue(x_cossim, N-1-self.num_neighbours, dim=-1, keepdim=True)[0] # B,H,1,1
|
||||||
|
semantic_graph = torch.where(x_cossim>=threshold, 1.0, 0.0)
|
||||||
|
if self.class_token:
|
||||||
|
semantic_graph = semantic_graph - torch.eye(N-1, device=semantic_graph.device).unsqueeze(0)
|
||||||
|
else:
|
||||||
|
semantic_graph = semantic_graph - torch.eye(N, device=semantic_graph.device).unsqueeze(0)
|
||||||
|
|
||||||
|
if self.graph_type == "None":
|
||||||
|
graph = None
|
||||||
|
else:
|
||||||
|
if self.graph_type == "Spatial":
|
||||||
|
graph = self.spatial_graph.unsqueeze(0).expand(B,-1,-1)#.to(x.device)
|
||||||
|
elif self.graph_type == "Semantic":
|
||||||
|
graph = semantic_graph
|
||||||
|
elif self.graph_type == "Mixed":
|
||||||
|
# Integrate the spatial graph and semantic graph
|
||||||
|
spatial_graph = self.spatial_graph.unsqueeze(0).expand(B,-1,-1).to(x.device)
|
||||||
|
graph = torch.bitwise_or(semantic_graph.int(), spatial_graph.int()).float()
|
||||||
|
|
||||||
|
# Symmetrically normalize the graph
|
||||||
|
degree = graph.sum(-1) # B, N
|
||||||
|
degree = torch.diag_embed(degree**(-1/2))
|
||||||
|
graph = degree @ graph @ degree
|
||||||
|
|
||||||
for idx, block in enumerate(self.network):
|
for idx, block in enumerate(self.network):
|
||||||
x = block(x)
|
try:
|
||||||
|
x = block(x, graph)
|
||||||
|
except:
|
||||||
|
x = block(x)
|
||||||
# output only the features of last layer for image classification
|
# output only the features of last layer for image classification
|
||||||
return x
|
return x
|
||||||
|
|
||||||
@ -703,10 +758,443 @@ def basic_blocks(dim, index, layers,
|
|||||||
use_layer_scale=use_layer_scale,
|
use_layer_scale=use_layer_scale,
|
||||||
layer_scale_init_value=layer_scale_init_value,
|
layer_scale_init_value=layer_scale_init_value,
|
||||||
))
|
))
|
||||||
blocks = nn.Sequential(*blocks)
|
blocks = SeqModel(*blocks)
|
||||||
|
|
||||||
return blocks
|
return blocks
|
||||||
|
|
||||||
|
def window_partition(x, window_size):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
x: (B, H, W, C)
|
||||||
|
window_size (int): window size
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
windows: (num_windows*B, window_size, window_size, C)
|
||||||
|
"""
|
||||||
|
B, C, H, W = x.shape
|
||||||
|
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
|
||||||
|
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
||||||
|
return windows
|
||||||
|
|
||||||
|
class WindowAttention(nn.Module):
|
||||||
|
r""" Window based multi-head self attention (W-MSA) module with relative position bias.
|
||||||
|
It supports both of shifted and non-shifted window.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
dim (int): Number of input channels.
|
||||||
|
window_size (tuple[int]): The height and width of the window.
|
||||||
|
num_heads (int): Number of attention heads.
|
||||||
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
||||||
|
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
|
||||||
|
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
|
||||||
|
pretrained_window_size (tuple[int]): The height and width of the window in pre-training.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0.,
|
||||||
|
pretrained_window_size=[0, 0]):
|
||||||
|
|
||||||
|
super().__init__()
|
||||||
|
self.dim = dim
|
||||||
|
self.window_size = window_size # Wh, Ww
|
||||||
|
self.pretrained_window_size = pretrained_window_size
|
||||||
|
self.num_heads = num_heads
|
||||||
|
|
||||||
|
self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True)
|
||||||
|
|
||||||
|
# mlp to generate continuous relative position bias
|
||||||
|
self.cpb_mlp = nn.Sequential(nn.Linear(2, 512, bias=True),
|
||||||
|
nn.ReLU(inplace=True),
|
||||||
|
nn.Linear(512, num_heads, bias=False))
|
||||||
|
|
||||||
|
# get relative_coords_table
|
||||||
|
relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0], dtype=torch.float32)
|
||||||
|
relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1], dtype=torch.float32)
|
||||||
|
relative_coords_table = torch.stack(
|
||||||
|
torch.meshgrid([relative_coords_h,
|
||||||
|
relative_coords_w])).permute(1, 2, 0).contiguous().unsqueeze(0) # 1, 2*Wh-1, 2*Ww-1, 2
|
||||||
|
if pretrained_window_size[0] > 0:
|
||||||
|
relative_coords_table[:, :, :, 0] /= (pretrained_window_size[0] - 1)
|
||||||
|
relative_coords_table[:, :, :, 1] /= (pretrained_window_size[1] - 1)
|
||||||
|
else:
|
||||||
|
relative_coords_table[:, :, :, 0] /= (self.window_size[0] - 1)
|
||||||
|
relative_coords_table[:, :, :, 1] /= (self.window_size[1] - 1)
|
||||||
|
relative_coords_table *= 8 # normalize to -8, 8
|
||||||
|
relative_coords_table = torch.sign(relative_coords_table) * torch.log2(
|
||||||
|
torch.abs(relative_coords_table) + 1.0) / np.log2(8)
|
||||||
|
|
||||||
|
self.register_buffer("relative_coords_table", relative_coords_table)
|
||||||
|
|
||||||
|
# get pair-wise relative position index for each token inside the window
|
||||||
|
coords_h = torch.arange(self.window_size[0])
|
||||||
|
coords_w = torch.arange(self.window_size[1])
|
||||||
|
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
||||||
|
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
||||||
|
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
||||||
|
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
||||||
|
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
|
||||||
|
relative_coords[:, :, 1] += self.window_size[1] - 1
|
||||||
|
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
||||||
|
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
||||||
|
self.register_buffer("relative_position_index", relative_position_index)
|
||||||
|
|
||||||
|
self.qkv = nn.Linear(dim, dim * 3, bias=False)
|
||||||
|
if qkv_bias:
|
||||||
|
self.q_bias = nn.Parameter(torch.zeros(dim))
|
||||||
|
self.v_bias = nn.Parameter(torch.zeros(dim))
|
||||||
|
else:
|
||||||
|
self.q_bias = None
|
||||||
|
self.v_bias = None
|
||||||
|
self.attn_drop = nn.Dropout(attn_drop)
|
||||||
|
self.proj = nn.Linear(dim, dim)
|
||||||
|
self.proj_drop = nn.Dropout(proj_drop)
|
||||||
|
self.softmax = nn.Softmax(dim=-1)
|
||||||
|
|
||||||
|
def forward(self, x, mask=None):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
x: input features with shape of (num_windows*B, N, C)
|
||||||
|
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
|
||||||
|
"""
|
||||||
|
B_, N, C = x.shape
|
||||||
|
qkv_bias = None
|
||||||
|
if self.q_bias is not None:
|
||||||
|
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
|
||||||
|
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
|
||||||
|
qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||||
|
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
||||||
|
|
||||||
|
# cosine attention
|
||||||
|
attn = (F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1))
|
||||||
|
logit_scale = torch.clamp(self.logit_scale, max=torch.log(torch.tensor(1. / 0.01)).cuda()).exp()
|
||||||
|
attn = attn * logit_scale
|
||||||
|
|
||||||
|
relative_position_bias_table = self.cpb_mlp(self.relative_coords_table).view(-1, self.num_heads)
|
||||||
|
relative_position_bias = relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
||||||
|
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
|
||||||
|
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
||||||
|
relative_position_bias = 16 * torch.sigmoid(relative_position_bias)
|
||||||
|
attn = attn + relative_position_bias.unsqueeze(0)
|
||||||
|
|
||||||
|
if mask is not None:
|
||||||
|
nW = mask.shape[0]
|
||||||
|
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
|
||||||
|
attn = attn.view(-1, self.num_heads, N, N)
|
||||||
|
attn = self.softmax(attn)
|
||||||
|
else:
|
||||||
|
attn = self.softmax(attn)
|
||||||
|
|
||||||
|
attn = self.attn_drop(attn)
|
||||||
|
|
||||||
|
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
||||||
|
x = self.proj(x)
|
||||||
|
x = self.proj_drop(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
def extra_repr(self) -> str:
|
||||||
|
return f'dim={self.dim}, window_size={self.window_size}, ' \
|
||||||
|
f'pretrained_window_size={self.pretrained_window_size}, num_heads={self.num_heads}'
|
||||||
|
|
||||||
|
def flops(self, N):
|
||||||
|
# calculate flops for 1 window with token length of N
|
||||||
|
flops = 0
|
||||||
|
# qkv = self.qkv(x)
|
||||||
|
flops += N * self.dim * 3 * self.dim
|
||||||
|
# attn = (q @ k.transpose(-2, -1))
|
||||||
|
flops += self.num_heads * N * (self.dim // self.num_heads) * N
|
||||||
|
# x = (attn @ v)
|
||||||
|
flops += self.num_heads * N * N * (self.dim // self.num_heads)
|
||||||
|
# x = self.proj(x)
|
||||||
|
flops += N * self.dim * self.dim
|
||||||
|
return flops
|
||||||
|
|
||||||
|
def window_reverse(windows, window_size, H, W):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
windows: (num_windows*B, window_size, window_size, C)
|
||||||
|
window_size (int): Window size
|
||||||
|
H (int): Height of image
|
||||||
|
W (int): Width of image
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
x: (B, H, W, C)
|
||||||
|
"""
|
||||||
|
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
||||||
|
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
|
||||||
|
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, -1, H, W)
|
||||||
|
return x
|
||||||
|
|
||||||
|
class SeqModel(nn.Sequential):
|
||||||
|
def forward(self, *inputs):
|
||||||
|
for module in self._modules.values():
|
||||||
|
if type(inputs) == tuple:
|
||||||
|
inputs = module(*inputs)
|
||||||
|
else:
|
||||||
|
inputs = module(inputs)
|
||||||
|
return inputs
|
||||||
|
|
||||||
|
def propagate(x: torch.Tensor, weight: torch.Tensor,
|
||||||
|
index_kept: torch.Tensor, index_prop: torch.Tensor,
|
||||||
|
standard: str = "None", alpha: Optional[float] = 0,
|
||||||
|
token_scales: Optional[torch.Tensor] = None,
|
||||||
|
cls_token=True):
|
||||||
|
"""
|
||||||
|
Propagate tokens based on the selection results.
|
||||||
|
================================================
|
||||||
|
Args:
|
||||||
|
- x: Tensor([B, N, C]): the feature map of N tokens, including the [CLS] token.
|
||||||
|
|
||||||
|
- weight: Tensor([B, N-1, N-1]): the weight of each token propagated to the other tokens,
|
||||||
|
excluding the [CLS] token. weight could be a pre-defined
|
||||||
|
graph of the current feature map (by default) or the
|
||||||
|
attention map (need to manually modify the Block Module).
|
||||||
|
|
||||||
|
- index_kept: Tensor([B, N-1-num_prop]): the index of kept image tokens in the feature map X
|
||||||
|
|
||||||
|
- index_prop: Tensor([B, num_prop]): the index of propagated image tokens in the feature map X
|
||||||
|
|
||||||
|
- standard: str: the method applied to propagate the tokens, including "None", "Mean" and
|
||||||
|
"GraphProp"
|
||||||
|
|
||||||
|
- alpha: float: the coefficient of propagated features
|
||||||
|
|
||||||
|
- token_scales: Tensor([B, N]): the scale of tokens, including the [CLS] token. token_scales
|
||||||
|
is None by default. If it is not None, then token_scales
|
||||||
|
represents the scales of each token and should sum up to N.
|
||||||
|
|
||||||
|
Return:
|
||||||
|
- x: Tensor([B, N-1-num_prop, C]): the feature map after propagation
|
||||||
|
|
||||||
|
- weight: Tensor([B, N-1-num_prop, N-1-num_prop]): the graph of feature map after propagation
|
||||||
|
|
||||||
|
- token_scales: Tensor([B, N-1-num_prop]): the scale of tokens after propagation
|
||||||
|
"""
|
||||||
|
|
||||||
|
B, N, C = x.shape
|
||||||
|
|
||||||
|
# Step 1: divide tokens
|
||||||
|
if cls_token:
|
||||||
|
x_cls = x[:, 0:1] # B, 1, C
|
||||||
|
x_kept = x.gather(dim=1, index=index_kept.unsqueeze(-1).expand(-1,-1,C)) # B, N-1-num_prop, C
|
||||||
|
x_prop = x.gather(dim=1, index=index_prop.unsqueeze(-1).expand(-1,-1,C)) # B, num_prop, C
|
||||||
|
|
||||||
|
# Step 2: divide token_scales if it is not None
|
||||||
|
if token_scales is not None:
|
||||||
|
if cls_token:
|
||||||
|
token_scales_cls = token_scales[:, 0:1] # B, 1
|
||||||
|
token_scales_kept = token_scales.gather(dim=1, index=index_kept) # B, N-1-num_prop
|
||||||
|
token_scales_prop = token_scales.gather(dim=1, index=index_prop) # B, num_prop
|
||||||
|
|
||||||
|
# Step 3: propagate tokens
|
||||||
|
if standard == "None":
|
||||||
|
"""
|
||||||
|
No further propagation
|
||||||
|
"""
|
||||||
|
pass
|
||||||
|
|
||||||
|
elif standard == "Mean":
|
||||||
|
"""
|
||||||
|
Calculate the mean of all the propagated tokens,
|
||||||
|
and concatenate the result token back to kept tokens.
|
||||||
|
"""
|
||||||
|
# naive average
|
||||||
|
x_prop = x_prop.mean(1, keepdim=True) # B, 1, C
|
||||||
|
# Concatenate the average token
|
||||||
|
x_kept = torch.cat((x_kept, x_prop), dim=1) # B, N-num_prop, C
|
||||||
|
|
||||||
|
elif standard == "GraphProp":
|
||||||
|
"""
|
||||||
|
Propagate all the propagated token to kept token
|
||||||
|
with respect to the weights and token scales.
|
||||||
|
"""
|
||||||
|
assert weight is not None, "The graph weight is needed for graph propagation"
|
||||||
|
|
||||||
|
# Step 3.1: divide propagation weights.
|
||||||
|
if cls_token:
|
||||||
|
index_kept = index_kept - 1 # since weights do not include the [CLS] token
|
||||||
|
index_prop = index_prop - 1 # since weights do not include the [CLS] token
|
||||||
|
weight = weight.gather(dim=1, index=index_kept.unsqueeze(-1).expand(-1,-1,N-1)) # B, N-1-num_prop, N-1
|
||||||
|
weight_prop = weight.gather(dim=2, index=index_prop.unsqueeze(1).expand(-1,weight.shape[1],-1)) # B, N-1-num_prop, num_prop
|
||||||
|
weight = weight.gather(dim=2, index=index_kept.unsqueeze(1).expand(-1,weight.shape[1],-1)) # B, N-1-num_prop, N-1-num_prop
|
||||||
|
else:
|
||||||
|
weight = weight.gather(dim=1, index=index_kept.unsqueeze(-1).expand(-1,-1,N)) # B, N-1-num_prop, N-1
|
||||||
|
weight_prop = weight.gather(dim=2, index=index_prop.unsqueeze(1).expand(-1,weight.shape[1],-1)) # B, N-1-num_prop, num_prop
|
||||||
|
weight = weight.gather(dim=2, index=index_kept.unsqueeze(1).expand(-1,weight.shape[1],-1)) # B, N-1-num_prop, N-1-num_prop
|
||||||
|
|
||||||
|
# Step 3.2: generate the broadcast message and propagate the message to corresponding kept tokens
|
||||||
|
# Simple implementation
|
||||||
|
x_prop = weight_prop @ x_prop # B, N-1-num_prop, C
|
||||||
|
x_kept = x_kept + alpha * x_prop # B, N-1-num_prop, C
|
||||||
|
|
||||||
|
""" scatter_reduce implementation for batched inputs
|
||||||
|
# Get the non-zero values
|
||||||
|
non_zero_indices = torch.nonzero(weight_prop, as_tuple=True)
|
||||||
|
non_zero_values = weight_prop[non_zero_indices]
|
||||||
|
|
||||||
|
# Sparse multiplication
|
||||||
|
batch_indices, row_indices, col_indices = non_zero_indices
|
||||||
|
sparse_matmul = alpha * non_zero_values[:, None] * x_prop[batch_indices, col_indices, :]
|
||||||
|
reduce_indices = batch_indices * x_kept.shape[1] + row_indices
|
||||||
|
|
||||||
|
x_kept = x_kept.reshape(-1, C).scatter_reduce(dim=0,
|
||||||
|
index=reduce_indices[:, None],
|
||||||
|
src=sparse_matmul,
|
||||||
|
reduce="sum",
|
||||||
|
include_self=True)
|
||||||
|
x_kept = x_kept.reshape(B, -1, C)
|
||||||
|
"""
|
||||||
|
|
||||||
|
# Step 3.3: calculate the scale of each token if token_scales is not None
|
||||||
|
if token_scales is not None:
|
||||||
|
if cls_token:
|
||||||
|
token_scales_cls = token_scales[:, 0:1] # B, 1
|
||||||
|
token_scales = token_scales[:, 1:]
|
||||||
|
token_scales_kept = token_scales.gather(dim=1, index=index_kept) # B, N-1-num_prop
|
||||||
|
token_scales_prop = token_scales.gather(dim=1, index=index_prop) # B, num_prop
|
||||||
|
token_scales_prop = weight_prop @ token_scales_prop.unsqueeze(-1) # B, N-1-num_prop, 1
|
||||||
|
token_scales = token_scales_kept + alpha * token_scales_prop.squeeze(-1) # B, N-1-num_prop
|
||||||
|
if cls_token:
|
||||||
|
token_scales = torch.cat((token_scales_cls, token_scales), dim=1) # B, N-num_prop
|
||||||
|
else:
|
||||||
|
assert False, "Propagation method \'%f\' has not been supported yet." % standard
|
||||||
|
|
||||||
|
|
||||||
|
if cls_token:
|
||||||
|
# Step 4: concatenate the [CLS] token and generate returned value
|
||||||
|
x = torch.cat((x_cls, x_kept), dim=1) # B, N-num_prop, C
|
||||||
|
else:
|
||||||
|
x = x_kept
|
||||||
|
return x, weight, token_scales
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def select(weight: torch.Tensor, standard: str = "None", num_prop: int = 0, cls_token = True):
|
||||||
|
"""
|
||||||
|
Select image tokens to be propagated. The [CLS] token will be ignored.
|
||||||
|
======================================================================
|
||||||
|
Args:
|
||||||
|
- weight: Tensor([B, H, N, N]): used for selecting the kept tokens. Only support the
|
||||||
|
attention map of tokens at the moment.
|
||||||
|
|
||||||
|
- standard: str: the method applied to select the tokens
|
||||||
|
|
||||||
|
- num_prop: int: the number of tokens to be propagated
|
||||||
|
|
||||||
|
Return:
|
||||||
|
- index_kept: Tensor([B, N-1-num_prop]): the index of kept tokens
|
||||||
|
|
||||||
|
- index_prop: Tensor([B, num_prop]): the index of propagated tokens
|
||||||
|
"""
|
||||||
|
|
||||||
|
assert len(weight.shape) == 4, "Selection methods on tensors other than the attention map haven't been supported yet."
|
||||||
|
B, H, N1, N2 = weight.shape
|
||||||
|
assert N1 == N2, "Selection methods on tensors other than the attention map haven't been supported yet."
|
||||||
|
N = N1
|
||||||
|
assert num_prop >= 0, "The number of propagated/pruned tokens must be non-negative."
|
||||||
|
|
||||||
|
if cls_token:
|
||||||
|
if standard == "CLSAttnMean":
|
||||||
|
token_rank = weight[:,:,0,1:].mean(1)
|
||||||
|
|
||||||
|
elif standard == "CLSAttnMax":
|
||||||
|
token_rank = weight[:,:,0,1:].max(1)[0]
|
||||||
|
|
||||||
|
elif standard == "IMGAttnMean":
|
||||||
|
token_rank = weight[:,:,:,1:].sum(-2).mean(1)
|
||||||
|
|
||||||
|
elif standard == "IMGAttnMax":
|
||||||
|
token_rank = weight[:,:,:,1:].sum(-2).max(1)[0]
|
||||||
|
|
||||||
|
elif standard == "DiagAttnMean":
|
||||||
|
token_rank = torch.diagonal(weight, dim1=-2, dim2=-1)[:,:,1:].mean(1)
|
||||||
|
|
||||||
|
elif standard == "DiagAttnMax":
|
||||||
|
token_rank = torch.diagonal(weight, dim1=-2, dim2=-1)[:,:,1:].max(1)[0]
|
||||||
|
|
||||||
|
elif standard == "MixedAttnMean":
|
||||||
|
token_rank_1 = torch.diagonal(weight, dim1=-2, dim2=-1)[:,:,1:].mean(1)
|
||||||
|
token_rank_2 = weight[:,:,:,1:].sum(-2).mean(1)
|
||||||
|
token_rank = token_rank_1 * token_rank_2
|
||||||
|
|
||||||
|
elif standard == "MixedAttnMax":
|
||||||
|
token_rank_1 = torch.diagonal(weight, dim1=-2, dim2=-1)[:,:,1:].max(1)[0]
|
||||||
|
token_rank_2 = weight[:,:,:,1:].sum(-2).max(1)[0]
|
||||||
|
token_rank = token_rank_1 * token_rank_2
|
||||||
|
|
||||||
|
elif standard == "SumAttnMax":
|
||||||
|
token_rank_1 = torch.diagonal(weight, dim1=-2, dim2=-1)[:,:,1:].max(1)[0]
|
||||||
|
token_rank_2 = weight[:,:,:,1:].sum(-2).max(1)[0]
|
||||||
|
token_rank = token_rank_1 + token_rank_2
|
||||||
|
|
||||||
|
elif standard == "CosSimMean":
|
||||||
|
weight = weight[:,:,1:,:].mean(1)
|
||||||
|
weight = weight / weight.norm(dim=-1, keepdim=True)
|
||||||
|
token_rank = -(weight @ weight.transpose(-1, -2)).sum(-1)
|
||||||
|
|
||||||
|
elif standard == "CosSimMax":
|
||||||
|
weight = weight[:,:,1:,:].max(1)[0]
|
||||||
|
weight = weight / weight.norm(dim=-1, keepdim=True)
|
||||||
|
token_rank = -(weight @ weight.transpose(-1, -2)).sum(-1)
|
||||||
|
|
||||||
|
elif standard == "Random":
|
||||||
|
token_rank = torch.randn((B, N-1), device=weight.device)
|
||||||
|
|
||||||
|
else:
|
||||||
|
print("Type\'", standard, "\' selection not supported.")
|
||||||
|
assert False
|
||||||
|
|
||||||
|
token_rank = torch.argsort(token_rank, dim=1, descending=True) # B, N-1
|
||||||
|
index_kept = token_rank[:, :-num_prop]+1 # B, N-1-num_prop
|
||||||
|
index_prop = token_rank[:, -num_prop:]+1 # B, num_prop
|
||||||
|
|
||||||
|
else:
|
||||||
|
if standard == "IMGAttnMean":
|
||||||
|
token_rank = weight.sum(-2).mean(1)
|
||||||
|
|
||||||
|
elif standard == "IMGAttnMax":
|
||||||
|
token_rank = weight.sum(-2).max(1)[0]
|
||||||
|
|
||||||
|
elif standard == "DiagAttnMean":
|
||||||
|
token_rank = torch.diagonal(weight, dim1=-2, dim2=-1).mean(1)
|
||||||
|
|
||||||
|
elif standard == "DiagAttnMax":
|
||||||
|
token_rank = torch.diagonal(weight, dim1=-2, dim2=-1).max(1)[0]
|
||||||
|
|
||||||
|
elif standard == "MixedAttnMean":
|
||||||
|
token_rank_1 = torch.diagonal(weight, dim1=-2, dim2=-1).mean(1)
|
||||||
|
token_rank_2 = weight.sum(-2).mean(1)
|
||||||
|
token_rank = token_rank_1 * token_rank_2
|
||||||
|
|
||||||
|
elif standard == "MixedAttnMax":
|
||||||
|
token_rank_1 = torch.diagonal(weight, dim1=-2, dim2=-1).max(1)[0]
|
||||||
|
token_rank_2 = weight.sum(-2).max(1)[0]
|
||||||
|
token_rank = token_rank_1 * token_rank_2
|
||||||
|
|
||||||
|
elif standard == "SumAttnMax":
|
||||||
|
token_rank_1 = torch.diagonal(weight, dim1=-2, dim2=-1).max(1)[0]
|
||||||
|
token_rank_2 = weight.sum(-2).max(1)[0]
|
||||||
|
token_rank = token_rank_1 + token_rank_2
|
||||||
|
|
||||||
|
elif standard == "CosSimMean":
|
||||||
|
weight = weight.mean(1)
|
||||||
|
weight = weight / weight.norm(dim=-1, keepdim=True)
|
||||||
|
token_rank = -(weight @ weight.transpose(-1, -2)).sum(-1)
|
||||||
|
|
||||||
|
elif standard == "CosSimMax":
|
||||||
|
weight = weight.max(1)[0]
|
||||||
|
weight = weight / weight.norm(dim=-1, keepdim=True)
|
||||||
|
token_rank = -(weight @ weight.transpose(-1, -2)).sum(-1)
|
||||||
|
|
||||||
|
elif standard == "Random":
|
||||||
|
token_rank = torch.randn((B, N-1), device=weight.device)
|
||||||
|
|
||||||
|
else:
|
||||||
|
print("Type\'", standard, "\' selection not supported.")
|
||||||
|
assert False
|
||||||
|
|
||||||
|
token_rank = torch.argsort(token_rank, dim=1, descending=True) # B, N-1
|
||||||
|
index_kept = token_rank[:, :-num_prop] # B, N-1-num_prop
|
||||||
|
index_prop = token_rank[:, -num_prop:] # B, num_prop
|
||||||
|
return index_kept, index_prop
|
||||||
|
|
||||||
class PoolFormerBlock(nn.Module):
|
class PoolFormerBlock(nn.Module):
|
||||||
"""
|
"""
|
||||||
@ -731,7 +1219,10 @@ class PoolFormerBlock(nn.Module):
|
|||||||
|
|
||||||
self.norm1 = norm_layer(dim)
|
self.norm1 = norm_layer(dim)
|
||||||
#self.token_mixer = Pooling(pool_size=pool_size)
|
#self.token_mixer = Pooling(pool_size=pool_size)
|
||||||
self.token_mixer = FNetBlock()
|
# self.token_mixer = FNetBlock()
|
||||||
|
self.window_size = 4
|
||||||
|
self.attn_mask = None
|
||||||
|
self.token_mixer = WindowAttention(dim=dim, window_size=to_2tuple(self.window_size), num_heads=4)
|
||||||
self.norm2 = norm_layer(dim)
|
self.norm2 = norm_layer(dim)
|
||||||
mlp_hidden_dim = int(dim * mlp_ratio)
|
mlp_hidden_dim = int(dim * mlp_ratio)
|
||||||
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim,
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim,
|
||||||
@ -747,16 +1238,29 @@ class PoolFormerBlock(nn.Module):
|
|||||||
self.layer_scale_2 = nn.Parameter(
|
self.layer_scale_2 = nn.Parameter(
|
||||||
layer_scale_init_value * torch.ones((dim)), requires_grad=True)
|
layer_scale_init_value * torch.ones((dim)), requires_grad=True)
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x, weight, token_scales = None):
|
||||||
|
B, C, H, W = x.shape
|
||||||
|
x_windows = window_partition(x, self.window_size)
|
||||||
|
x_windows = x_windows.view(-1, self.window_size * self.window_size, C)
|
||||||
|
attn_windows = self.token_mixer(x_windows, mask=self.attn_mask)
|
||||||
|
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
||||||
|
x_attn = window_reverse(attn_windows, self.window_size, H, W)
|
||||||
|
index_kept, index_prop = select(x_attn, standard="MixedAttnMax", num_prop=0,
|
||||||
|
cls_token=False)
|
||||||
|
original_shape = x_attn.shape
|
||||||
|
x_attn = x_attn.view(-1, self.window_size * self.window_size, C)
|
||||||
|
x_attn, weight, token_scales = propagate(x_attn, weight, index_kept, index_prop, standard="GraphProp",
|
||||||
|
alpha=0.1, token_scales=token_scales, cls_token=False)
|
||||||
|
x_attn = x_attn.view(*original_shape)
|
||||||
if self.use_layer_scale:
|
if self.use_layer_scale:
|
||||||
x = x + self.drop_path(
|
x = x + self.drop_path(
|
||||||
self.layer_scale_1.unsqueeze(-1).unsqueeze(-1)
|
self.layer_scale_1.unsqueeze(-1).unsqueeze(-1)
|
||||||
* self.token_mixer(self.norm1(x)))
|
* x_attn)
|
||||||
x = x + self.drop_path(
|
x = x + self.drop_path(
|
||||||
self.layer_scale_2.unsqueeze(-1).unsqueeze(-1)
|
self.layer_scale_2.unsqueeze(-1).unsqueeze(-1)
|
||||||
* self.mlp(self.norm2(x)))
|
* self.mlp(self.norm2(x)))
|
||||||
else:
|
else:
|
||||||
x = x + self.drop_path(self.token_mixer(self.norm1(x)))
|
x = x + self.drop_path(x_attn)
|
||||||
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
||||||
return x
|
return x
|
||||||
class PatchEmbed(nn.Module):
|
class PatchEmbed(nn.Module):
|
||||||
|
@ -1,4 +1,6 @@
|
|||||||
torch==1.12.1+cu116
|
torch==1.12.1+cu116
|
||||||
ordered-set==4.1.0
|
ordered-set==4.1.0
|
||||||
numpy==1.21.5
|
numpy==1.21.5
|
||||||
einops==0.4.1
|
einops==0.4.1
|
||||||
|
pandas
|
||||||
|
timm==0.9.16
|
Reference in New Issue
Block a user