Compare commits
35 Commits
tourier_sp
...
swing
Author | SHA1 | Date | |
---|---|---|---|
a14267d96c | |||
d3a6cfe041 | |||
2b6e356e60 | |||
a8ac4d1b3f | |||
8866ea448e | |||
b661823661 | |||
805d4fb536 | |||
f86e27dab7 | |||
65963bf46b | |||
5494206a04 | |||
48669c72f4 | |||
d79bdd1c3e | |||
7e6d4982d9 | |||
f8e969cbd1 | |||
ae0f43ab4d | |||
dda7f13dbd | |||
1dd423edf0 | |||
a1bf2d7389 | |||
c31588cc5f | |||
c03e24f4c2 | |||
a47a60f6a1 | |||
ba388148d4 | |||
1b816fed50 | |||
32962bf421 | |||
b9efe68d3c | |||
465f98bef8 | |||
d4ac470c54 | |||
28a8352044 | |||
b77c79708e | |||
22d44d1a99 | |||
63ccb4ec75 | |||
6ec566505f | |||
30805a0af9 | |||
2e2b12571a | |||
d4b29eec2c |
@ -1,15 +1,15 @@
|
|||||||
# triples: 291818
|
# triples: 291818
|
||||||
# entities: 12554
|
# entities: 12554
|
||||||
# relations: 423
|
# relations: 423
|
||||||
# timesteps: 70
|
# timesteps: 70
|
||||||
# test triples: 19271
|
# test triples: 19271
|
||||||
# valid triples: 20208
|
# valid triples: 20208
|
||||||
# train triples: 252339
|
# train triples: 252339
|
||||||
Measure method: N/A
|
Measure method: N/A
|
||||||
Target Size : 423
|
Target Size : 423
|
||||||
Grow Factor: 0
|
Grow Factor: 0
|
||||||
Shrink Factor: 4.0
|
Shrink Factor: 4.0
|
||||||
Epsilon Factor: 0
|
Epsilon Factor: 0
|
||||||
Search method: N/A
|
Search method: N/A
|
||||||
filter_dupes: inter
|
filter_dupes: inter
|
||||||
nonames: False
|
nonames: False
|
||||||
|
File diff suppressed because it is too large
Load Diff
@ -1,423 +1,423 @@
|
|||||||
0 P131[0-0]
|
0 P131[0-0]
|
||||||
1 P131[1-1]
|
1 P131[1-1]
|
||||||
2 P131[2-2]
|
2 P131[2-2]
|
||||||
3 P131[3-3]
|
3 P131[3-3]
|
||||||
4 P131[4-4]
|
4 P131[4-4]
|
||||||
5 P131[5-5]
|
5 P131[5-5]
|
||||||
6 P131[6-6]
|
6 P131[6-6]
|
||||||
7 P131[7-7]
|
7 P131[7-7]
|
||||||
8 P131[8-8]
|
8 P131[8-8]
|
||||||
9 P131[9-9]
|
9 P131[9-9]
|
||||||
10 P131[10-10]
|
10 P131[10-10]
|
||||||
11 P131[11-11]
|
11 P131[11-11]
|
||||||
12 P131[12-12]
|
12 P131[12-12]
|
||||||
13 P131[13-13]
|
13 P131[13-13]
|
||||||
14 P131[14-14]
|
14 P131[14-14]
|
||||||
15 P131[15-15]
|
15 P131[15-15]
|
||||||
16 P131[16-16]
|
16 P131[16-16]
|
||||||
17 P131[17-17]
|
17 P131[17-17]
|
||||||
18 P131[18-18]
|
18 P131[18-18]
|
||||||
19 P131[19-19]
|
19 P131[19-19]
|
||||||
20 P131[20-20]
|
20 P131[20-20]
|
||||||
21 P131[21-21]
|
21 P131[21-21]
|
||||||
22 P131[22-22]
|
22 P131[22-22]
|
||||||
23 P131[23-23]
|
23 P131[23-23]
|
||||||
24 P131[24-24]
|
24 P131[24-24]
|
||||||
25 P131[25-25]
|
25 P131[25-25]
|
||||||
26 P131[26-26]
|
26 P131[26-26]
|
||||||
27 P131[27-27]
|
27 P131[27-27]
|
||||||
28 P131[28-28]
|
28 P131[28-28]
|
||||||
29 P131[29-29]
|
29 P131[29-29]
|
||||||
30 P131[30-30]
|
30 P131[30-30]
|
||||||
31 P131[31-31]
|
31 P131[31-31]
|
||||||
32 P131[32-32]
|
32 P131[32-32]
|
||||||
33 P131[33-33]
|
33 P131[33-33]
|
||||||
34 P131[34-34]
|
34 P131[34-34]
|
||||||
35 P131[35-35]
|
35 P131[35-35]
|
||||||
36 P131[36-36]
|
36 P131[36-36]
|
||||||
37 P131[37-37]
|
37 P131[37-37]
|
||||||
38 P131[38-38]
|
38 P131[38-38]
|
||||||
39 P131[39-39]
|
39 P131[39-39]
|
||||||
40 P131[40-40]
|
40 P131[40-40]
|
||||||
41 P131[41-41]
|
41 P131[41-41]
|
||||||
42 P131[42-42]
|
42 P131[42-42]
|
||||||
43 P131[43-43]
|
43 P131[43-43]
|
||||||
44 P131[44-44]
|
44 P131[44-44]
|
||||||
45 P131[45-45]
|
45 P131[45-45]
|
||||||
46 P131[46-46]
|
46 P131[46-46]
|
||||||
47 P131[47-47]
|
47 P131[47-47]
|
||||||
48 P131[48-48]
|
48 P131[48-48]
|
||||||
49 P131[49-49]
|
49 P131[49-49]
|
||||||
50 P131[50-50]
|
50 P131[50-50]
|
||||||
51 P131[51-51]
|
51 P131[51-51]
|
||||||
52 P131[52-52]
|
52 P131[52-52]
|
||||||
53 P131[53-53]
|
53 P131[53-53]
|
||||||
54 P131[54-54]
|
54 P131[54-54]
|
||||||
55 P131[55-55]
|
55 P131[55-55]
|
||||||
56 P131[56-56]
|
56 P131[56-56]
|
||||||
57 P131[57-57]
|
57 P131[57-57]
|
||||||
58 P131[58-58]
|
58 P131[58-58]
|
||||||
59 P131[59-59]
|
59 P131[59-59]
|
||||||
60 P131[60-60]
|
60 P131[60-60]
|
||||||
61 P131[61-61]
|
61 P131[61-61]
|
||||||
62 P131[62-62]
|
62 P131[62-62]
|
||||||
63 P131[63-63]
|
63 P131[63-63]
|
||||||
64 P131[64-64]
|
64 P131[64-64]
|
||||||
65 P131[65-65]
|
65 P131[65-65]
|
||||||
66 P131[66-66]
|
66 P131[66-66]
|
||||||
67 P131[67-67]
|
67 P131[67-67]
|
||||||
68 P131[68-68]
|
68 P131[68-68]
|
||||||
69 P131[69-69]
|
69 P131[69-69]
|
||||||
70 P1435[65-65]
|
70 P1435[65-65]
|
||||||
71 P39[49-49]
|
71 P39[49-49]
|
||||||
72 P39[50-50]
|
72 P39[50-50]
|
||||||
73 P39[51-51]
|
73 P39[51-51]
|
||||||
74 P39[52-52]
|
74 P39[52-52]
|
||||||
75 P39[53-53]
|
75 P39[53-53]
|
||||||
76 P39[54-54]
|
76 P39[54-54]
|
||||||
77 P39[55-55]
|
77 P39[55-55]
|
||||||
78 P39[56-56]
|
78 P39[56-56]
|
||||||
79 P39[57-57]
|
79 P39[57-57]
|
||||||
80 P39[58-58]
|
80 P39[58-58]
|
||||||
81 P39[59-59]
|
81 P39[59-59]
|
||||||
82 P39[60-60]
|
82 P39[60-60]
|
||||||
83 P39[61-61]
|
83 P39[61-61]
|
||||||
84 P39[62-62]
|
84 P39[62-62]
|
||||||
85 P39[63-63]
|
85 P39[63-63]
|
||||||
86 P39[64-64]
|
86 P39[64-64]
|
||||||
87 P39[65-65]
|
87 P39[65-65]
|
||||||
88 P39[66-66]
|
88 P39[66-66]
|
||||||
89 P39[67-67]
|
89 P39[67-67]
|
||||||
90 P39[68-68]
|
90 P39[68-68]
|
||||||
91 P39[69-69]
|
91 P39[69-69]
|
||||||
92 P54[40-40]
|
92 P54[40-40]
|
||||||
93 P54[41-41]
|
93 P54[41-41]
|
||||||
94 P54[42-42]
|
94 P54[42-42]
|
||||||
95 P54[43-43]
|
95 P54[43-43]
|
||||||
96 P54[44-44]
|
96 P54[44-44]
|
||||||
97 P54[45-45]
|
97 P54[45-45]
|
||||||
98 P54[46-46]
|
98 P54[46-46]
|
||||||
99 P54[47-47]
|
99 P54[47-47]
|
||||||
100 P54[48-48]
|
100 P54[48-48]
|
||||||
101 P54[49-49]
|
101 P54[49-49]
|
||||||
102 P54[50-50]
|
102 P54[50-50]
|
||||||
103 P54[51-51]
|
103 P54[51-51]
|
||||||
104 P54[52-52]
|
104 P54[52-52]
|
||||||
105 P54[53-53]
|
105 P54[53-53]
|
||||||
106 P54[54-54]
|
106 P54[54-54]
|
||||||
107 P54[55-55]
|
107 P54[55-55]
|
||||||
108 P54[56-56]
|
108 P54[56-56]
|
||||||
109 P54[57-57]
|
109 P54[57-57]
|
||||||
110 P54[58-58]
|
110 P54[58-58]
|
||||||
111 P54[59-59]
|
111 P54[59-59]
|
||||||
112 P54[60-60]
|
112 P54[60-60]
|
||||||
113 P54[61-61]
|
113 P54[61-61]
|
||||||
114 P54[62-62]
|
114 P54[62-62]
|
||||||
115 P54[63-63]
|
115 P54[63-63]
|
||||||
116 P54[64-64]
|
116 P54[64-64]
|
||||||
117 P54[65-65]
|
117 P54[65-65]
|
||||||
118 P54[66-66]
|
118 P54[66-66]
|
||||||
119 P54[67-67]
|
119 P54[67-67]
|
||||||
120 P54[68-68]
|
120 P54[68-68]
|
||||||
121 P54[69-69]
|
121 P54[69-69]
|
||||||
122 P31[0-0]
|
122 P31[0-0]
|
||||||
123 P31[1-1]
|
123 P31[1-1]
|
||||||
124 P31[2-2]
|
124 P31[2-2]
|
||||||
125 P31[3-3]
|
125 P31[3-3]
|
||||||
126 P31[4-4]
|
126 P31[4-4]
|
||||||
127 P31[5-5]
|
127 P31[5-5]
|
||||||
128 P31[6-6]
|
128 P31[6-6]
|
||||||
129 P31[7-7]
|
129 P31[7-7]
|
||||||
130 P31[8-8]
|
130 P31[8-8]
|
||||||
131 P31[9-9]
|
131 P31[9-9]
|
||||||
132 P31[10-10]
|
132 P31[10-10]
|
||||||
133 P31[11-11]
|
133 P31[11-11]
|
||||||
134 P31[12-12]
|
134 P31[12-12]
|
||||||
135 P31[13-13]
|
135 P31[13-13]
|
||||||
136 P31[14-14]
|
136 P31[14-14]
|
||||||
137 P31[15-15]
|
137 P31[15-15]
|
||||||
138 P31[16-16]
|
138 P31[16-16]
|
||||||
139 P31[17-17]
|
139 P31[17-17]
|
||||||
140 P31[18-18]
|
140 P31[18-18]
|
||||||
141 P31[19-19]
|
141 P31[19-19]
|
||||||
142 P31[20-20]
|
142 P31[20-20]
|
||||||
143 P31[21-21]
|
143 P31[21-21]
|
||||||
144 P31[22-22]
|
144 P31[22-22]
|
||||||
145 P31[23-23]
|
145 P31[23-23]
|
||||||
146 P31[24-24]
|
146 P31[24-24]
|
||||||
147 P31[25-25]
|
147 P31[25-25]
|
||||||
148 P31[26-26]
|
148 P31[26-26]
|
||||||
149 P31[27-27]
|
149 P31[27-27]
|
||||||
150 P31[28-28]
|
150 P31[28-28]
|
||||||
151 P31[29-29]
|
151 P31[29-29]
|
||||||
152 P31[30-30]
|
152 P31[30-30]
|
||||||
153 P31[31-31]
|
153 P31[31-31]
|
||||||
154 P31[32-32]
|
154 P31[32-32]
|
||||||
155 P31[33-33]
|
155 P31[33-33]
|
||||||
156 P31[34-34]
|
156 P31[34-34]
|
||||||
157 P31[35-35]
|
157 P31[35-35]
|
||||||
158 P31[36-36]
|
158 P31[36-36]
|
||||||
159 P31[37-37]
|
159 P31[37-37]
|
||||||
160 P31[38-38]
|
160 P31[38-38]
|
||||||
161 P31[39-39]
|
161 P31[39-39]
|
||||||
162 P31[40-40]
|
162 P31[40-40]
|
||||||
163 P31[41-41]
|
163 P31[41-41]
|
||||||
164 P31[42-42]
|
164 P31[42-42]
|
||||||
165 P31[43-43]
|
165 P31[43-43]
|
||||||
166 P31[44-44]
|
166 P31[44-44]
|
||||||
167 P31[45-45]
|
167 P31[45-45]
|
||||||
168 P31[46-46]
|
168 P31[46-46]
|
||||||
169 P31[47-47]
|
169 P31[47-47]
|
||||||
170 P31[48-48]
|
170 P31[48-48]
|
||||||
171 P31[49-49]
|
171 P31[49-49]
|
||||||
172 P31[50-50]
|
172 P31[50-50]
|
||||||
173 P31[51-51]
|
173 P31[51-51]
|
||||||
174 P31[52-52]
|
174 P31[52-52]
|
||||||
175 P31[53-53]
|
175 P31[53-53]
|
||||||
176 P31[54-54]
|
176 P31[54-54]
|
||||||
177 P31[55-55]
|
177 P31[55-55]
|
||||||
178 P31[56-56]
|
178 P31[56-56]
|
||||||
179 P31[57-57]
|
179 P31[57-57]
|
||||||
180 P31[58-58]
|
180 P31[58-58]
|
||||||
181 P31[59-59]
|
181 P31[59-59]
|
||||||
182 P31[60-60]
|
182 P31[60-60]
|
||||||
183 P31[61-61]
|
183 P31[61-61]
|
||||||
184 P31[62-62]
|
184 P31[62-62]
|
||||||
185 P31[63-63]
|
185 P31[63-63]
|
||||||
186 P31[64-64]
|
186 P31[64-64]
|
||||||
187 P31[65-65]
|
187 P31[65-65]
|
||||||
188 P31[66-66]
|
188 P31[66-66]
|
||||||
189 P31[67-67]
|
189 P31[67-67]
|
||||||
190 P31[68-68]
|
190 P31[68-68]
|
||||||
191 P31[69-69]
|
191 P31[69-69]
|
||||||
192 P463[26-26]
|
192 P463[26-26]
|
||||||
193 P463[27-27]
|
193 P463[27-27]
|
||||||
194 P463[28-28]
|
194 P463[28-28]
|
||||||
195 P463[29-29]
|
195 P463[29-29]
|
||||||
196 P463[30-30]
|
196 P463[30-30]
|
||||||
197 P463[31-31]
|
197 P463[31-31]
|
||||||
198 P463[32-32]
|
198 P463[32-32]
|
||||||
199 P463[33-33]
|
199 P463[33-33]
|
||||||
200 P463[34-34]
|
200 P463[34-34]
|
||||||
201 P463[35-35]
|
201 P463[35-35]
|
||||||
202 P463[36-36]
|
202 P463[36-36]
|
||||||
203 P463[37-37]
|
203 P463[37-37]
|
||||||
204 P463[38-38]
|
204 P463[38-38]
|
||||||
205 P463[39-39]
|
205 P463[39-39]
|
||||||
206 P463[40-40]
|
206 P463[40-40]
|
||||||
207 P463[41-41]
|
207 P463[41-41]
|
||||||
208 P463[42-42]
|
208 P463[42-42]
|
||||||
209 P463[43-43]
|
209 P463[43-43]
|
||||||
210 P463[44-44]
|
210 P463[44-44]
|
||||||
211 P463[45-45]
|
211 P463[45-45]
|
||||||
212 P463[46-46]
|
212 P463[46-46]
|
||||||
213 P463[47-47]
|
213 P463[47-47]
|
||||||
214 P463[48-48]
|
214 P463[48-48]
|
||||||
215 P463[49-49]
|
215 P463[49-49]
|
||||||
216 P463[50-50]
|
216 P463[50-50]
|
||||||
217 P463[51-51]
|
217 P463[51-51]
|
||||||
218 P463[52-52]
|
218 P463[52-52]
|
||||||
219 P463[53-53]
|
219 P463[53-53]
|
||||||
220 P463[54-54]
|
220 P463[54-54]
|
||||||
221 P463[55-55]
|
221 P463[55-55]
|
||||||
222 P463[56-56]
|
222 P463[56-56]
|
||||||
223 P463[57-57]
|
223 P463[57-57]
|
||||||
224 P463[58-58]
|
224 P463[58-58]
|
||||||
225 P463[59-59]
|
225 P463[59-59]
|
||||||
226 P463[60-60]
|
226 P463[60-60]
|
||||||
227 P463[61-61]
|
227 P463[61-61]
|
||||||
228 P463[62-62]
|
228 P463[62-62]
|
||||||
229 P463[63-63]
|
229 P463[63-63]
|
||||||
230 P463[64-64]
|
230 P463[64-64]
|
||||||
231 P463[65-65]
|
231 P463[65-65]
|
||||||
232 P463[66-66]
|
232 P463[66-66]
|
||||||
233 P463[67-67]
|
233 P463[67-67]
|
||||||
234 P463[68-68]
|
234 P463[68-68]
|
||||||
235 P463[69-69]
|
235 P463[69-69]
|
||||||
236 P512[4-69]
|
236 P512[4-69]
|
||||||
237 P190[0-29]
|
237 P190[0-29]
|
||||||
238 P150[0-3]
|
238 P150[0-3]
|
||||||
239 P1376[39-47]
|
239 P1376[39-47]
|
||||||
240 P463[0-7]
|
240 P463[0-7]
|
||||||
241 P166[0-7]
|
241 P166[0-7]
|
||||||
242 P2962[18-30]
|
242 P2962[18-30]
|
||||||
243 P108[29-36]
|
243 P108[29-36]
|
||||||
244 P39[0-3]
|
244 P39[0-3]
|
||||||
245 P17[47-48]
|
245 P17[47-48]
|
||||||
246 P166[21-23]
|
246 P166[21-23]
|
||||||
247 P793[46-69]
|
247 P793[46-69]
|
||||||
248 P69[32-41]
|
248 P69[32-41]
|
||||||
249 P17[57-58]
|
249 P17[57-58]
|
||||||
250 P190[42-45]
|
250 P190[42-45]
|
||||||
251 P2962[39-42]
|
251 P2962[39-42]
|
||||||
252 P54[0-18]
|
252 P54[0-18]
|
||||||
253 P26[56-61]
|
253 P26[56-61]
|
||||||
254 P150[14-17]
|
254 P150[14-17]
|
||||||
255 P463[16-17]
|
255 P463[16-17]
|
||||||
256 P26[39-46]
|
256 P26[39-46]
|
||||||
257 P579[36-43]
|
257 P579[36-43]
|
||||||
258 P579[16-23]
|
258 P579[16-23]
|
||||||
259 P2962[59-60]
|
259 P2962[59-60]
|
||||||
260 P1411[59-61]
|
260 P1411[59-61]
|
||||||
261 P26[20-27]
|
261 P26[20-27]
|
||||||
262 P6[4-69]
|
262 P6[4-69]
|
||||||
263 P1435[33-34]
|
263 P1435[33-34]
|
||||||
264 P166[52-53]
|
264 P166[52-53]
|
||||||
265 P108[49-57]
|
265 P108[49-57]
|
||||||
266 P150[10-13]
|
266 P150[10-13]
|
||||||
267 P1346[47-68]
|
267 P1346[47-68]
|
||||||
268 P150[18-21]
|
268 P150[18-21]
|
||||||
269 P1346[13-46]
|
269 P1346[13-46]
|
||||||
270 P69[20-23]
|
270 P69[20-23]
|
||||||
271 P39[31-32]
|
271 P39[31-32]
|
||||||
272 P1411[32-37]
|
272 P1411[32-37]
|
||||||
273 P166[62-63]
|
273 P166[62-63]
|
||||||
274 P150[44-47]
|
274 P150[44-47]
|
||||||
275 P2962[61-62]
|
275 P2962[61-62]
|
||||||
276 P150[48-51]
|
276 P150[48-51]
|
||||||
277 P150[52-55]
|
277 P150[52-55]
|
||||||
278 P1411[62-67]
|
278 P1411[62-67]
|
||||||
279 P1435[35-36]
|
279 P1435[35-36]
|
||||||
280 P1411[48-51]
|
280 P1411[48-51]
|
||||||
281 P150[22-25]
|
281 P150[22-25]
|
||||||
282 P2962[63-64]
|
282 P2962[63-64]
|
||||||
283 P2962[65-66]
|
283 P2962[65-66]
|
||||||
284 P166[58-59]
|
284 P166[58-59]
|
||||||
285 P190[46-49]
|
285 P190[46-49]
|
||||||
286 P54[34-35]
|
286 P54[34-35]
|
||||||
287 P1435[4-16]
|
287 P1435[4-16]
|
||||||
288 P463[18-19]
|
288 P463[18-19]
|
||||||
289 P150[31-34]
|
289 P150[31-34]
|
||||||
290 P150[35-38]
|
290 P150[35-38]
|
||||||
291 P39[35-36]
|
291 P39[35-36]
|
||||||
292 P26[62-69]
|
292 P26[62-69]
|
||||||
293 P1411[56-58]
|
293 P1411[56-58]
|
||||||
294 P1435[37-38]
|
294 P1435[37-38]
|
||||||
295 P166[60-61]
|
295 P166[60-61]
|
||||||
296 P39[33-34]
|
296 P39[33-34]
|
||||||
297 P102[24-31]
|
297 P102[24-31]
|
||||||
298 P2962[43-46]
|
298 P2962[43-46]
|
||||||
299 P108[37-48]
|
299 P108[37-48]
|
||||||
300 P190[50-53]
|
300 P190[50-53]
|
||||||
301 P39[4-6]
|
301 P39[4-6]
|
||||||
302 P1435[39-40]
|
302 P1435[39-40]
|
||||||
303 P793[0-45]
|
303 P793[0-45]
|
||||||
304 P150[64-69]
|
304 P150[64-69]
|
||||||
305 P39[19-22]
|
305 P39[19-22]
|
||||||
306 P27[30-38]
|
306 P27[30-38]
|
||||||
307 P2962[31-38]
|
307 P2962[31-38]
|
||||||
308 P1411[24-31]
|
308 P1411[24-31]
|
||||||
309 P102[40-45]
|
309 P102[40-45]
|
||||||
310 P39[37-38]
|
310 P39[37-38]
|
||||||
311 P463[8-11]
|
311 P463[8-11]
|
||||||
312 P1435[41-42]
|
312 P1435[41-42]
|
||||||
313 P27[52-59]
|
313 P27[52-59]
|
||||||
314 P69[16-19]
|
314 P69[16-19]
|
||||||
315 P17[16-18]
|
315 P17[16-18]
|
||||||
316 P190[54-57]
|
316 P190[54-57]
|
||||||
317 P1435[43-44]
|
317 P1435[43-44]
|
||||||
318 P166[8-15]
|
318 P166[8-15]
|
||||||
319 P166[45-47]
|
319 P166[45-47]
|
||||||
320 P2962[47-50]
|
320 P2962[47-50]
|
||||||
321 P39[39-40]
|
321 P39[39-40]
|
||||||
322 P1411[52-55]
|
322 P1411[52-55]
|
||||||
323 P108[58-69]
|
323 P108[58-69]
|
||||||
324 P463[20-21]
|
324 P463[20-21]
|
||||||
325 P39[41-42]
|
325 P39[41-42]
|
||||||
326 P150[26-30]
|
326 P150[26-30]
|
||||||
327 P150[39-43]
|
327 P150[39-43]
|
||||||
328 P1435[45-46]
|
328 P1435[45-46]
|
||||||
329 P26[28-38]
|
329 P26[28-38]
|
||||||
330 P54[27-30]
|
330 P54[27-30]
|
||||||
331 P190[58-61]
|
331 P190[58-61]
|
||||||
332 P17[59-61]
|
332 P17[59-61]
|
||||||
333 P54[36-37]
|
333 P54[36-37]
|
||||||
334 P166[16-20]
|
334 P166[16-20]
|
||||||
335 P166[37-40]
|
335 P166[37-40]
|
||||||
336 P1435[47-48]
|
336 P1435[47-48]
|
||||||
337 P17[0-3]
|
337 P17[0-3]
|
||||||
338 P26[47-55]
|
338 P26[47-55]
|
||||||
339 P1435[49-50]
|
339 P1435[49-50]
|
||||||
340 P1435[25-28]
|
340 P1435[25-28]
|
||||||
341 P150[4-9]
|
341 P150[4-9]
|
||||||
342 P102[63-69]
|
342 P102[63-69]
|
||||||
343 P26[0-19]
|
343 P26[0-19]
|
||||||
344 P1435[17-24]
|
344 P1435[17-24]
|
||||||
345 P39[23-26]
|
345 P39[23-26]
|
||||||
346 P1435[51-52]
|
346 P1435[51-52]
|
||||||
347 P39[7-11]
|
347 P39[7-11]
|
||||||
348 P69[12-15]
|
348 P69[12-15]
|
||||||
349 P69[24-31]
|
349 P69[24-31]
|
||||||
350 P102[0-23]
|
350 P102[0-23]
|
||||||
351 P39[43-44]
|
351 P39[43-44]
|
||||||
352 P579[24-35]
|
352 P579[24-35]
|
||||||
353 P190[62-65]
|
353 P190[62-65]
|
||||||
354 P1435[53-54]
|
354 P1435[53-54]
|
||||||
355 P1376[0-18]
|
355 P1376[0-18]
|
||||||
356 P27[0-14]
|
356 P27[0-14]
|
||||||
357 P463[12-15]
|
357 P463[12-15]
|
||||||
358 P166[33-36]
|
358 P166[33-36]
|
||||||
359 P102[32-39]
|
359 P102[32-39]
|
||||||
360 P17[4-7]
|
360 P17[4-7]
|
||||||
361 P190[30-41]
|
361 P190[30-41]
|
||||||
362 P166[24-28]
|
362 P166[24-28]
|
||||||
363 P190[66-69]
|
363 P190[66-69]
|
||||||
364 P69[42-69]
|
364 P69[42-69]
|
||||||
365 P1435[55-56]
|
365 P1435[55-56]
|
||||||
366 P54[31-33]
|
366 P54[31-33]
|
||||||
367 P39[45-46]
|
367 P39[45-46]
|
||||||
368 P17[12-15]
|
368 P17[12-15]
|
||||||
369 P1435[57-58]
|
369 P1435[57-58]
|
||||||
370 P54[19-26]
|
370 P54[19-26]
|
||||||
371 P2962[51-54]
|
371 P2962[51-54]
|
||||||
372 P2962[67-69]
|
372 P2962[67-69]
|
||||||
373 P1435[59-60]
|
373 P1435[59-60]
|
||||||
374 P579[44-56]
|
374 P579[44-56]
|
||||||
375 P1435[61-62]
|
375 P1435[61-62]
|
||||||
376 P166[41-44]
|
376 P166[41-44]
|
||||||
377 P17[19-22]
|
377 P17[19-22]
|
||||||
378 P1376[19-38]
|
378 P1376[19-38]
|
||||||
379 P17[23-26]
|
379 P17[23-26]
|
||||||
380 P1376[48-69]
|
380 P1376[48-69]
|
||||||
381 P463[22-23]
|
381 P463[22-23]
|
||||||
382 P17[27-30]
|
382 P17[27-30]
|
||||||
383 P1435[63-64]
|
383 P1435[63-64]
|
||||||
384 P69[0-3]
|
384 P69[0-3]
|
||||||
385 P1435[66-67]
|
385 P1435[66-67]
|
||||||
386 P17[35-38]
|
386 P17[35-38]
|
||||||
387 P69[8-11]
|
387 P69[8-11]
|
||||||
388 P1435[68-69]
|
388 P1435[68-69]
|
||||||
389 P17[31-34]
|
389 P17[31-34]
|
||||||
390 P102[46-53]
|
390 P102[46-53]
|
||||||
391 P27[60-69]
|
391 P27[60-69]
|
||||||
392 P579[57-69]
|
392 P579[57-69]
|
||||||
393 P69[4-7]
|
393 P69[4-7]
|
||||||
394 P1411[7-14]
|
394 P1411[7-14]
|
||||||
395 P551[0-35]
|
395 P551[0-35]
|
||||||
396 P108[0-28]
|
396 P108[0-28]
|
||||||
397 P17[8-11]
|
397 P17[8-11]
|
||||||
398 P1411[38-47]
|
398 P1411[38-47]
|
||||||
399 P17[43-46]
|
399 P17[43-46]
|
||||||
400 P17[49-52]
|
400 P17[49-52]
|
||||||
401 P166[64-69]
|
401 P166[64-69]
|
||||||
402 P1435[29-32]
|
402 P1435[29-32]
|
||||||
403 P54[38-39]
|
403 P54[38-39]
|
||||||
404 P39[27-30]
|
404 P39[27-30]
|
||||||
405 P2962[55-58]
|
405 P2962[55-58]
|
||||||
406 P463[24-25]
|
406 P463[24-25]
|
||||||
407 P17[39-42]
|
407 P17[39-42]
|
||||||
408 P17[53-56]
|
408 P17[53-56]
|
||||||
409 P17[66-69]
|
409 P17[66-69]
|
||||||
410 P17[62-65]
|
410 P17[62-65]
|
||||||
411 P1411[15-23]
|
411 P1411[15-23]
|
||||||
412 P166[48-51]
|
412 P166[48-51]
|
||||||
413 P27[15-29]
|
413 P27[15-29]
|
||||||
414 P150[56-63]
|
414 P150[56-63]
|
||||||
415 P27[39-51]
|
415 P27[39-51]
|
||||||
416 P39[47-48]
|
416 P39[47-48]
|
||||||
417 P166[29-32]
|
417 P166[29-32]
|
||||||
418 P39[12-18]
|
418 P39[12-18]
|
||||||
419 P166[54-57]
|
419 P166[54-57]
|
||||||
420 P551[36-69]
|
420 P551[36-69]
|
||||||
421 P579[0-15]
|
421 P579[0-15]
|
||||||
422 P102[54-62]
|
422 P102[54-62]
|
||||||
|
File diff suppressed because it is too large
Load Diff
@ -1,71 +1,71 @@
|
|||||||
0 19 19
|
0 19 19
|
||||||
1 20 1643
|
1 20 1643
|
||||||
2 1644 1790
|
2 1644 1790
|
||||||
3 1791 1816
|
3 1791 1816
|
||||||
4 1817 1855
|
4 1817 1855
|
||||||
5 1856 1871
|
5 1856 1871
|
||||||
6 1872 1893
|
6 1872 1893
|
||||||
7 1894 1905
|
7 1894 1905
|
||||||
8 1906 1913
|
8 1906 1913
|
||||||
9 1914 1918
|
9 1914 1918
|
||||||
10 1919 1920
|
10 1919 1920
|
||||||
11 1921 1924
|
11 1921 1924
|
||||||
12 1925 1929
|
12 1925 1929
|
||||||
13 1930 1933
|
13 1930 1933
|
||||||
14 1934 1937
|
14 1934 1937
|
||||||
15 1938 1941
|
15 1938 1941
|
||||||
16 1942 1945
|
16 1942 1945
|
||||||
17 1946 1948
|
17 1946 1948
|
||||||
18 1949 1950
|
18 1949 1950
|
||||||
19 1951 1953
|
19 1951 1953
|
||||||
20 1954 1956
|
20 1954 1956
|
||||||
21 1957 1959
|
21 1957 1959
|
||||||
22 1960 1961
|
22 1960 1961
|
||||||
23 1962 1963
|
23 1962 1963
|
||||||
24 1964 1965
|
24 1964 1965
|
||||||
25 1966 1967
|
25 1966 1967
|
||||||
26 1968 1968
|
26 1968 1968
|
||||||
27 1969 1970
|
27 1969 1970
|
||||||
28 1971 1972
|
28 1971 1972
|
||||||
29 1973 1974
|
29 1973 1974
|
||||||
30 1975 1976
|
30 1975 1976
|
||||||
31 1977 1978
|
31 1977 1978
|
||||||
32 1979 1980
|
32 1979 1980
|
||||||
33 1981 1982
|
33 1981 1982
|
||||||
34 1983 1983
|
34 1983 1983
|
||||||
35 1984 1984
|
35 1984 1984
|
||||||
36 1985 1985
|
36 1985 1985
|
||||||
37 1986 1986
|
37 1986 1986
|
||||||
38 1987 1987
|
38 1987 1987
|
||||||
39 1988 1988
|
39 1988 1988
|
||||||
40 1989 1989
|
40 1989 1989
|
||||||
41 1990 1990
|
41 1990 1990
|
||||||
42 1991 1991
|
42 1991 1991
|
||||||
43 1992 1992
|
43 1992 1992
|
||||||
44 1993 1993
|
44 1993 1993
|
||||||
45 1994 1994
|
45 1994 1994
|
||||||
46 1995 1995
|
46 1995 1995
|
||||||
47 1996 1996
|
47 1996 1996
|
||||||
48 1997 1997
|
48 1997 1997
|
||||||
49 1998 1998
|
49 1998 1998
|
||||||
50 1999 1999
|
50 1999 1999
|
||||||
51 2000 2000
|
51 2000 2000
|
||||||
52 2001 2001
|
52 2001 2001
|
||||||
53 2002 2002
|
53 2002 2002
|
||||||
54 2003 2003
|
54 2003 2003
|
||||||
55 2004 2004
|
55 2004 2004
|
||||||
56 2005 2005
|
56 2005 2005
|
||||||
57 2006 2006
|
57 2006 2006
|
||||||
58 2007 2007
|
58 2007 2007
|
||||||
59 2008 2008
|
59 2008 2008
|
||||||
60 2009 2009
|
60 2009 2009
|
||||||
61 2010 2010
|
61 2010 2010
|
||||||
62 2011 2011
|
62 2011 2011
|
||||||
63 2012 2012
|
63 2012 2012
|
||||||
64 2013 2013
|
64 2013 2013
|
||||||
65 2014 2014
|
65 2014 2014
|
||||||
66 2015 2015
|
66 2015 2015
|
||||||
67 2016 2016
|
67 2016 2016
|
||||||
68 2017 2017
|
68 2017 2017
|
||||||
69 2018 2020
|
69 2018 2020
|
||||||
70 2021 2021
|
70 2021 2021
|
||||||
|
504678
data/wikidata12k/train.txt
504678
data/wikidata12k/train.txt
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@ -1,15 +0,0 @@
|
|||||||
# triples: 291818
|
|
||||||
# entities: 12554
|
|
||||||
# relations: 423
|
|
||||||
# timesteps: 70
|
|
||||||
# test triples: 19271
|
|
||||||
# valid triples: 20208
|
|
||||||
# train triples: 252339
|
|
||||||
Measure method: N/A
|
|
||||||
Target Size : 423
|
|
||||||
Grow Factor: 0
|
|
||||||
Shrink Factor: 4.0
|
|
||||||
Epsilon Factor: 0
|
|
||||||
Search method: N/A
|
|
||||||
filter_dupes: inter
|
|
||||||
nonames: False
|
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@ -1,24 +0,0 @@
|
|||||||
P1376 0
|
|
||||||
P512 4
|
|
||||||
P579 3
|
|
||||||
P150 18
|
|
||||||
P190 5
|
|
||||||
P551 19
|
|
||||||
P131 1
|
|
||||||
P793 21
|
|
||||||
P1435 13
|
|
||||||
P39 14
|
|
||||||
P17 6
|
|
||||||
P54 22
|
|
||||||
P31 15
|
|
||||||
P6 7
|
|
||||||
P1411 20
|
|
||||||
P2962 2
|
|
||||||
P463 9
|
|
||||||
P1346 16
|
|
||||||
P108 10
|
|
||||||
P69 23
|
|
||||||
P166 17
|
|
||||||
P102 11
|
|
||||||
P27 12
|
|
||||||
P26 8
|
|
File diff suppressed because it is too large
Load Diff
@ -1,423 +0,0 @@
|
|||||||
0 P131[0-0]
|
|
||||||
1 P131[1-1]
|
|
||||||
2 P131[2-2]
|
|
||||||
3 P131[3-3]
|
|
||||||
4 P131[4-4]
|
|
||||||
5 P131[5-5]
|
|
||||||
6 P131[6-6]
|
|
||||||
7 P131[7-7]
|
|
||||||
8 P131[8-8]
|
|
||||||
9 P131[9-9]
|
|
||||||
10 P131[10-10]
|
|
||||||
11 P131[11-11]
|
|
||||||
12 P131[12-12]
|
|
||||||
13 P131[13-13]
|
|
||||||
14 P131[14-14]
|
|
||||||
15 P131[15-15]
|
|
||||||
16 P131[16-16]
|
|
||||||
17 P131[17-17]
|
|
||||||
18 P131[18-18]
|
|
||||||
19 P131[19-19]
|
|
||||||
20 P131[20-20]
|
|
||||||
21 P131[21-21]
|
|
||||||
22 P131[22-22]
|
|
||||||
23 P131[23-23]
|
|
||||||
24 P131[24-24]
|
|
||||||
25 P131[25-25]
|
|
||||||
26 P131[26-26]
|
|
||||||
27 P131[27-27]
|
|
||||||
28 P131[28-28]
|
|
||||||
29 P131[29-29]
|
|
||||||
30 P131[30-30]
|
|
||||||
31 P131[31-31]
|
|
||||||
32 P131[32-32]
|
|
||||||
33 P131[33-33]
|
|
||||||
34 P131[34-34]
|
|
||||||
35 P131[35-35]
|
|
||||||
36 P131[36-36]
|
|
||||||
37 P131[37-37]
|
|
||||||
38 P131[38-38]
|
|
||||||
39 P131[39-39]
|
|
||||||
40 P131[40-40]
|
|
||||||
41 P131[41-41]
|
|
||||||
42 P131[42-42]
|
|
||||||
43 P131[43-43]
|
|
||||||
44 P131[44-44]
|
|
||||||
45 P131[45-45]
|
|
||||||
46 P131[46-46]
|
|
||||||
47 P131[47-47]
|
|
||||||
48 P131[48-48]
|
|
||||||
49 P131[49-49]
|
|
||||||
50 P131[50-50]
|
|
||||||
51 P131[51-51]
|
|
||||||
52 P131[52-52]
|
|
||||||
53 P131[53-53]
|
|
||||||
54 P131[54-54]
|
|
||||||
55 P131[55-55]
|
|
||||||
56 P131[56-56]
|
|
||||||
57 P131[57-57]
|
|
||||||
58 P131[58-58]
|
|
||||||
59 P131[59-59]
|
|
||||||
60 P131[60-60]
|
|
||||||
61 P131[61-61]
|
|
||||||
62 P131[62-62]
|
|
||||||
63 P131[63-63]
|
|
||||||
64 P131[64-64]
|
|
||||||
65 P131[65-65]
|
|
||||||
66 P131[66-66]
|
|
||||||
67 P131[67-67]
|
|
||||||
68 P131[68-68]
|
|
||||||
69 P131[69-69]
|
|
||||||
70 P1435[65-65]
|
|
||||||
71 P39[49-49]
|
|
||||||
72 P39[50-50]
|
|
||||||
73 P39[51-51]
|
|
||||||
74 P39[52-52]
|
|
||||||
75 P39[53-53]
|
|
||||||
76 P39[54-54]
|
|
||||||
77 P39[55-55]
|
|
||||||
78 P39[56-56]
|
|
||||||
79 P39[57-57]
|
|
||||||
80 P39[58-58]
|
|
||||||
81 P39[59-59]
|
|
||||||
82 P39[60-60]
|
|
||||||
83 P39[61-61]
|
|
||||||
84 P39[62-62]
|
|
||||||
85 P39[63-63]
|
|
||||||
86 P39[64-64]
|
|
||||||
87 P39[65-65]
|
|
||||||
88 P39[66-66]
|
|
||||||
89 P39[67-67]
|
|
||||||
90 P39[68-68]
|
|
||||||
91 P39[69-69]
|
|
||||||
92 P54[40-40]
|
|
||||||
93 P54[41-41]
|
|
||||||
94 P54[42-42]
|
|
||||||
95 P54[43-43]
|
|
||||||
96 P54[44-44]
|
|
||||||
97 P54[45-45]
|
|
||||||
98 P54[46-46]
|
|
||||||
99 P54[47-47]
|
|
||||||
100 P54[48-48]
|
|
||||||
101 P54[49-49]
|
|
||||||
102 P54[50-50]
|
|
||||||
103 P54[51-51]
|
|
||||||
104 P54[52-52]
|
|
||||||
105 P54[53-53]
|
|
||||||
106 P54[54-54]
|
|
||||||
107 P54[55-55]
|
|
||||||
108 P54[56-56]
|
|
||||||
109 P54[57-57]
|
|
||||||
110 P54[58-58]
|
|
||||||
111 P54[59-59]
|
|
||||||
112 P54[60-60]
|
|
||||||
113 P54[61-61]
|
|
||||||
114 P54[62-62]
|
|
||||||
115 P54[63-63]
|
|
||||||
116 P54[64-64]
|
|
||||||
117 P54[65-65]
|
|
||||||
118 P54[66-66]
|
|
||||||
119 P54[67-67]
|
|
||||||
120 P54[68-68]
|
|
||||||
121 P54[69-69]
|
|
||||||
122 P31[0-0]
|
|
||||||
123 P31[1-1]
|
|
||||||
124 P31[2-2]
|
|
||||||
125 P31[3-3]
|
|
||||||
126 P31[4-4]
|
|
||||||
127 P31[5-5]
|
|
||||||
128 P31[6-6]
|
|
||||||
129 P31[7-7]
|
|
||||||
130 P31[8-8]
|
|
||||||
131 P31[9-9]
|
|
||||||
132 P31[10-10]
|
|
||||||
133 P31[11-11]
|
|
||||||
134 P31[12-12]
|
|
||||||
135 P31[13-13]
|
|
||||||
136 P31[14-14]
|
|
||||||
137 P31[15-15]
|
|
||||||
138 P31[16-16]
|
|
||||||
139 P31[17-17]
|
|
||||||
140 P31[18-18]
|
|
||||||
141 P31[19-19]
|
|
||||||
142 P31[20-20]
|
|
||||||
143 P31[21-21]
|
|
||||||
144 P31[22-22]
|
|
||||||
145 P31[23-23]
|
|
||||||
146 P31[24-24]
|
|
||||||
147 P31[25-25]
|
|
||||||
148 P31[26-26]
|
|
||||||
149 P31[27-27]
|
|
||||||
150 P31[28-28]
|
|
||||||
151 P31[29-29]
|
|
||||||
152 P31[30-30]
|
|
||||||
153 P31[31-31]
|
|
||||||
154 P31[32-32]
|
|
||||||
155 P31[33-33]
|
|
||||||
156 P31[34-34]
|
|
||||||
157 P31[35-35]
|
|
||||||
158 P31[36-36]
|
|
||||||
159 P31[37-37]
|
|
||||||
160 P31[38-38]
|
|
||||||
161 P31[39-39]
|
|
||||||
162 P31[40-40]
|
|
||||||
163 P31[41-41]
|
|
||||||
164 P31[42-42]
|
|
||||||
165 P31[43-43]
|
|
||||||
166 P31[44-44]
|
|
||||||
167 P31[45-45]
|
|
||||||
168 P31[46-46]
|
|
||||||
169 P31[47-47]
|
|
||||||
170 P31[48-48]
|
|
||||||
171 P31[49-49]
|
|
||||||
172 P31[50-50]
|
|
||||||
173 P31[51-51]
|
|
||||||
174 P31[52-52]
|
|
||||||
175 P31[53-53]
|
|
||||||
176 P31[54-54]
|
|
||||||
177 P31[55-55]
|
|
||||||
178 P31[56-56]
|
|
||||||
179 P31[57-57]
|
|
||||||
180 P31[58-58]
|
|
||||||
181 P31[59-59]
|
|
||||||
182 P31[60-60]
|
|
||||||
183 P31[61-61]
|
|
||||||
184 P31[62-62]
|
|
||||||
185 P31[63-63]
|
|
||||||
186 P31[64-64]
|
|
||||||
187 P31[65-65]
|
|
||||||
188 P31[66-66]
|
|
||||||
189 P31[67-67]
|
|
||||||
190 P31[68-68]
|
|
||||||
191 P31[69-69]
|
|
||||||
192 P463[26-26]
|
|
||||||
193 P463[27-27]
|
|
||||||
194 P463[28-28]
|
|
||||||
195 P463[29-29]
|
|
||||||
196 P463[30-30]
|
|
||||||
197 P463[31-31]
|
|
||||||
198 P463[32-32]
|
|
||||||
199 P463[33-33]
|
|
||||||
200 P463[34-34]
|
|
||||||
201 P463[35-35]
|
|
||||||
202 P463[36-36]
|
|
||||||
203 P463[37-37]
|
|
||||||
204 P463[38-38]
|
|
||||||
205 P463[39-39]
|
|
||||||
206 P463[40-40]
|
|
||||||
207 P463[41-41]
|
|
||||||
208 P463[42-42]
|
|
||||||
209 P463[43-43]
|
|
||||||
210 P463[44-44]
|
|
||||||
211 P463[45-45]
|
|
||||||
212 P463[46-46]
|
|
||||||
213 P463[47-47]
|
|
||||||
214 P463[48-48]
|
|
||||||
215 P463[49-49]
|
|
||||||
216 P463[50-50]
|
|
||||||
217 P463[51-51]
|
|
||||||
218 P463[52-52]
|
|
||||||
219 P463[53-53]
|
|
||||||
220 P463[54-54]
|
|
||||||
221 P463[55-55]
|
|
||||||
222 P463[56-56]
|
|
||||||
223 P463[57-57]
|
|
||||||
224 P463[58-58]
|
|
||||||
225 P463[59-59]
|
|
||||||
226 P463[60-60]
|
|
||||||
227 P463[61-61]
|
|
||||||
228 P463[62-62]
|
|
||||||
229 P463[63-63]
|
|
||||||
230 P463[64-64]
|
|
||||||
231 P463[65-65]
|
|
||||||
232 P463[66-66]
|
|
||||||
233 P463[67-67]
|
|
||||||
234 P463[68-68]
|
|
||||||
235 P463[69-69]
|
|
||||||
236 P512[4-69]
|
|
||||||
237 P190[0-29]
|
|
||||||
238 P150[0-3]
|
|
||||||
239 P1376[39-47]
|
|
||||||
240 P463[0-7]
|
|
||||||
241 P166[0-7]
|
|
||||||
242 P2962[18-30]
|
|
||||||
243 P108[29-36]
|
|
||||||
244 P39[0-3]
|
|
||||||
245 P17[47-48]
|
|
||||||
246 P166[21-23]
|
|
||||||
247 P793[46-69]
|
|
||||||
248 P69[32-41]
|
|
||||||
249 P17[57-58]
|
|
||||||
250 P190[42-45]
|
|
||||||
251 P2962[39-42]
|
|
||||||
252 P54[0-18]
|
|
||||||
253 P26[56-61]
|
|
||||||
254 P150[14-17]
|
|
||||||
255 P463[16-17]
|
|
||||||
256 P26[39-46]
|
|
||||||
257 P579[36-43]
|
|
||||||
258 P579[16-23]
|
|
||||||
259 P2962[59-60]
|
|
||||||
260 P1411[59-61]
|
|
||||||
261 P26[20-27]
|
|
||||||
262 P6[4-69]
|
|
||||||
263 P1435[33-34]
|
|
||||||
264 P166[52-53]
|
|
||||||
265 P108[49-57]
|
|
||||||
266 P150[10-13]
|
|
||||||
267 P1346[47-68]
|
|
||||||
268 P150[18-21]
|
|
||||||
269 P1346[13-46]
|
|
||||||
270 P69[20-23]
|
|
||||||
271 P39[31-32]
|
|
||||||
272 P1411[32-37]
|
|
||||||
273 P166[62-63]
|
|
||||||
274 P150[44-47]
|
|
||||||
275 P2962[61-62]
|
|
||||||
276 P150[48-51]
|
|
||||||
277 P150[52-55]
|
|
||||||
278 P1411[62-67]
|
|
||||||
279 P1435[35-36]
|
|
||||||
280 P1411[48-51]
|
|
||||||
281 P150[22-25]
|
|
||||||
282 P2962[63-64]
|
|
||||||
283 P2962[65-66]
|
|
||||||
284 P166[58-59]
|
|
||||||
285 P190[46-49]
|
|
||||||
286 P54[34-35]
|
|
||||||
287 P1435[4-16]
|
|
||||||
288 P463[18-19]
|
|
||||||
289 P150[31-34]
|
|
||||||
290 P150[35-38]
|
|
||||||
291 P39[35-36]
|
|
||||||
292 P26[62-69]
|
|
||||||
293 P1411[56-58]
|
|
||||||
294 P1435[37-38]
|
|
||||||
295 P166[60-61]
|
|
||||||
296 P39[33-34]
|
|
||||||
297 P102[24-31]
|
|
||||||
298 P2962[43-46]
|
|
||||||
299 P108[37-48]
|
|
||||||
300 P190[50-53]
|
|
||||||
301 P39[4-6]
|
|
||||||
302 P1435[39-40]
|
|
||||||
303 P793[0-45]
|
|
||||||
304 P150[64-69]
|
|
||||||
305 P39[19-22]
|
|
||||||
306 P27[30-38]
|
|
||||||
307 P2962[31-38]
|
|
||||||
308 P1411[24-31]
|
|
||||||
309 P102[40-45]
|
|
||||||
310 P39[37-38]
|
|
||||||
311 P463[8-11]
|
|
||||||
312 P1435[41-42]
|
|
||||||
313 P27[52-59]
|
|
||||||
314 P69[16-19]
|
|
||||||
315 P17[16-18]
|
|
||||||
316 P190[54-57]
|
|
||||||
317 P1435[43-44]
|
|
||||||
318 P166[8-15]
|
|
||||||
319 P166[45-47]
|
|
||||||
320 P2962[47-50]
|
|
||||||
321 P39[39-40]
|
|
||||||
322 P1411[52-55]
|
|
||||||
323 P108[58-69]
|
|
||||||
324 P463[20-21]
|
|
||||||
325 P39[41-42]
|
|
||||||
326 P150[26-30]
|
|
||||||
327 P150[39-43]
|
|
||||||
328 P1435[45-46]
|
|
||||||
329 P26[28-38]
|
|
||||||
330 P54[27-30]
|
|
||||||
331 P190[58-61]
|
|
||||||
332 P17[59-61]
|
|
||||||
333 P54[36-37]
|
|
||||||
334 P166[16-20]
|
|
||||||
335 P166[37-40]
|
|
||||||
336 P1435[47-48]
|
|
||||||
337 P17[0-3]
|
|
||||||
338 P26[47-55]
|
|
||||||
339 P1435[49-50]
|
|
||||||
340 P1435[25-28]
|
|
||||||
341 P150[4-9]
|
|
||||||
342 P102[63-69]
|
|
||||||
343 P26[0-19]
|
|
||||||
344 P1435[17-24]
|
|
||||||
345 P39[23-26]
|
|
||||||
346 P1435[51-52]
|
|
||||||
347 P39[7-11]
|
|
||||||
348 P69[12-15]
|
|
||||||
349 P69[24-31]
|
|
||||||
350 P102[0-23]
|
|
||||||
351 P39[43-44]
|
|
||||||
352 P579[24-35]
|
|
||||||
353 P190[62-65]
|
|
||||||
354 P1435[53-54]
|
|
||||||
355 P1376[0-18]
|
|
||||||
356 P27[0-14]
|
|
||||||
357 P463[12-15]
|
|
||||||
358 P166[33-36]
|
|
||||||
359 P102[32-39]
|
|
||||||
360 P17[4-7]
|
|
||||||
361 P190[30-41]
|
|
||||||
362 P166[24-28]
|
|
||||||
363 P190[66-69]
|
|
||||||
364 P69[42-69]
|
|
||||||
365 P1435[55-56]
|
|
||||||
366 P54[31-33]
|
|
||||||
367 P39[45-46]
|
|
||||||
368 P17[12-15]
|
|
||||||
369 P1435[57-58]
|
|
||||||
370 P54[19-26]
|
|
||||||
371 P2962[51-54]
|
|
||||||
372 P2962[67-69]
|
|
||||||
373 P1435[59-60]
|
|
||||||
374 P579[44-56]
|
|
||||||
375 P1435[61-62]
|
|
||||||
376 P166[41-44]
|
|
||||||
377 P17[19-22]
|
|
||||||
378 P1376[19-38]
|
|
||||||
379 P17[23-26]
|
|
||||||
380 P1376[48-69]
|
|
||||||
381 P463[22-23]
|
|
||||||
382 P17[27-30]
|
|
||||||
383 P1435[63-64]
|
|
||||||
384 P69[0-3]
|
|
||||||
385 P1435[66-67]
|
|
||||||
386 P17[35-38]
|
|
||||||
387 P69[8-11]
|
|
||||||
388 P1435[68-69]
|
|
||||||
389 P17[31-34]
|
|
||||||
390 P102[46-53]
|
|
||||||
391 P27[60-69]
|
|
||||||
392 P579[57-69]
|
|
||||||
393 P69[4-7]
|
|
||||||
394 P1411[7-14]
|
|
||||||
395 P551[0-35]
|
|
||||||
396 P108[0-28]
|
|
||||||
397 P17[8-11]
|
|
||||||
398 P1411[38-47]
|
|
||||||
399 P17[43-46]
|
|
||||||
400 P17[49-52]
|
|
||||||
401 P166[64-69]
|
|
||||||
402 P1435[29-32]
|
|
||||||
403 P54[38-39]
|
|
||||||
404 P39[27-30]
|
|
||||||
405 P2962[55-58]
|
|
||||||
406 P463[24-25]
|
|
||||||
407 P17[39-42]
|
|
||||||
408 P17[53-56]
|
|
||||||
409 P17[66-69]
|
|
||||||
410 P17[62-65]
|
|
||||||
411 P1411[15-23]
|
|
||||||
412 P166[48-51]
|
|
||||||
413 P27[15-29]
|
|
||||||
414 P150[56-63]
|
|
||||||
415 P27[39-51]
|
|
||||||
416 P39[47-48]
|
|
||||||
417 P166[29-32]
|
|
||||||
418 P39[12-18]
|
|
||||||
419 P166[54-57]
|
|
||||||
420 P551[36-69]
|
|
||||||
421 P579[0-15]
|
|
||||||
422 P102[54-62]
|
|
File diff suppressed because it is too large
Load Diff
@ -1,71 +0,0 @@
|
|||||||
0 19 19
|
|
||||||
1 20 1643
|
|
||||||
2 1644 1790
|
|
||||||
3 1791 1816
|
|
||||||
4 1817 1855
|
|
||||||
5 1856 1871
|
|
||||||
6 1872 1893
|
|
||||||
7 1894 1905
|
|
||||||
8 1906 1913
|
|
||||||
9 1914 1918
|
|
||||||
10 1919 1920
|
|
||||||
11 1921 1924
|
|
||||||
12 1925 1929
|
|
||||||
13 1930 1933
|
|
||||||
14 1934 1937
|
|
||||||
15 1938 1941
|
|
||||||
16 1942 1945
|
|
||||||
17 1946 1948
|
|
||||||
18 1949 1950
|
|
||||||
19 1951 1953
|
|
||||||
20 1954 1956
|
|
||||||
21 1957 1959
|
|
||||||
22 1960 1961
|
|
||||||
23 1962 1963
|
|
||||||
24 1964 1965
|
|
||||||
25 1966 1967
|
|
||||||
26 1968 1968
|
|
||||||
27 1969 1970
|
|
||||||
28 1971 1972
|
|
||||||
29 1973 1974
|
|
||||||
30 1975 1976
|
|
||||||
31 1977 1978
|
|
||||||
32 1979 1980
|
|
||||||
33 1981 1982
|
|
||||||
34 1983 1983
|
|
||||||
35 1984 1984
|
|
||||||
36 1985 1985
|
|
||||||
37 1986 1986
|
|
||||||
38 1987 1987
|
|
||||||
39 1988 1988
|
|
||||||
40 1989 1989
|
|
||||||
41 1990 1990
|
|
||||||
42 1991 1991
|
|
||||||
43 1992 1992
|
|
||||||
44 1993 1993
|
|
||||||
45 1994 1994
|
|
||||||
46 1995 1995
|
|
||||||
47 1996 1996
|
|
||||||
48 1997 1997
|
|
||||||
49 1998 1998
|
|
||||||
50 1999 1999
|
|
||||||
51 2000 2000
|
|
||||||
52 2001 2001
|
|
||||||
53 2002 2002
|
|
||||||
54 2003 2003
|
|
||||||
55 2004 2004
|
|
||||||
56 2005 2005
|
|
||||||
57 2006 2006
|
|
||||||
58 2007 2007
|
|
||||||
59 2008 2008
|
|
||||||
60 2009 2009
|
|
||||||
61 2010 2010
|
|
||||||
62 2011 2011
|
|
||||||
63 2012 2012
|
|
||||||
64 2013 2013
|
|
||||||
65 2014 2014
|
|
||||||
66 2015 2015
|
|
||||||
67 2016 2016
|
|
||||||
68 2017 2017
|
|
||||||
69 2018 2020
|
|
||||||
70 2021 2021
|
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@ -1,15 +0,0 @@
|
|||||||
# triples: 78032
|
|
||||||
# entities: 10526
|
|
||||||
# relations: 177
|
|
||||||
# timesteps: 46
|
|
||||||
# test triples: 6909
|
|
||||||
# valid triples: 7198
|
|
||||||
# train triples: 63925
|
|
||||||
Measure method: N/A
|
|
||||||
Target Size : 0
|
|
||||||
Grow Factor: 0
|
|
||||||
Shrink Factor: 0
|
|
||||||
Epsilon Factor: 5.0
|
|
||||||
Search method: N/A
|
|
||||||
filter_dupes: inter
|
|
||||||
nonames: False
|
|
10526
data/yago/entities.dict
10526
data/yago/entities.dict
File diff suppressed because it is too large
Load Diff
@ -1,177 +0,0 @@
|
|||||||
0 <wasBornIn>[0-2]
|
|
||||||
1 <wasBornIn>[2-5]
|
|
||||||
2 <wasBornIn>[5-7]
|
|
||||||
3 <wasBornIn>[7-10]
|
|
||||||
4 <wasBornIn>[10-12]
|
|
||||||
5 <wasBornIn>[12-15]
|
|
||||||
6 <wasBornIn>[15-17]
|
|
||||||
7 <wasBornIn>[17-20]
|
|
||||||
8 <wasBornIn>[20-22]
|
|
||||||
9 <wasBornIn>[22-25]
|
|
||||||
10 <wasBornIn>[25-27]
|
|
||||||
11 <wasBornIn>[27-30]
|
|
||||||
12 <wasBornIn>[30-32]
|
|
||||||
13 <wasBornIn>[32-35]
|
|
||||||
14 <wasBornIn>[35-45]
|
|
||||||
15 <wasBornIn>[52-52]
|
|
||||||
16 <diedIn>[0-3]
|
|
||||||
17 <diedIn>[3-5]
|
|
||||||
18 <diedIn>[5-7]
|
|
||||||
19 <diedIn>[7-10]
|
|
||||||
20 <diedIn>[10-12]
|
|
||||||
21 <diedIn>[12-14]
|
|
||||||
22 <diedIn>[14-17]
|
|
||||||
23 <diedIn>[17-19]
|
|
||||||
24 <diedIn>[19-21]
|
|
||||||
25 <diedIn>[21-23]
|
|
||||||
26 <diedIn>[23-25]
|
|
||||||
27 <diedIn>[25-27]
|
|
||||||
28 <diedIn>[27-29]
|
|
||||||
29 <diedIn>[29-32]
|
|
||||||
30 <diedIn>[32-34]
|
|
||||||
31 <diedIn>[34-36]
|
|
||||||
32 <diedIn>[36-38]
|
|
||||||
33 <diedIn>[38-40]
|
|
||||||
34 <diedIn>[40-42]
|
|
||||||
35 <diedIn>[42-44]
|
|
||||||
36 <diedIn>[44-47]
|
|
||||||
37 <diedIn>[47-49]
|
|
||||||
38 <diedIn>[49-51]
|
|
||||||
39 <diedIn>[51-53]
|
|
||||||
40 <diedIn>[53-55]
|
|
||||||
41 <diedIn>[55-57]
|
|
||||||
42 <diedIn>[59-59]
|
|
||||||
43 <worksAt>[0-3]
|
|
||||||
44 <worksAt>[3-5]
|
|
||||||
45 <worksAt>[5-7]
|
|
||||||
46 <worksAt>[7-10]
|
|
||||||
47 <worksAt>[10-12]
|
|
||||||
48 <worksAt>[12-14]
|
|
||||||
49 <worksAt>[14-17]
|
|
||||||
50 <worksAt>[17-19]
|
|
||||||
51 <worksAt>[19-21]
|
|
||||||
52 <worksAt>[21-23]
|
|
||||||
53 <worksAt>[23-25]
|
|
||||||
54 <worksAt>[25-27]
|
|
||||||
55 <worksAt>[27-29]
|
|
||||||
56 <worksAt>[29-32]
|
|
||||||
57 <worksAt>[32-34]
|
|
||||||
58 <worksAt>[34-36]
|
|
||||||
59 <worksAt>[36-40]
|
|
||||||
60 <worksAt>[40-42]
|
|
||||||
61 <worksAt>[42-47]
|
|
||||||
62 <worksAt>[47-53]
|
|
||||||
63 <worksAt>[59-59]
|
|
||||||
64 <playsFor>[0-3]
|
|
||||||
65 <playsFor>[3-5]
|
|
||||||
66 <playsFor>[5-23]
|
|
||||||
67 <playsFor>[23-25]
|
|
||||||
68 <playsFor>[25-27]
|
|
||||||
69 <playsFor>[27-29]
|
|
||||||
70 <playsFor>[29-32]
|
|
||||||
71 <playsFor>[32-34]
|
|
||||||
72 <playsFor>[34-36]
|
|
||||||
73 <playsFor>[36-38]
|
|
||||||
74 <playsFor>[38-40]
|
|
||||||
75 <playsFor>[40-42]
|
|
||||||
76 <playsFor>[42-44]
|
|
||||||
77 <playsFor>[44-47]
|
|
||||||
78 <playsFor>[47-51]
|
|
||||||
79 <playsFor>[59-59]
|
|
||||||
80 <hasWonPrize>[1-4]
|
|
||||||
81 <hasWonPrize>[4-6]
|
|
||||||
82 <hasWonPrize>[6-8]
|
|
||||||
83 <hasWonPrize>[8-11]
|
|
||||||
84 <hasWonPrize>[11-15]
|
|
||||||
85 <hasWonPrize>[15-18]
|
|
||||||
86 <hasWonPrize>[18-22]
|
|
||||||
87 <hasWonPrize>[22-26]
|
|
||||||
88 <hasWonPrize>[26-30]
|
|
||||||
89 <hasWonPrize>[30-33]
|
|
||||||
90 <hasWonPrize>[33-37]
|
|
||||||
91 <hasWonPrize>[37-47]
|
|
||||||
92 <hasWonPrize>[47-53]
|
|
||||||
93 <hasWonPrize>[59-59]
|
|
||||||
94 <isMarriedTo>[0-3]
|
|
||||||
95 <isMarriedTo>[3-5]
|
|
||||||
96 <isMarriedTo>[5-7]
|
|
||||||
97 <isMarriedTo>[7-10]
|
|
||||||
98 <isMarriedTo>[10-12]
|
|
||||||
99 <isMarriedTo>[12-14]
|
|
||||||
100 <isMarriedTo>[14-17]
|
|
||||||
101 <isMarriedTo>[17-19]
|
|
||||||
102 <isMarriedTo>[19-21]
|
|
||||||
103 <isMarriedTo>[21-23]
|
|
||||||
104 <isMarriedTo>[23-25]
|
|
||||||
105 <isMarriedTo>[25-27]
|
|
||||||
106 <isMarriedTo>[27-29]
|
|
||||||
107 <isMarriedTo>[29-32]
|
|
||||||
108 <isMarriedTo>[32-34]
|
|
||||||
109 <isMarriedTo>[34-38]
|
|
||||||
110 <isMarriedTo>[38-42]
|
|
||||||
111 <isMarriedTo>[42-47]
|
|
||||||
112 <isMarriedTo>[47-51]
|
|
||||||
113 <isMarriedTo>[51-55]
|
|
||||||
114 <isMarriedTo>[59-59]
|
|
||||||
115 <owns>[0-10]
|
|
||||||
116 <owns>[10-17]
|
|
||||||
117 <owns>[17-19]
|
|
||||||
118 <owns>[19-23]
|
|
||||||
119 <owns>[23-36]
|
|
||||||
120 <owns>[36-38]
|
|
||||||
121 <owns>[59-59]
|
|
||||||
122 <graduatedFrom>[0-3]
|
|
||||||
123 <graduatedFrom>[3-5]
|
|
||||||
124 <graduatedFrom>[5-7]
|
|
||||||
125 <graduatedFrom>[7-10]
|
|
||||||
126 <graduatedFrom>[10-14]
|
|
||||||
127 <graduatedFrom>[14-17]
|
|
||||||
128 <graduatedFrom>[17-19]
|
|
||||||
129 <graduatedFrom>[19-21]
|
|
||||||
130 <graduatedFrom>[21-23]
|
|
||||||
131 <graduatedFrom>[23-27]
|
|
||||||
132 <graduatedFrom>[27-32]
|
|
||||||
133 <graduatedFrom>[32-34]
|
|
||||||
134 <graduatedFrom>[34-38]
|
|
||||||
135 <graduatedFrom>[38-42]
|
|
||||||
136 <graduatedFrom>[59-59]
|
|
||||||
137 <isAffiliatedTo>[1-4]
|
|
||||||
138 <isAffiliatedTo>[4-6]
|
|
||||||
139 <isAffiliatedTo>[6-8]
|
|
||||||
140 <isAffiliatedTo>[8-11]
|
|
||||||
141 <isAffiliatedTo>[11-13]
|
|
||||||
142 <isAffiliatedTo>[13-15]
|
|
||||||
143 <isAffiliatedTo>[15-18]
|
|
||||||
144 <isAffiliatedTo>[18-20]
|
|
||||||
145 <isAffiliatedTo>[20-22]
|
|
||||||
146 <isAffiliatedTo>[22-24]
|
|
||||||
147 <isAffiliatedTo>[24-26]
|
|
||||||
148 <isAffiliatedTo>[26-28]
|
|
||||||
149 <isAffiliatedTo>[28-30]
|
|
||||||
150 <isAffiliatedTo>[30-33]
|
|
||||||
151 <isAffiliatedTo>[33-35]
|
|
||||||
152 <isAffiliatedTo>[35-37]
|
|
||||||
153 <isAffiliatedTo>[37-40]
|
|
||||||
154 <isAffiliatedTo>[40-42]
|
|
||||||
155 <isAffiliatedTo>[42-44]
|
|
||||||
156 <isAffiliatedTo>[44-47]
|
|
||||||
157 <isAffiliatedTo>[47-49]
|
|
||||||
158 <isAffiliatedTo>[49-51]
|
|
||||||
159 <isAffiliatedTo>[51-53]
|
|
||||||
160 <isAffiliatedTo>[53-55]
|
|
||||||
161 <isAffiliatedTo>[55-57]
|
|
||||||
162 <isAffiliatedTo>[59-59]
|
|
||||||
163 <created>[0-3]
|
|
||||||
164 <created>[3-5]
|
|
||||||
165 <created>[5-10]
|
|
||||||
166 <created>[10-12]
|
|
||||||
167 <created>[12-17]
|
|
||||||
168 <created>[17-19]
|
|
||||||
169 <created>[19-25]
|
|
||||||
170 <created>[25-29]
|
|
||||||
171 <created>[29-32]
|
|
||||||
172 <created>[32-36]
|
|
||||||
173 <created>[36-42]
|
|
||||||
174 <created>[42-47]
|
|
||||||
175 <created>[47-53]
|
|
||||||
176 <created>[59-59]
|
|
6909
data/yago/test.txt
6909
data/yago/test.txt
File diff suppressed because it is too large
Load Diff
@ -1,60 +0,0 @@
|
|||||||
0 -431 1782
|
|
||||||
1 1783 1848
|
|
||||||
2 1849 1870
|
|
||||||
3 1871 1888
|
|
||||||
4 1889 1899
|
|
||||||
5 1900 1906
|
|
||||||
6 1907 1912
|
|
||||||
7 1913 1917
|
|
||||||
8 1918 1922
|
|
||||||
9 1923 1926
|
|
||||||
10 1927 1930
|
|
||||||
11 1931 1934
|
|
||||||
12 1935 1938
|
|
||||||
13 1939 1941
|
|
||||||
14 1942 1944
|
|
||||||
15 1945 1947
|
|
||||||
16 1948 1950
|
|
||||||
17 1951 1953
|
|
||||||
18 1954 1956
|
|
||||||
19 1957 1959
|
|
||||||
20 1960 1962
|
|
||||||
21 1963 1965
|
|
||||||
22 1966 1967
|
|
||||||
23 1968 1969
|
|
||||||
24 1970 1971
|
|
||||||
25 1972 1973
|
|
||||||
26 1974 1975
|
|
||||||
27 1976 1977
|
|
||||||
28 1978 1979
|
|
||||||
29 1980 1981
|
|
||||||
30 1982 1983
|
|
||||||
31 1984 1985
|
|
||||||
32 1986 1987
|
|
||||||
33 1988 1989
|
|
||||||
34 1990 1991
|
|
||||||
35 1992 1993
|
|
||||||
36 1994 1994
|
|
||||||
37 1995 1996
|
|
||||||
38 1997 1997
|
|
||||||
39 1998 1998
|
|
||||||
40 1999 1999
|
|
||||||
41 2000 2000
|
|
||||||
42 2001 2001
|
|
||||||
43 2002 2002
|
|
||||||
44 2003 2003
|
|
||||||
45 2004 2004
|
|
||||||
46 2005 2005
|
|
||||||
47 2006 2006
|
|
||||||
48 2007 2007
|
|
||||||
49 2008 2008
|
|
||||||
50 2009 2009
|
|
||||||
51 2010 2010
|
|
||||||
52 2011 2011
|
|
||||||
53 2012 2012
|
|
||||||
54 2013 2013
|
|
||||||
55 2014 2014
|
|
||||||
56 2015 2015
|
|
||||||
57 2016 2016
|
|
||||||
58 2017 2017
|
|
||||||
59 2018 2018
|
|
63925
data/yago/train.txt
63925
data/yago/train.txt
File diff suppressed because it is too large
Load Diff
7198
data/yago/valid.txt
7198
data/yago/valid.txt
File diff suppressed because it is too large
Load Diff
@ -1,793 +0,0 @@
|
|||||||
0
|
|
||||||
2
|
|
||||||
4
|
|
||||||
9
|
|
||||||
11
|
|
||||||
12
|
|
||||||
16
|
|
||||||
17
|
|
||||||
19
|
|
||||||
27
|
|
||||||
29
|
|
||||||
34
|
|
||||||
35
|
|
||||||
37
|
|
||||||
38
|
|
||||||
41
|
|
||||||
42
|
|
||||||
45
|
|
||||||
49
|
|
||||||
51
|
|
||||||
52
|
|
||||||
54
|
|
||||||
56
|
|
||||||
57
|
|
||||||
61
|
|
||||||
64
|
|
||||||
65
|
|
||||||
67
|
|
||||||
69
|
|
||||||
70
|
|
||||||
72
|
|
||||||
76
|
|
||||||
78
|
|
||||||
79
|
|
||||||
83
|
|
||||||
86
|
|
||||||
87
|
|
||||||
89
|
|
||||||
101
|
|
||||||
102
|
|
||||||
103
|
|
||||||
108
|
|
||||||
111
|
|
||||||
112
|
|
||||||
119
|
|
||||||
121
|
|
||||||
122
|
|
||||||
126
|
|
||||||
128
|
|
||||||
129
|
|
||||||
132
|
|
||||||
134
|
|
||||||
138
|
|
||||||
141
|
|
||||||
144
|
|
||||||
146
|
|
||||||
153
|
|
||||||
154
|
|
||||||
155
|
|
||||||
156
|
|
||||||
158
|
|
||||||
159
|
|
||||||
160
|
|
||||||
161
|
|
||||||
162
|
|
||||||
164
|
|
||||||
165
|
|
||||||
166
|
|
||||||
168
|
|
||||||
173
|
|
||||||
175
|
|
||||||
176
|
|
||||||
177
|
|
||||||
182
|
|
||||||
184
|
|
||||||
185
|
|
||||||
186
|
|
||||||
187
|
|
||||||
188
|
|
||||||
190
|
|
||||||
192
|
|
||||||
193
|
|
||||||
201
|
|
||||||
202
|
|
||||||
208
|
|
||||||
209
|
|
||||||
211
|
|
||||||
213
|
|
||||||
215
|
|
||||||
216
|
|
||||||
217
|
|
||||||
222
|
|
||||||
227
|
|
||||||
229
|
|
||||||
235
|
|
||||||
239
|
|
||||||
240
|
|
||||||
242
|
|
||||||
243
|
|
||||||
245
|
|
||||||
246
|
|
||||||
247
|
|
||||||
251
|
|
||||||
252
|
|
||||||
254
|
|
||||||
257
|
|
||||||
261
|
|
||||||
263
|
|
||||||
266
|
|
||||||
268
|
|
||||||
271
|
|
||||||
279
|
|
||||||
282
|
|
||||||
292
|
|
||||||
300
|
|
||||||
303
|
|
||||||
305
|
|
||||||
308
|
|
||||||
309
|
|
||||||
311
|
|
||||||
313
|
|
||||||
316
|
|
||||||
319
|
|
||||||
322
|
|
||||||
324
|
|
||||||
325
|
|
||||||
329
|
|
||||||
331
|
|
||||||
332
|
|
||||||
333
|
|
||||||
334
|
|
||||||
337
|
|
||||||
339
|
|
||||||
342
|
|
||||||
343
|
|
||||||
346
|
|
||||||
347
|
|
||||||
348
|
|
||||||
349
|
|
||||||
350
|
|
||||||
352
|
|
||||||
353
|
|
||||||
355
|
|
||||||
357
|
|
||||||
361
|
|
||||||
362
|
|
||||||
363
|
|
||||||
367
|
|
||||||
371
|
|
||||||
373
|
|
||||||
378
|
|
||||||
379
|
|
||||||
383
|
|
||||||
384
|
|
||||||
385
|
|
||||||
389
|
|
||||||
392
|
|
||||||
394
|
|
||||||
395
|
|
||||||
396
|
|
||||||
397
|
|
||||||
399
|
|
||||||
400
|
|
||||||
402
|
|
||||||
403
|
|
||||||
407
|
|
||||||
409
|
|
||||||
415
|
|
||||||
416
|
|
||||||
420
|
|
||||||
421
|
|
||||||
422
|
|
||||||
428
|
|
||||||
429
|
|
||||||
432
|
|
||||||
433
|
|
||||||
440
|
|
||||||
442
|
|
||||||
443
|
|
||||||
450
|
|
||||||
452
|
|
||||||
459
|
|
||||||
463
|
|
||||||
464
|
|
||||||
466
|
|
||||||
471
|
|
||||||
472
|
|
||||||
476
|
|
||||||
480
|
|
||||||
484
|
|
||||||
489
|
|
||||||
490
|
|
||||||
493
|
|
||||||
494
|
|
||||||
495
|
|
||||||
500
|
|
||||||
503
|
|
||||||
507
|
|
||||||
509
|
|
||||||
515
|
|
||||||
519
|
|
||||||
520
|
|
||||||
521
|
|
||||||
525
|
|
||||||
528
|
|
||||||
529
|
|
||||||
533
|
|
||||||
534
|
|
||||||
539
|
|
||||||
541
|
|
||||||
542
|
|
||||||
548
|
|
||||||
550
|
|
||||||
556
|
|
||||||
559
|
|
||||||
563
|
|
||||||
566
|
|
||||||
567
|
|
||||||
569
|
|
||||||
573
|
|
||||||
575
|
|
||||||
576
|
|
||||||
579
|
|
||||||
582
|
|
||||||
585
|
|
||||||
588
|
|
||||||
592
|
|
||||||
593
|
|
||||||
594
|
|
||||||
596
|
|
||||||
597
|
|
||||||
598
|
|
||||||
599
|
|
||||||
603
|
|
||||||
604
|
|
||||||
605
|
|
||||||
606
|
|
||||||
607
|
|
||||||
613
|
|
||||||
614
|
|
||||||
616
|
|
||||||
617
|
|
||||||
618
|
|
||||||
619
|
|
||||||
621
|
|
||||||
623
|
|
||||||
624
|
|
||||||
625
|
|
||||||
628
|
|
||||||
638
|
|
||||||
641
|
|
||||||
642
|
|
||||||
648
|
|
||||||
651
|
|
||||||
659
|
|
||||||
660
|
|
||||||
661
|
|
||||||
663
|
|
||||||
664
|
|
||||||
676
|
|
||||||
677
|
|
||||||
678
|
|
||||||
680
|
|
||||||
682
|
|
||||||
686
|
|
||||||
688
|
|
||||||
689
|
|
||||||
691
|
|
||||||
694
|
|
||||||
698
|
|
||||||
704
|
|
||||||
707
|
|
||||||
708
|
|
||||||
712
|
|
||||||
713
|
|
||||||
716
|
|
||||||
719
|
|
||||||
723
|
|
||||||
724
|
|
||||||
726
|
|
||||||
728
|
|
||||||
732
|
|
||||||
741
|
|
||||||
742
|
|
||||||
743
|
|
||||||
744
|
|
||||||
745
|
|
||||||
746
|
|
||||||
750
|
|
||||||
752
|
|
||||||
755
|
|
||||||
759
|
|
||||||
762
|
|
||||||
764
|
|
||||||
767
|
|
||||||
768
|
|
||||||
770
|
|
||||||
772
|
|
||||||
775
|
|
||||||
777
|
|
||||||
780
|
|
||||||
782
|
|
||||||
785
|
|
||||||
789
|
|
||||||
799
|
|
||||||
800
|
|
||||||
801
|
|
||||||
802
|
|
||||||
804
|
|
||||||
805
|
|
||||||
810
|
|
||||||
811
|
|
||||||
816
|
|
||||||
822
|
|
||||||
823
|
|
||||||
826
|
|
||||||
829
|
|
||||||
832
|
|
||||||
834
|
|
||||||
835
|
|
||||||
838
|
|
||||||
839
|
|
||||||
842
|
|
||||||
847
|
|
||||||
848
|
|
||||||
850
|
|
||||||
851
|
|
||||||
852
|
|
||||||
856
|
|
||||||
861
|
|
||||||
862
|
|
||||||
865
|
|
||||||
867
|
|
||||||
868
|
|
||||||
869
|
|
||||||
874
|
|
||||||
876
|
|
||||||
882
|
|
||||||
883
|
|
||||||
884
|
|
||||||
885
|
|
||||||
891
|
|
||||||
893
|
|
||||||
898
|
|
||||||
899
|
|
||||||
906
|
|
||||||
909
|
|
||||||
910
|
|
||||||
911
|
|
||||||
912
|
|
||||||
920
|
|
||||||
923
|
|
||||||
924
|
|
||||||
926
|
|
||||||
928
|
|
||||||
934
|
|
||||||
938
|
|
||||||
941
|
|
||||||
942
|
|
||||||
943
|
|
||||||
944
|
|
||||||
945
|
|
||||||
951
|
|
||||||
954
|
|
||||||
956
|
|
||||||
957
|
|
||||||
958
|
|
||||||
960
|
|
||||||
961
|
|
||||||
963
|
|
||||||
964
|
|
||||||
968
|
|
||||||
970
|
|
||||||
975
|
|
||||||
976
|
|
||||||
977
|
|
||||||
979
|
|
||||||
981
|
|
||||||
988
|
|
||||||
989
|
|
||||||
992
|
|
||||||
993
|
|
||||||
995
|
|
||||||
997
|
|
||||||
1005
|
|
||||||
1008
|
|
||||||
1009
|
|
||||||
1012
|
|
||||||
1013
|
|
||||||
1014
|
|
||||||
1015
|
|
||||||
1023
|
|
||||||
1029
|
|
||||||
1032
|
|
||||||
1038
|
|
||||||
1044
|
|
||||||
1045
|
|
||||||
1052
|
|
||||||
1053
|
|
||||||
1055
|
|
||||||
1057
|
|
||||||
1060
|
|
||||||
1061
|
|
||||||
1065
|
|
||||||
1066
|
|
||||||
1074
|
|
||||||
1077
|
|
||||||
1079
|
|
||||||
1080
|
|
||||||
1082
|
|
||||||
1083
|
|
||||||
1085
|
|
||||||
1086
|
|
||||||
1089
|
|
||||||
1090
|
|
||||||
1091
|
|
||||||
1095
|
|
||||||
1104
|
|
||||||
1107
|
|
||||||
1111
|
|
||||||
1114
|
|
||||||
1121
|
|
||||||
1124
|
|
||||||
1126
|
|
||||||
1127
|
|
||||||
1128
|
|
||||||
1131
|
|
||||||
1132
|
|
||||||
1139
|
|
||||||
1140
|
|
||||||
1142
|
|
||||||
1143
|
|
||||||
1145
|
|
||||||
1148
|
|
||||||
1150
|
|
||||||
1157
|
|
||||||
1163
|
|
||||||
1164
|
|
||||||
1168
|
|
||||||
1170
|
|
||||||
1171
|
|
||||||
1172
|
|
||||||
1173
|
|
||||||
1179
|
|
||||||
1182
|
|
||||||
1186
|
|
||||||
1189
|
|
||||||
1190
|
|
||||||
1191
|
|
||||||
1194
|
|
||||||
1196
|
|
||||||
1198
|
|
||||||
1201
|
|
||||||
1204
|
|
||||||
1206
|
|
||||||
1208
|
|
||||||
1217
|
|
||||||
1220
|
|
||||||
1223
|
|
||||||
1228
|
|
||||||
1231
|
|
||||||
1232
|
|
||||||
1235
|
|
||||||
1236
|
|
||||||
1237
|
|
||||||
1238
|
|
||||||
1240
|
|
||||||
1246
|
|
||||||
1247
|
|
||||||
1249
|
|
||||||
1252
|
|
||||||
1258
|
|
||||||
1260
|
|
||||||
1265
|
|
||||||
1266
|
|
||||||
1273
|
|
||||||
1274
|
|
||||||
1278
|
|
||||||
1279
|
|
||||||
1280
|
|
||||||
1284
|
|
||||||
1286
|
|
||||||
1287
|
|
||||||
1288
|
|
||||||
1289
|
|
||||||
1290
|
|
||||||
1293
|
|
||||||
1294
|
|
||||||
1295
|
|
||||||
1297
|
|
||||||
1298
|
|
||||||
1301
|
|
||||||
1303
|
|
||||||
1304
|
|
||||||
1305
|
|
||||||
1307
|
|
||||||
1308
|
|
||||||
1309
|
|
||||||
1314
|
|
||||||
1318
|
|
||||||
1319
|
|
||||||
1323
|
|
||||||
1325
|
|
||||||
1327
|
|
||||||
1328
|
|
||||||
1333
|
|
||||||
1337
|
|
||||||
1340
|
|
||||||
1341
|
|
||||||
1343
|
|
||||||
1345
|
|
||||||
1346
|
|
||||||
1347
|
|
||||||
1349
|
|
||||||
1350
|
|
||||||
1351
|
|
||||||
1358
|
|
||||||
1364
|
|
||||||
1365
|
|
||||||
1367
|
|
||||||
1368
|
|
||||||
1369
|
|
||||||
1370
|
|
||||||
1373
|
|
||||||
1375
|
|
||||||
1376
|
|
||||||
1378
|
|
||||||
1380
|
|
||||||
1381
|
|
||||||
1382
|
|
||||||
1385
|
|
||||||
1387
|
|
||||||
1390
|
|
||||||
1391
|
|
||||||
1394
|
|
||||||
1396
|
|
||||||
1397
|
|
||||||
1399
|
|
||||||
1400
|
|
||||||
1406
|
|
||||||
1409
|
|
||||||
1412
|
|
||||||
1416
|
|
||||||
1417
|
|
||||||
1418
|
|
||||||
1420
|
|
||||||
1423
|
|
||||||
1425
|
|
||||||
1428
|
|
||||||
1430
|
|
||||||
1431
|
|
||||||
1432
|
|
||||||
1437
|
|
||||||
1438
|
|
||||||
1439
|
|
||||||
1444
|
|
||||||
1447
|
|
||||||
1450
|
|
||||||
1454
|
|
||||||
1456
|
|
||||||
1457
|
|
||||||
1460
|
|
||||||
1464
|
|
||||||
1465
|
|
||||||
1469
|
|
||||||
1473
|
|
||||||
1474
|
|
||||||
1475
|
|
||||||
1477
|
|
||||||
1479
|
|
||||||
1488
|
|
||||||
1490
|
|
||||||
1493
|
|
||||||
1494
|
|
||||||
1497
|
|
||||||
1500
|
|
||||||
1502
|
|
||||||
1503
|
|
||||||
1504
|
|
||||||
1505
|
|
||||||
1507
|
|
||||||
1508
|
|
||||||
1510
|
|
||||||
1514
|
|
||||||
1515
|
|
||||||
1520
|
|
||||||
1522
|
|
||||||
1523
|
|
||||||
1526
|
|
||||||
1547
|
|
||||||
1549
|
|
||||||
1553
|
|
||||||
1556
|
|
||||||
1557
|
|
||||||
1558
|
|
||||||
1562
|
|
||||||
1563
|
|
||||||
1564
|
|
||||||
1565
|
|
||||||
1570
|
|
||||||
1571
|
|
||||||
1574
|
|
||||||
1575
|
|
||||||
1579
|
|
||||||
1591
|
|
||||||
1592
|
|
||||||
1594
|
|
||||||
1601
|
|
||||||
1604
|
|
||||||
1605
|
|
||||||
1606
|
|
||||||
1608
|
|
||||||
1609
|
|
||||||
1613
|
|
||||||
1618
|
|
||||||
1619
|
|
||||||
1620
|
|
||||||
1621
|
|
||||||
1632
|
|
||||||
1634
|
|
||||||
1635
|
|
||||||
1636
|
|
||||||
1642
|
|
||||||
1643
|
|
||||||
1648
|
|
||||||
1650
|
|
||||||
1652
|
|
||||||
1653
|
|
||||||
1660
|
|
||||||
1661
|
|
||||||
1662
|
|
||||||
1666
|
|
||||||
1669
|
|
||||||
1670
|
|
||||||
1676
|
|
||||||
1677
|
|
||||||
1682
|
|
||||||
1683
|
|
||||||
1690
|
|
||||||
1692
|
|
||||||
1693
|
|
||||||
1697
|
|
||||||
1698
|
|
||||||
1702
|
|
||||||
1703
|
|
||||||
1706
|
|
||||||
1709
|
|
||||||
1711
|
|
||||||
1713
|
|
||||||
1715
|
|
||||||
1717
|
|
||||||
1721
|
|
||||||
1724
|
|
||||||
1725
|
|
||||||
1729
|
|
||||||
1730
|
|
||||||
1733
|
|
||||||
1734
|
|
||||||
1735
|
|
||||||
1736
|
|
||||||
1741
|
|
||||||
1745
|
|
||||||
1746
|
|
||||||
1748
|
|
||||||
1749
|
|
||||||
1751
|
|
||||||
1755
|
|
||||||
1761
|
|
||||||
1763
|
|
||||||
1766
|
|
||||||
1767
|
|
||||||
1768
|
|
||||||
1769
|
|
||||||
1773
|
|
||||||
1775
|
|
||||||
1777
|
|
||||||
1778
|
|
||||||
1783
|
|
||||||
1789
|
|
||||||
1790
|
|
||||||
1792
|
|
||||||
1793
|
|
||||||
1795
|
|
||||||
1800
|
|
||||||
1803
|
|
||||||
1805
|
|
||||||
1809
|
|
||||||
1812
|
|
||||||
1815
|
|
||||||
1816
|
|
||||||
1819
|
|
||||||
1820
|
|
||||||
1822
|
|
||||||
1823
|
|
||||||
1824
|
|
||||||
1825
|
|
||||||
1828
|
|
||||||
1831
|
|
||||||
1833
|
|
||||||
1834
|
|
||||||
1835
|
|
||||||
1836
|
|
||||||
1837
|
|
||||||
1842
|
|
||||||
1848
|
|
||||||
1849
|
|
||||||
1852
|
|
||||||
1853
|
|
||||||
1854
|
|
||||||
1856
|
|
||||||
1857
|
|
||||||
1858
|
|
||||||
1859
|
|
||||||
1861
|
|
||||||
1864
|
|
||||||
1865
|
|
||||||
1869
|
|
||||||
1873
|
|
||||||
1874
|
|
||||||
1876
|
|
||||||
1877
|
|
||||||
1882
|
|
||||||
1883
|
|
||||||
1884
|
|
||||||
1885
|
|
||||||
1888
|
|
||||||
1889
|
|
||||||
1890
|
|
||||||
1892
|
|
||||||
1894
|
|
||||||
1896
|
|
||||||
1899
|
|
||||||
1902
|
|
||||||
1903
|
|
||||||
1905
|
|
||||||
1908
|
|
||||||
1910
|
|
||||||
1913
|
|
||||||
1914
|
|
||||||
1915
|
|
||||||
1920
|
|
||||||
1928
|
|
||||||
1931
|
|
||||||
1936
|
|
||||||
1938
|
|
||||||
1941
|
|
||||||
1942
|
|
||||||
1944
|
|
||||||
1946
|
|
||||||
1947
|
|
||||||
1948
|
|
||||||
1954
|
|
||||||
1956
|
|
||||||
1958
|
|
||||||
1961
|
|
||||||
1966
|
|
||||||
1968
|
|
||||||
1969
|
|
||||||
1971
|
|
||||||
1972
|
|
||||||
1977
|
|
||||||
1979
|
|
||||||
1985
|
|
||||||
1986
|
|
||||||
1987
|
|
||||||
1988
|
|
||||||
1989
|
|
||||||
1990
|
|
||||||
1999
|
|
||||||
2001
|
|
||||||
2005
|
|
||||||
2009
|
|
||||||
2010
|
|
||||||
2012
|
|
||||||
2013
|
|
||||||
2014
|
|
||||||
2015
|
|
||||||
2017
|
|
||||||
2018
|
|
||||||
2022
|
|
||||||
2023
|
|
||||||
2028
|
|
||||||
2032
|
|
||||||
2036
|
|
||||||
2037
|
|
||||||
2038
|
|
||||||
2041
|
|
||||||
2042
|
|
||||||
2043
|
|
||||||
2044
|
|
||||||
2045
|
|
||||||
2046
|
|
||||||
2048
|
|
File diff suppressed because it is too large
Load Diff
@ -1,809 +0,0 @@
|
|||||||
7
|
|
||||||
9
|
|
||||||
12
|
|
||||||
15
|
|
||||||
17
|
|
||||||
22
|
|
||||||
24
|
|
||||||
25
|
|
||||||
28
|
|
||||||
29
|
|
||||||
32
|
|
||||||
37
|
|
||||||
38
|
|
||||||
41
|
|
||||||
43
|
|
||||||
49
|
|
||||||
52
|
|
||||||
54
|
|
||||||
57
|
|
||||||
58
|
|
||||||
59
|
|
||||||
60
|
|
||||||
66
|
|
||||||
69
|
|
||||||
72
|
|
||||||
76
|
|
||||||
78
|
|
||||||
81
|
|
||||||
83
|
|
||||||
84
|
|
||||||
85
|
|
||||||
88
|
|
||||||
89
|
|
||||||
94
|
|
||||||
100
|
|
||||||
102
|
|
||||||
105
|
|
||||||
106
|
|
||||||
107
|
|
||||||
108
|
|
||||||
109
|
|
||||||
115
|
|
||||||
116
|
|
||||||
121
|
|
||||||
123
|
|
||||||
124
|
|
||||||
127
|
|
||||||
128
|
|
||||||
133
|
|
||||||
135
|
|
||||||
137
|
|
||||||
138
|
|
||||||
141
|
|
||||||
144
|
|
||||||
156
|
|
||||||
157
|
|
||||||
159
|
|
||||||
161
|
|
||||||
168
|
|
||||||
171
|
|
||||||
172
|
|
||||||
174
|
|
||||||
175
|
|
||||||
176
|
|
||||||
181
|
|
||||||
182
|
|
||||||
186
|
|
||||||
188
|
|
||||||
189
|
|
||||||
190
|
|
||||||
191
|
|
||||||
195
|
|
||||||
197
|
|
||||||
198
|
|
||||||
200
|
|
||||||
201
|
|
||||||
204
|
|
||||||
208
|
|
||||||
212
|
|
||||||
215
|
|
||||||
216
|
|
||||||
217
|
|
||||||
218
|
|
||||||
219
|
|
||||||
220
|
|
||||||
222
|
|
||||||
224
|
|
||||||
225
|
|
||||||
227
|
|
||||||
229
|
|
||||||
230
|
|
||||||
233
|
|
||||||
236
|
|
||||||
239
|
|
||||||
240
|
|
||||||
242
|
|
||||||
243
|
|
||||||
244
|
|
||||||
246
|
|
||||||
247
|
|
||||||
250
|
|
||||||
251
|
|
||||||
253
|
|
||||||
254
|
|
||||||
255
|
|
||||||
256
|
|
||||||
257
|
|
||||||
261
|
|
||||||
265
|
|
||||||
266
|
|
||||||
271
|
|
||||||
273
|
|
||||||
274
|
|
||||||
275
|
|
||||||
276
|
|
||||||
279
|
|
||||||
280
|
|
||||||
282
|
|
||||||
284
|
|
||||||
287
|
|
||||||
289
|
|
||||||
292
|
|
||||||
296
|
|
||||||
297
|
|
||||||
299
|
|
||||||
300
|
|
||||||
302
|
|
||||||
308
|
|
||||||
311
|
|
||||||
312
|
|
||||||
315
|
|
||||||
316
|
|
||||||
317
|
|
||||||
320
|
|
||||||
321
|
|
||||||
322
|
|
||||||
326
|
|
||||||
331
|
|
||||||
333
|
|
||||||
335
|
|
||||||
336
|
|
||||||
337
|
|
||||||
339
|
|
||||||
344
|
|
||||||
345
|
|
||||||
346
|
|
||||||
347
|
|
||||||
351
|
|
||||||
352
|
|
||||||
353
|
|
||||||
354
|
|
||||||
355
|
|
||||||
358
|
|
||||||
359
|
|
||||||
362
|
|
||||||
364
|
|
||||||
366
|
|
||||||
368
|
|
||||||
373
|
|
||||||
376
|
|
||||||
388
|
|
||||||
390
|
|
||||||
392
|
|
||||||
393
|
|
||||||
394
|
|
||||||
395
|
|
||||||
397
|
|
||||||
398
|
|
||||||
401
|
|
||||||
403
|
|
||||||
406
|
|
||||||
407
|
|
||||||
409
|
|
||||||
410
|
|
||||||
412
|
|
||||||
413
|
|
||||||
415
|
|
||||||
416
|
|
||||||
418
|
|
||||||
420
|
|
||||||
421
|
|
||||||
425
|
|
||||||
435
|
|
||||||
437
|
|
||||||
443
|
|
||||||
444
|
|
||||||
445
|
|
||||||
446
|
|
||||||
448
|
|
||||||
453
|
|
||||||
455
|
|
||||||
456
|
|
||||||
462
|
|
||||||
463
|
|
||||||
468
|
|
||||||
470
|
|
||||||
471
|
|
||||||
477
|
|
||||||
478
|
|
||||||
481
|
|
||||||
485
|
|
||||||
490
|
|
||||||
491
|
|
||||||
493
|
|
||||||
498
|
|
||||||
505
|
|
||||||
510
|
|
||||||
513
|
|
||||||
514
|
|
||||||
515
|
|
||||||
516
|
|
||||||
521
|
|
||||||
523
|
|
||||||
527
|
|
||||||
529
|
|
||||||
531
|
|
||||||
534
|
|
||||||
535
|
|
||||||
536
|
|
||||||
537
|
|
||||||
538
|
|
||||||
543
|
|
||||||
547
|
|
||||||
550
|
|
||||||
555
|
|
||||||
557
|
|
||||||
558
|
|
||||||
559
|
|
||||||
560
|
|
||||||
561
|
|
||||||
565
|
|
||||||
566
|
|
||||||
567
|
|
||||||
570
|
|
||||||
575
|
|
||||||
577
|
|
||||||
580
|
|
||||||
581
|
|
||||||
582
|
|
||||||
593
|
|
||||||
594
|
|
||||||
595
|
|
||||||
597
|
|
||||||
599
|
|
||||||
602
|
|
||||||
605
|
|
||||||
609
|
|
||||||
612
|
|
||||||
614
|
|
||||||
616
|
|
||||||
618
|
|
||||||
620
|
|
||||||
625
|
|
||||||
628
|
|
||||||
632
|
|
||||||
633
|
|
||||||
635
|
|
||||||
636
|
|
||||||
643
|
|
||||||
644
|
|
||||||
645
|
|
||||||
646
|
|
||||||
647
|
|
||||||
648
|
|
||||||
652
|
|
||||||
662
|
|
||||||
663
|
|
||||||
669
|
|
||||||
670
|
|
||||||
672
|
|
||||||
673
|
|
||||||
681
|
|
||||||
682
|
|
||||||
685
|
|
||||||
687
|
|
||||||
689
|
|
||||||
693
|
|
||||||
697
|
|
||||||
700
|
|
||||||
702
|
|
||||||
707
|
|
||||||
711
|
|
||||||
716
|
|
||||||
717
|
|
||||||
719
|
|
||||||
727
|
|
||||||
728
|
|
||||||
729
|
|
||||||
730
|
|
||||||
732
|
|
||||||
733
|
|
||||||
734
|
|
||||||
738
|
|
||||||
740
|
|
||||||
744
|
|
||||||
751
|
|
||||||
754
|
|
||||||
755
|
|
||||||
756
|
|
||||||
760
|
|
||||||
761
|
|
||||||
762
|
|
||||||
763
|
|
||||||
766
|
|
||||||
768
|
|
||||||
770
|
|
||||||
771
|
|
||||||
772
|
|
||||||
773
|
|
||||||
774
|
|
||||||
775
|
|
||||||
776
|
|
||||||
777
|
|
||||||
779
|
|
||||||
781
|
|
||||||
782
|
|
||||||
784
|
|
||||||
786
|
|
||||||
788
|
|
||||||
789
|
|
||||||
792
|
|
||||||
795
|
|
||||||
799
|
|
||||||
800
|
|
||||||
805
|
|
||||||
808
|
|
||||||
810
|
|
||||||
812
|
|
||||||
815
|
|
||||||
817
|
|
||||||
820
|
|
||||||
821
|
|
||||||
825
|
|
||||||
827
|
|
||||||
829
|
|
||||||
831
|
|
||||||
832
|
|
||||||
833
|
|
||||||
834
|
|
||||||
836
|
|
||||||
837
|
|
||||||
840
|
|
||||||
841
|
|
||||||
842
|
|
||||||
848
|
|
||||||
849
|
|
||||||
850
|
|
||||||
851
|
|
||||||
852
|
|
||||||
855
|
|
||||||
858
|
|
||||||
860
|
|
||||||
861
|
|
||||||
866
|
|
||||||
869
|
|
||||||
871
|
|
||||||
872
|
|
||||||
877
|
|
||||||
878
|
|
||||||
880
|
|
||||||
881
|
|
||||||
882
|
|
||||||
884
|
|
||||||
885
|
|
||||||
886
|
|
||||||
891
|
|
||||||
893
|
|
||||||
897
|
|
||||||
899
|
|
||||||
901
|
|
||||||
908
|
|
||||||
911
|
|
||||||
913
|
|
||||||
919
|
|
||||||
921
|
|
||||||
925
|
|
||||||
927
|
|
||||||
929
|
|
||||||
934
|
|
||||||
937
|
|
||||||
938
|
|
||||||
945
|
|
||||||
947
|
|
||||||
948
|
|
||||||
950
|
|
||||||
957
|
|
||||||
962
|
|
||||||
963
|
|
||||||
965
|
|
||||||
969
|
|
||||||
971
|
|
||||||
976
|
|
||||||
977
|
|
||||||
978
|
|
||||||
985
|
|
||||||
986
|
|
||||||
989
|
|
||||||
990
|
|
||||||
991
|
|
||||||
993
|
|
||||||
996
|
|
||||||
997
|
|
||||||
998
|
|
||||||
1003
|
|
||||||
1005
|
|
||||||
1006
|
|
||||||
1007
|
|
||||||
1010
|
|
||||||
1011
|
|
||||||
1013
|
|
||||||
1014
|
|
||||||
1019
|
|
||||||
1022
|
|
||||||
1024
|
|
||||||
1025
|
|
||||||
1028
|
|
||||||
1031
|
|
||||||
1032
|
|
||||||
1034
|
|
||||||
1038
|
|
||||||
1040
|
|
||||||
1042
|
|
||||||
1043
|
|
||||||
1048
|
|
||||||
1049
|
|
||||||
1050
|
|
||||||
1051
|
|
||||||
1056
|
|
||||||
1057
|
|
||||||
1059
|
|
||||||
1062
|
|
||||||
1063
|
|
||||||
1065
|
|
||||||
1066
|
|
||||||
1071
|
|
||||||
1072
|
|
||||||
1074
|
|
||||||
1075
|
|
||||||
1076
|
|
||||||
1080
|
|
||||||
1081
|
|
||||||
1082
|
|
||||||
1085
|
|
||||||
1086
|
|
||||||
1087
|
|
||||||
1090
|
|
||||||
1095
|
|
||||||
1096
|
|
||||||
1098
|
|
||||||
1099
|
|
||||||
1101
|
|
||||||
1105
|
|
||||||
1108
|
|
||||||
1109
|
|
||||||
1110
|
|
||||||
1112
|
|
||||||
1117
|
|
||||||
1119
|
|
||||||
1121
|
|
||||||
1122
|
|
||||||
1123
|
|
||||||
1125
|
|
||||||
1129
|
|
||||||
1133
|
|
||||||
1139
|
|
||||||
1143
|
|
||||||
1145
|
|
||||||
1147
|
|
||||||
1151
|
|
||||||
1153
|
|
||||||
1154
|
|
||||||
1158
|
|
||||||
1159
|
|
||||||
1162
|
|
||||||
1165
|
|
||||||
1167
|
|
||||||
1169
|
|
||||||
1171
|
|
||||||
1175
|
|
||||||
1177
|
|
||||||
1178
|
|
||||||
1180
|
|
||||||
1181
|
|
||||||
1182
|
|
||||||
1185
|
|
||||||
1187
|
|
||||||
1188
|
|
||||||
1193
|
|
||||||
1197
|
|
||||||
1199
|
|
||||||
1217
|
|
||||||
1218
|
|
||||||
1220
|
|
||||||
1221
|
|
||||||
1225
|
|
||||||
1227
|
|
||||||
1230
|
|
||||||
1232
|
|
||||||
1233
|
|
||||||
1235
|
|
||||||
1236
|
|
||||||
1237
|
|
||||||
1238
|
|
||||||
1239
|
|
||||||
1244
|
|
||||||
1246
|
|
||||||
1247
|
|
||||||
1248
|
|
||||||
1262
|
|
||||||
1263
|
|
||||||
1264
|
|
||||||
1266
|
|
||||||
1267
|
|
||||||
1269
|
|
||||||
1271
|
|
||||||
1272
|
|
||||||
1273
|
|
||||||
1276
|
|
||||||
1277
|
|
||||||
1278
|
|
||||||
1280
|
|
||||||
1284
|
|
||||||
1291
|
|
||||||
1292
|
|
||||||
1293
|
|
||||||
1295
|
|
||||||
1296
|
|
||||||
1297
|
|
||||||
1299
|
|
||||||
1300
|
|
||||||
1301
|
|
||||||
1305
|
|
||||||
1307
|
|
||||||
1309
|
|
||||||
1312
|
|
||||||
1322
|
|
||||||
1325
|
|
||||||
1330
|
|
||||||
1334
|
|
||||||
1335
|
|
||||||
1337
|
|
||||||
1338
|
|
||||||
1340
|
|
||||||
1342
|
|
||||||
1346
|
|
||||||
1347
|
|
||||||
1350
|
|
||||||
1351
|
|
||||||
1356
|
|
||||||
1357
|
|
||||||
1358
|
|
||||||
1359
|
|
||||||
1366
|
|
||||||
1368
|
|
||||||
1370
|
|
||||||
1371
|
|
||||||
1373
|
|
||||||
1376
|
|
||||||
1379
|
|
||||||
1382
|
|
||||||
1383
|
|
||||||
1384
|
|
||||||
1385
|
|
||||||
1386
|
|
||||||
1387
|
|
||||||
1389
|
|
||||||
1393
|
|
||||||
1394
|
|
||||||
1398
|
|
||||||
1403
|
|
||||||
1404
|
|
||||||
1409
|
|
||||||
1411
|
|
||||||
1413
|
|
||||||
1415
|
|
||||||
1420
|
|
||||||
1421
|
|
||||||
1423
|
|
||||||
1426
|
|
||||||
1429
|
|
||||||
1431
|
|
||||||
1433
|
|
||||||
1434
|
|
||||||
1439
|
|
||||||
1444
|
|
||||||
1446
|
|
||||||
1447
|
|
||||||
1456
|
|
||||||
1457
|
|
||||||
1461
|
|
||||||
1467
|
|
||||||
1469
|
|
||||||
1472
|
|
||||||
1477
|
|
||||||
1481
|
|
||||||
1493
|
|
||||||
1494
|
|
||||||
1496
|
|
||||||
1498
|
|
||||||
1499
|
|
||||||
1501
|
|
||||||
1503
|
|
||||||
1506
|
|
||||||
1507
|
|
||||||
1508
|
|
||||||
1510
|
|
||||||
1511
|
|
||||||
1512
|
|
||||||
1516
|
|
||||||
1521
|
|
||||||
1523
|
|
||||||
1527
|
|
||||||
1528
|
|
||||||
1529
|
|
||||||
1530
|
|
||||||
1535
|
|
||||||
1537
|
|
||||||
1540
|
|
||||||
1541
|
|
||||||
1542
|
|
||||||
1546
|
|
||||||
1552
|
|
||||||
1559
|
|
||||||
1562
|
|
||||||
1563
|
|
||||||
1564
|
|
||||||
1567
|
|
||||||
1572
|
|
||||||
1574
|
|
||||||
1577
|
|
||||||
1581
|
|
||||||
1587
|
|
||||||
1589
|
|
||||||
1594
|
|
||||||
1601
|
|
||||||
1603
|
|
||||||
1613
|
|
||||||
1614
|
|
||||||
1616
|
|
||||||
1617
|
|
||||||
1618
|
|
||||||
1619
|
|
||||||
1620
|
|
||||||
1621
|
|
||||||
1623
|
|
||||||
1624
|
|
||||||
1625
|
|
||||||
1626
|
|
||||||
1631
|
|
||||||
1632
|
|
||||||
1634
|
|
||||||
1635
|
|
||||||
1636
|
|
||||||
1638
|
|
||||||
1640
|
|
||||||
1642
|
|
||||||
1643
|
|
||||||
1645
|
|
||||||
1647
|
|
||||||
1648
|
|
||||||
1650
|
|
||||||
1651
|
|
||||||
1652
|
|
||||||
1655
|
|
||||||
1656
|
|
||||||
1658
|
|
||||||
1661
|
|
||||||
1662
|
|
||||||
1663
|
|
||||||
1665
|
|
||||||
1666
|
|
||||||
1667
|
|
||||||
1668
|
|
||||||
1669
|
|
||||||
1674
|
|
||||||
1675
|
|
||||||
1685
|
|
||||||
1686
|
|
||||||
1695
|
|
||||||
1697
|
|
||||||
1698
|
|
||||||
1699
|
|
||||||
1706
|
|
||||||
1713
|
|
||||||
1716
|
|
||||||
1717
|
|
||||||
1718
|
|
||||||
1723
|
|
||||||
1724
|
|
||||||
1725
|
|
||||||
1729
|
|
||||||
1730
|
|
||||||
1731
|
|
||||||
1732
|
|
||||||
1733
|
|
||||||
1734
|
|
||||||
1738
|
|
||||||
1741
|
|
||||||
1744
|
|
||||||
1749
|
|
||||||
1761
|
|
||||||
1762
|
|
||||||
1769
|
|
||||||
1772
|
|
||||||
1774
|
|
||||||
1776
|
|
||||||
1777
|
|
||||||
1781
|
|
||||||
1784
|
|
||||||
1787
|
|
||||||
1789
|
|
||||||
1790
|
|
||||||
1791
|
|
||||||
1798
|
|
||||||
1804
|
|
||||||
1805
|
|
||||||
1807
|
|
||||||
1808
|
|
||||||
1811
|
|
||||||
1812
|
|
||||||
1816
|
|
||||||
1821
|
|
||||||
1824
|
|
||||||
1827
|
|
||||||
1831
|
|
||||||
1834
|
|
||||||
1835
|
|
||||||
1836
|
|
||||||
1842
|
|
||||||
1847
|
|
||||||
1852
|
|
||||||
1855
|
|
||||||
1856
|
|
||||||
1859
|
|
||||||
1861
|
|
||||||
1862
|
|
||||||
1865
|
|
||||||
1866
|
|
||||||
1871
|
|
||||||
1872
|
|
||||||
1874
|
|
||||||
1876
|
|
||||||
1877
|
|
||||||
1878
|
|
||||||
1879
|
|
||||||
1880
|
|
||||||
1881
|
|
||||||
1885
|
|
||||||
1887
|
|
||||||
1888
|
|
||||||
1889
|
|
||||||
1891
|
|
||||||
1892
|
|
||||||
1894
|
|
||||||
1895
|
|
||||||
1899
|
|
||||||
1900
|
|
||||||
1907
|
|
||||||
1911
|
|
||||||
1913
|
|
||||||
1914
|
|
||||||
1915
|
|
||||||
1917
|
|
||||||
1919
|
|
||||||
1920
|
|
||||||
1923
|
|
||||||
1924
|
|
||||||
1925
|
|
||||||
1927
|
|
||||||
1934
|
|
||||||
1939
|
|
||||||
1940
|
|
||||||
1941
|
|
||||||
1948
|
|
||||||
1951
|
|
||||||
1953
|
|
||||||
1957
|
|
||||||
1958
|
|
||||||
1959
|
|
||||||
1961
|
|
||||||
1962
|
|
||||||
1965
|
|
||||||
1966
|
|
||||||
1967
|
|
||||||
1971
|
|
||||||
1973
|
|
||||||
1975
|
|
||||||
1979
|
|
||||||
1981
|
|
||||||
1983
|
|
||||||
1989
|
|
||||||
1996
|
|
||||||
1997
|
|
||||||
2000
|
|
||||||
2004
|
|
||||||
2007
|
|
||||||
2009
|
|
||||||
2011
|
|
||||||
2012
|
|
||||||
2016
|
|
||||||
2017
|
|
||||||
2019
|
|
||||||
2021
|
|
||||||
2024
|
|
||||||
2029
|
|
||||||
2040
|
|
||||||
2042
|
|
||||||
2044
|
|
||||||
2048
|
|
3
icews14_both.log
Normal file
3
icews14_both.log
Normal file
@ -0,0 +1,3 @@
|
|||||||
|
nohup: ignoring input
|
||||||
|
2023-06-20 09:22:51,618 - [INFO] - {'dataset': 'icews14_both', 'name': 'icews14_both', 'gpu': '2', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': False}
|
||||||
|
2023-06-20 09:22:57,979 - [INFO] - [E:0| 0]: Train Loss:0.70005, Val MRR:0.0, icews14_both
|
14945
log/ice00001
Normal file
14945
log/ice00001
Normal file
File diff suppressed because it is too large
Load Diff
4904
log/ice0003
Normal file
4904
log/ice0003
Normal file
File diff suppressed because it is too large
Load Diff
6607
log/ice0003_2
Normal file
6607
log/ice0003_2
Normal file
File diff suppressed because it is too large
Load Diff
6205
log/ice001
Normal file
6205
log/ice001
Normal file
File diff suppressed because it is too large
Load Diff
9541
log/ice14ws_128
Normal file
9541
log/ice14ws_128
Normal file
File diff suppressed because it is too large
Load Diff
4154
log/iceboth
Normal file
4154
log/iceboth
Normal file
File diff suppressed because it is too large
Load Diff
9482
log/icews14
Normal file
9482
log/icews14
Normal file
File diff suppressed because it is too large
Load Diff
1
log/icews14_128
Normal file
1
log/icews14_128
Normal file
@ -0,0 +1 @@
|
|||||||
|
2023-05-13 03:52:44,141 - icews14_128 - [INFO] - {'dataset': 'icews14', 'name': 'icews14_128', 'gpu': '0', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': True, 'filtered': False}
|
10670
log/icews14_both
Normal file
10670
log/icews14_both
Normal file
File diff suppressed because it is too large
Load Diff
2
log/poofnet.log
Normal file
2
log/poofnet.log
Normal file
@ -0,0 +1,2 @@
|
|||||||
|
nohup: ignoring input
|
||||||
|
python: can't open file 'run.py': [Errno 2] No such file or directory
|
1
log/testrun_227cb2f9
Normal file
1
log/testrun_227cb2f9
Normal file
@ -0,0 +1 @@
|
|||||||
|
2023-05-17 06:54:57,988 - testrun_227cb2f9 - [INFO] - {'dataset': 'icews14', 'name': 'testrun_227cb2f9', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
1
log/testrun_30d70322
Normal file
1
log/testrun_30d70322
Normal file
@ -0,0 +1 @@
|
|||||||
|
2023-05-17 06:23:34,181 - testrun_30d70322 - [INFO] - {'dataset': 'icews14', 'name': 'testrun_30d70322', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
1
log/testrun_3212b281
Normal file
1
log/testrun_3212b281
Normal file
@ -0,0 +1 @@
|
|||||||
|
2023-05-17 06:53:01,668 - testrun_3212b281 - [INFO] - {'dataset': 'icews14', 'name': 'testrun_3212b281', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
1
log/testrun_3dbc9e89
Normal file
1
log/testrun_3dbc9e89
Normal file
@ -0,0 +1 @@
|
|||||||
|
2023-05-06 08:35:38,753 - testrun_3dbc9e89 - [INFO] - {'dataset': 'wikidata12k', 'name': 'testrun_3dbc9e89', 'gpu': '0', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False}
|
1
log/testrun_43389ddf
Normal file
1
log/testrun_43389ddf
Normal file
@ -0,0 +1 @@
|
|||||||
|
2023-05-17 06:38:00,469 - testrun_43389ddf - [INFO] - {'dataset': 'icews14', 'name': 'testrun_43389ddf', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
1
log/testrun_47ede3b9
Normal file
1
log/testrun_47ede3b9
Normal file
@ -0,0 +1 @@
|
|||||||
|
2023-05-17 06:13:02,952 - testrun_47ede3b9 - [INFO] - {'dataset': 'FB15k-237', 'name': 'testrun_47ede3b9', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
1
log/testrun_49495af8
Normal file
1
log/testrun_49495af8
Normal file
@ -0,0 +1 @@
|
|||||||
|
2023-05-06 08:37:18,939 - testrun_49495af8 - [INFO] - {'dataset': 'wikidata12k', 'name': 'testrun_49495af8', 'gpu': '3', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False}
|
7877
log/testrun_4a235016
Normal file
7877
log/testrun_4a235016
Normal file
File diff suppressed because it is too large
Load Diff
1
log/testrun_4f5d8391
Normal file
1
log/testrun_4f5d8391
Normal file
@ -0,0 +1 @@
|
|||||||
|
2023-05-06 08:35:13,356 - testrun_4f5d8391 - [INFO] - {'dataset': 'wikidata12k', 'name': 'testrun_4f5d8391', 'gpu': '0', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False}
|
1
log/testrun_540f6a03
Normal file
1
log/testrun_540f6a03
Normal file
@ -0,0 +1 @@
|
|||||||
|
2023-05-06 08:34:55,992 - testrun_540f6a03 - [INFO] - {'dataset': 'wikidata12k', 'name': 'testrun_540f6a03', 'gpu': '0', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False}
|
1
log/testrun_5a901712
Normal file
1
log/testrun_5a901712
Normal file
@ -0,0 +1 @@
|
|||||||
|
2023-05-17 07:04:56,051 - testrun_5a901712 - [INFO] - {'dataset': 'icews14', 'name': 'testrun_5a901712', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
44
log/testrun_5cafe61a
Normal file
44
log/testrun_5cafe61a
Normal file
@ -0,0 +1,44 @@
|
|||||||
|
2023-05-17 06:48:57,396 - testrun_5cafe61a - [INFO] - {'dataset': 'icews14', 'name': 'testrun_5cafe61a', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
||||||
|
2023-05-17 06:49:44,802 - concurrent.futures - [ERROR] - exception calling callback for <Future at 0x7efb51b74160 state=finished raised BrokenProcessPool>
|
||||||
|
joblib.externals.loky.process_executor._RemoteTraceback:
|
||||||
|
"""
|
||||||
|
Traceback (most recent call last):
|
||||||
|
File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/joblib/externals/loky/process_executor.py", line 391, in _process_worker
|
||||||
|
call_item = call_queue.get(block=True, timeout=timeout)
|
||||||
|
File "/opt/conda/envs/kgs2s/lib/python3.8/multiprocessing/queues.py", line 116, in get
|
||||||
|
return _ForkingPickler.loads(res)
|
||||||
|
File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/torch/storage.py", line 222, in _load_from_bytes
|
||||||
|
return torch.load(io.BytesIO(b))
|
||||||
|
File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/torch/serialization.py", line 713, in load
|
||||||
|
return _legacy_load(opened_file, map_location, pickle_module, **pickle_load_args)
|
||||||
|
File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/torch/serialization.py", line 930, in _legacy_load
|
||||||
|
result = unpickler.load()
|
||||||
|
File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/torch/serialization.py", line 876, in persistent_load
|
||||||
|
wrap_storage=restore_location(obj, location),
|
||||||
|
File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/torch/serialization.py", line 175, in default_restore_location
|
||||||
|
result = fn(storage, location)
|
||||||
|
File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/torch/serialization.py", line 155, in _cuda_deserialize
|
||||||
|
return torch._UntypedStorage(obj.nbytes(), device=torch.device(location))
|
||||||
|
RuntimeError: CUDA out of memory. Tried to allocate 678.00 MiB (GPU 0; 31.72 GiB total capacity; 0 bytes already allocated; 593.94 MiB free; 0 bytes reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
||||||
|
"""
|
||||||
|
|
||||||
|
The above exception was the direct cause of the following exception:
|
||||||
|
|
||||||
|
Traceback (most recent call last):
|
||||||
|
File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/joblib/externals/loky/_base.py", line 26, in _invoke_callbacks
|
||||||
|
callback(self)
|
||||||
|
File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/joblib/parallel.py", line 385, in __call__
|
||||||
|
self.parallel.dispatch_next()
|
||||||
|
File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/joblib/parallel.py", line 834, in dispatch_next
|
||||||
|
if not self.dispatch_one_batch(self._original_iterator):
|
||||||
|
File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/joblib/parallel.py", line 901, in dispatch_one_batch
|
||||||
|
self._dispatch(tasks)
|
||||||
|
File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/joblib/parallel.py", line 819, in _dispatch
|
||||||
|
job = self._backend.apply_async(batch, callback=cb)
|
||||||
|
File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/joblib/_parallel_backends.py", line 556, in apply_async
|
||||||
|
future = self._workers.submit(SafeFunction(func))
|
||||||
|
File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/joblib/externals/loky/reusable_executor.py", line 176, in submit
|
||||||
|
return super().submit(fn, *args, **kwargs)
|
||||||
|
File "/opt/conda/envs/kgs2s/lib/python3.8/site-packages/joblib/externals/loky/process_executor.py", line 1129, in submit
|
||||||
|
raise self._flags.broken
|
||||||
|
joblib.externals.loky.process_executor.BrokenProcessPool: A task has failed to un-serialize. Please ensure that the arguments of the function are all picklable.
|
1
log/testrun_6fd94d59
Normal file
1
log/testrun_6fd94d59
Normal file
@ -0,0 +1 @@
|
|||||||
|
2023-05-06 08:34:33,652 - testrun_6fd94d59 - [INFO] - {'dataset': 'wikidata12k', 'name': 'testrun_6fd94d59', 'gpu': '3', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False}
|
1
log/testrun_7c096a18
Normal file
1
log/testrun_7c096a18
Normal file
@ -0,0 +1 @@
|
|||||||
|
2023-05-17 06:56:35,124 - testrun_7c096a18 - [INFO] - {'dataset': 'icews14', 'name': 'testrun_7c096a18', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
1
log/testrun_7fb885ee
Normal file
1
log/testrun_7fb885ee
Normal file
@ -0,0 +1 @@
|
|||||||
|
2023-05-17 07:13:14,777 - testrun_7fb885ee - [INFO] - {'dataset': 'icews14', 'name': 'testrun_7fb885ee', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
1
log/testrun_8f32040f
Normal file
1
log/testrun_8f32040f
Normal file
@ -0,0 +1 @@
|
|||||||
|
2023-05-17 06:59:35,220 - testrun_8f32040f - [INFO] - {'dataset': 'icews14', 'name': 'testrun_8f32040f', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
1
log/testrun_958ef154
Normal file
1
log/testrun_958ef154
Normal file
@ -0,0 +1 @@
|
|||||||
|
2023-05-17 06:16:45,427 - testrun_958ef154 - [INFO] - {'dataset': 'icews14', 'name': 'testrun_958ef154', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
2
log/testrun_9acdfb58
Normal file
2
log/testrun_9acdfb58
Normal file
@ -0,0 +1,2 @@
|
|||||||
|
2023-05-06 08:36:46,668 - testrun_9acdfb58 - [INFO] - {'dataset': 'wikidata12k', 'name': 'testrun_9acdfb58', 'gpu': '3', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False}
|
||||||
|
2023-05-06 08:36:57,409 - testrun_9acdfb58 - [INFO] - [E:0| 0]: Train Loss:0.69813, Val MRR:0.0, testrun_9acdfb58
|
1
log/testrun_a051cf32
Normal file
1
log/testrun_a051cf32
Normal file
@ -0,0 +1 @@
|
|||||||
|
2023-05-17 06:36:14,606 - testrun_a051cf32 - [INFO] - {'dataset': 'icews14', 'name': 'testrun_a051cf32', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
1
log/testrun_a06d39d0
Normal file
1
log/testrun_a06d39d0
Normal file
@ -0,0 +1 @@
|
|||||||
|
2023-05-17 06:13:16,274 - testrun_a06d39d0 - [INFO] - {'dataset': 'icews14', 'name': 'testrun_a06d39d0', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
1
log/testrun_aca2b734
Normal file
1
log/testrun_aca2b734
Normal file
@ -0,0 +1 @@
|
|||||||
|
2023-05-17 06:41:20,654 - testrun_aca2b734 - [INFO] - {'dataset': 'icews14', 'name': 'testrun_aca2b734', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
1
log/testrun_ad7a0edb
Normal file
1
log/testrun_ad7a0edb
Normal file
@ -0,0 +1 @@
|
|||||||
|
2023-05-17 06:45:54,332 - testrun_ad7a0edb - [INFO] - {'dataset': 'icews14', 'name': 'testrun_ad7a0edb', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
7958
log/testrun_ae6f81ee
Normal file
7958
log/testrun_ae6f81ee
Normal file
File diff suppressed because it is too large
Load Diff
1
log/testrun_b381870f
Normal file
1
log/testrun_b381870f
Normal file
@ -0,0 +1 @@
|
|||||||
|
2023-05-30 17:54:20,857 - testrun_b381870f - [INFO] - {'dataset': 'wikidata12k', 'name': 'testrun_b381870f', 'gpu': '0', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0003, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': False}
|
2
log/testrun_b396dcde
Normal file
2
log/testrun_b396dcde
Normal file
@ -0,0 +1,2 @@
|
|||||||
|
2023-05-30 17:56:25,430 - testrun_b396dcde - [INFO] - {'dataset': 'wikidata12k', 'name': 'testrun_b396dcde', 'gpu': '0', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0003, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': False}
|
||||||
|
2023-05-30 17:57:00,673 - testrun_b396dcde - [INFO] - {'dataset': 'wikidata12k', 'name': 'testrun_b396dcde', 'gpu': '0', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0003, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': False, 'num_ent': 12554, 'num_rel': 423}
|
1
log/testrun_bbf65ab5
Normal file
1
log/testrun_bbf65ab5
Normal file
@ -0,0 +1 @@
|
|||||||
|
2023-05-17 06:21:14,228 - testrun_bbf65ab5 - [INFO] - {'dataset': 'icews14', 'name': 'testrun_bbf65ab5', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
1
log/testrun_bfaa042b
Normal file
1
log/testrun_bfaa042b
Normal file
@ -0,0 +1 @@
|
|||||||
|
2023-05-17 06:50:58,251 - testrun_bfaa042b - [INFO] - {'dataset': 'icews14', 'name': 'testrun_bfaa042b', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
1
log/testrun_c77a8ec3
Normal file
1
log/testrun_c77a8ec3
Normal file
@ -0,0 +1 @@
|
|||||||
|
2023-05-17 06:37:11,288 - testrun_c77a8ec3 - [INFO] - {'dataset': 'icews14', 'name': 'testrun_c77a8ec3', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
1
log/testrun_cb3528f3
Normal file
1
log/testrun_cb3528f3
Normal file
@ -0,0 +1 @@
|
|||||||
|
2023-05-17 07:08:13,688 - testrun_cb3528f3 - [INFO] - {'dataset': 'icews14', 'name': 'testrun_cb3528f3', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
1
log/testrun_cd333c33
Normal file
1
log/testrun_cd333c33
Normal file
@ -0,0 +1 @@
|
|||||||
|
2023-05-17 06:25:12,047 - testrun_cd333c33 - [INFO] - {'dataset': 'icews14', 'name': 'testrun_cd333c33', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
2
log/testrun_d0367b19
Normal file
2
log/testrun_d0367b19
Normal file
@ -0,0 +1,2 @@
|
|||||||
|
2023-05-06 08:37:25,129 - testrun_d0367b19 - [INFO] - {'dataset': 'wikidata12k', 'name': 'testrun_d0367b19', 'gpu': '3', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False}
|
||||||
|
2023-05-06 08:37:36,239 - testrun_d0367b19 - [INFO] - [E:0| 0]: Train Loss:0.69813, Val MRR:0.0, testrun_d0367b19
|
9001
log/testrun_d2ab6391
Normal file
9001
log/testrun_d2ab6391
Normal file
File diff suppressed because it is too large
Load Diff
11836
log/testrun_e1726b98
Normal file
11836
log/testrun_e1726b98
Normal file
File diff suppressed because it is too large
Load Diff
1
log/testrun_f0394b3c
Normal file
1
log/testrun_f0394b3c
Normal file
@ -0,0 +1 @@
|
|||||||
|
2023-05-17 06:47:48,537 - testrun_f0394b3c - [INFO] - {'dataset': 'icews14', 'name': 'testrun_f0394b3c', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
1
log/testrun_f42f568c
Normal file
1
log/testrun_f42f568c
Normal file
@ -0,0 +1 @@
|
|||||||
|
2023-05-30 17:55:52,461 - testrun_f42f568c - [INFO] - {'dataset': 'wikidata12k', 'name': 'testrun_f42f568c', 'gpu': '0', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0003, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': False}
|
1
log/testrun_fdb0e82c
Normal file
1
log/testrun_fdb0e82c
Normal file
@ -0,0 +1 @@
|
|||||||
|
2023-05-17 06:39:01,301 - testrun_fdb0e82c - [INFO] - {'dataset': 'icews14', 'name': 'testrun_fdb0e82c', 'gpu': '1', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': True}
|
1116
log/wikidata12k
Normal file
1116
log/wikidata12k
Normal file
File diff suppressed because it is too large
Load Diff
2
log/wikidata12k_0.00003
Normal file
2
log/wikidata12k_0.00003
Normal file
@ -0,0 +1,2 @@
|
|||||||
|
2023-06-04 17:05:45,012 - wikidata12k_0.00003 - [INFO] - {'dataset': 'wikidata12k', 'name': 'wikidata12k_0.00003', 'gpu': '2', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.0001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': False}
|
||||||
|
2023-06-04 17:06:06,702 - wikidata12k_0.00003 - [INFO] - [E:0| 0]: Train Loss:0.69813, Val MRR:0.0, wikidata12k_0.00003
|
4918
log/wikidata12k_0.001
Normal file
4918
log/wikidata12k_0.001
Normal file
File diff suppressed because it is too large
Load Diff
15357
log/wikidata12k_1n
Normal file
15357
log/wikidata12k_1n
Normal file
File diff suppressed because it is too large
Load Diff
11565
log/wikidata12k_both
Normal file
11565
log/wikidata12k_both
Normal file
File diff suppressed because it is too large
Load Diff
9241
log/yago11k
Normal file
9241
log/yago11k
Normal file
File diff suppressed because it is too large
Load Diff
9654
log/yago11k_0.00003
Normal file
9654
log/yago11k_0.00003
Normal file
File diff suppressed because it is too large
Load Diff
9599
log/yago11k_0.0003
Normal file
9599
log/yago11k_0.0003
Normal file
File diff suppressed because it is too large
Load Diff
7233
log/yago11k_0.001
Normal file
7233
log/yago11k_0.001
Normal file
File diff suppressed because it is too large
Load Diff
18847
log/yago11k_0.001.log
Normal file
18847
log/yago11k_0.001.log
Normal file
File diff suppressed because it is too large
Load Diff
9169
log/yago11k_both
Normal file
9169
log/yago11k_both
Normal file
File diff suppressed because it is too large
Load Diff
9162
log/yago11k_both_0.001
Normal file
9162
log/yago11k_both_0.001
Normal file
File diff suppressed because it is too large
Load Diff
80
main.py
80
main.py
@ -3,10 +3,12 @@ import uuid
|
|||||||
import argparse
|
import argparse
|
||||||
import logging
|
import logging
|
||||||
import logging.config
|
import logging.config
|
||||||
import time
|
import pandas as pd
|
||||||
|
import sys
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
import time
|
||||||
|
|
||||||
from collections import defaultdict as ddict
|
from collections import defaultdict as ddict
|
||||||
from pprint import pprint
|
from pprint import pprint
|
||||||
@ -18,11 +20,12 @@ from data_loader import TrainDataset, TestDataset
|
|||||||
from utils import get_logger, get_combined_results, set_gpu, prepare_env, set_seed
|
from utils import get_logger, get_combined_results, set_gpu, prepare_env, set_seed
|
||||||
|
|
||||||
from models import ComplEx, ConvE, HypER, InteractE, FouriER, TuckER
|
from models import ComplEx, ConvE, HypER, InteractE, FouriER, TuckER
|
||||||
|
import traceback
|
||||||
|
|
||||||
|
|
||||||
class Main(object):
|
class Main(object):
|
||||||
|
|
||||||
def __init__(self, params):
|
def __init__(self, params, logger):
|
||||||
"""
|
"""
|
||||||
Constructor of the runner class
|
Constructor of the runner class
|
||||||
Parameters
|
Parameters
|
||||||
@ -35,11 +38,9 @@ class Main(object):
|
|||||||
|
|
||||||
"""
|
"""
|
||||||
self.p = params
|
self.p = params
|
||||||
self.logger = get_logger(
|
self.logger = logger
|
||||||
self.p.name, self.p.log_dir, self.p.config_dir)
|
|
||||||
|
|
||||||
self.logger.info(vars(self.p))
|
self.logger.info(vars(self.p))
|
||||||
pprint(vars(self.p))
|
|
||||||
|
|
||||||
if self.p.gpu != '-1' and torch.cuda.is_available():
|
if self.p.gpu != '-1' and torch.cuda.is_available():
|
||||||
self.device = torch.device('cuda')
|
self.device = torch.device('cuda')
|
||||||
@ -84,7 +85,7 @@ class Main(object):
|
|||||||
|
|
||||||
self.ent2id = {}
|
self.ent2id = {}
|
||||||
for line in open('./data/{}/{}'.format(self.p.dataset, "entities.dict")):
|
for line in open('./data/{}/{}'.format(self.p.dataset, "entities.dict")):
|
||||||
id, ent = map(str.lower, line.strip().split('\t'))
|
id, ent = map(str.lower, line.replace('\xa0', '').strip().split('\t'))
|
||||||
self.ent2id[ent] = int(id)
|
self.ent2id[ent] = int(id)
|
||||||
self.rel2id = {}
|
self.rel2id = {}
|
||||||
for line in open('./data/{}/{}'.format(self.p.dataset, "relations.dict")):
|
for line in open('./data/{}/{}'.format(self.p.dataset, "relations.dict")):
|
||||||
@ -108,20 +109,14 @@ class Main(object):
|
|||||||
sr2o = ddict(set)
|
sr2o = ddict(set)
|
||||||
|
|
||||||
for split in ['train', 'test', 'valid']:
|
for split in ['train', 'test', 'valid']:
|
||||||
samples = 0
|
for line in open('./data/{}/{}.txt'.format(self.p.dataset, split)):
|
||||||
for i, line in enumerate(open('./data/{}/{}.txt'.format(self.p.dataset, split))):
|
sub, rel, obj, *_ = map(str.lower, line.replace('\xa0', '').strip().split('\t'))
|
||||||
sub, rel, obj, rel_type, *_ = map(str.lower, line.strip().split('\t'))
|
|
||||||
if (split == 'test' and self.p.rel_type is not None):
|
|
||||||
if rel_type != self.p.rel_type:
|
|
||||||
continue
|
|
||||||
sub, rel, obj = self.ent2id[sub], self.rel2id[rel], self.ent2id[obj]
|
sub, rel, obj = self.ent2id[sub], self.rel2id[rel], self.ent2id[obj]
|
||||||
self.data[split].append((sub, rel, obj))
|
self.data[split].append((sub, rel, obj))
|
||||||
|
|
||||||
if split == 'train':
|
if split == 'train':
|
||||||
sr2o[(sub, rel)].add(obj)
|
sr2o[(sub, rel)].add(obj)
|
||||||
sr2o[(obj, rel+self.p.num_rel)].add(sub)
|
sr2o[(obj, rel+self.p.num_rel)].add(sub)
|
||||||
samples += 1
|
|
||||||
print(split.capitalize() + ': ' + str(samples) + ' samples')
|
|
||||||
self.data = dict(self.data)
|
self.data = dict(self.data)
|
||||||
|
|
||||||
self.sr2o = {k: list(v) for k, v in sr2o.items()}
|
self.sr2o = {k: list(v) for k, v in sr2o.items()}
|
||||||
@ -159,8 +154,6 @@ class Main(object):
|
|||||||
{'triple': (obj, rel_inv, sub), 'label': self.sr2o_all[(obj, rel_inv)]})
|
{'triple': (obj, rel_inv, sub), 'label': self.sr2o_all[(obj, rel_inv)]})
|
||||||
|
|
||||||
self.triples = dict(self.triples)
|
self.triples = dict(self.triples)
|
||||||
print(len(self.triples['test_head']))
|
|
||||||
print(len(self.triples['test_tail']))
|
|
||||||
|
|
||||||
def get_data_loader(dataset_class, split, batch_size, shuffle=True):
|
def get_data_loader(dataset_class, split, batch_size, shuffle=True):
|
||||||
return DataLoader(
|
return DataLoader(
|
||||||
@ -415,6 +408,13 @@ class Main(object):
|
|||||||
train_iter = iter(
|
train_iter = iter(
|
||||||
self.data_iter['{}_{}'.format(split, mode.split('_')[0])])
|
self.data_iter['{}_{}'.format(split, mode.split('_')[0])])
|
||||||
|
|
||||||
|
sub_all = []
|
||||||
|
obj_all = []
|
||||||
|
rel_all = []
|
||||||
|
target_score = []
|
||||||
|
target_rank = []
|
||||||
|
obj_pred = []
|
||||||
|
obj_pred_score = []
|
||||||
for step, batch in enumerate(train_iter):
|
for step, batch in enumerate(train_iter):
|
||||||
sub, rel, obj, label = self.read_batch(batch, split)
|
sub, rel, obj, label = self.read_batch(batch, split)
|
||||||
pred = self.model.forward(sub, rel, None, 'one_to_n')
|
pred = self.model.forward(sub, rel, None, 'one_to_n')
|
||||||
@ -422,9 +422,21 @@ class Main(object):
|
|||||||
target_pred = pred[b_range, obj]
|
target_pred = pred[b_range, obj]
|
||||||
pred = torch.where(label.byte(), torch.zeros_like(pred), pred)
|
pred = torch.where(label.byte(), torch.zeros_like(pred), pred)
|
||||||
pred[b_range, obj] = target_pred
|
pred[b_range, obj] = target_pred
|
||||||
|
|
||||||
|
highest = torch.argsort(pred, dim=1, descending=True)[:,0]
|
||||||
|
highest_score = pred[b_range, highest]
|
||||||
|
|
||||||
ranks = 1 + torch.argsort(torch.argsort(pred, dim=1,
|
ranks = 1 + torch.argsort(torch.argsort(pred, dim=1,
|
||||||
descending=True), dim=1, descending=False)[b_range, obj]
|
descending=True), dim=1, descending=False)[b_range, obj]
|
||||||
|
|
||||||
|
sub_all.extend(sub.cpu().numpy())
|
||||||
|
obj_all.extend(obj.cpu().numpy())
|
||||||
|
rel_all.extend(rel.cpu().numpy())
|
||||||
|
target_score.extend(target_pred.cpu().numpy())
|
||||||
|
target_rank.extend(ranks.cpu().numpy())
|
||||||
|
obj_pred.extend(highest.cpu().numpy())
|
||||||
|
obj_pred_score.extend(highest_score.cpu().numpy())
|
||||||
|
|
||||||
ranks = ranks.float()
|
ranks = ranks.float()
|
||||||
results['count'] = torch.numel(
|
results['count'] = torch.numel(
|
||||||
ranks) + results.get('count', 0.0)
|
ranks) + results.get('count', 0.0)
|
||||||
@ -439,7 +451,8 @@ class Main(object):
|
|||||||
if step % 100 == 0:
|
if step % 100 == 0:
|
||||||
self.logger.info('[{}, {} Step {}]\t{}'.format(
|
self.logger.info('[{}, {} Step {}]\t{}'.format(
|
||||||
split.title(), mode.title(), step, self.p.name))
|
split.title(), mode.title(), step, self.p.name))
|
||||||
|
df = pd.DataFrame({"sub":sub_all,"rel":rel_all,"obj":obj_all, "rank": target_rank,"score":target_score, "pred":obj_pred,"pred_score":obj_pred_score})
|
||||||
|
df.to_csv(f"{self.p.name}_result.csv",header=True, index=False)
|
||||||
return results
|
return results
|
||||||
|
|
||||||
def run_epoch(self, epoch):
|
def run_epoch(self, epoch):
|
||||||
@ -635,7 +648,6 @@ if __name__ == "__main__":
|
|||||||
|
|
||||||
parser.add_argument('--test_only', action='store_true', default=False)
|
parser.add_argument('--test_only', action='store_true', default=False)
|
||||||
parser.add_argument('--grid_search', action='store_true', default=False)
|
parser.add_argument('--grid_search', action='store_true', default=False)
|
||||||
parser.add_argument('--rel_type', default=None, type=str)
|
|
||||||
|
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
@ -644,9 +656,10 @@ if __name__ == "__main__":
|
|||||||
set_gpu(args.gpu)
|
set_gpu(args.gpu)
|
||||||
set_seed(args.seed)
|
set_seed(args.seed)
|
||||||
|
|
||||||
model = Main(args)
|
|
||||||
|
|
||||||
if (args.grid_search):
|
if (args.grid_search):
|
||||||
|
|
||||||
|
model = Main(args)
|
||||||
from sklearn.model_selection import GridSearchCV
|
from sklearn.model_selection import GridSearchCV
|
||||||
from skorch import NeuralNet
|
from skorch import NeuralNet
|
||||||
|
|
||||||
@ -695,18 +708,27 @@ if __name__ == "__main__":
|
|||||||
search = grid.fit(inputs, label)
|
search = grid.fit(inputs, label)
|
||||||
print("BEST SCORE: ", search.best_score_)
|
print("BEST SCORE: ", search.best_score_)
|
||||||
print("BEST PARAMS: ", search.best_params_)
|
print("BEST PARAMS: ", search.best_params_)
|
||||||
|
logger = get_logger(
|
||||||
|
args.name, args.log_dir, args.config_dir)
|
||||||
if (args.test_only):
|
if (args.test_only):
|
||||||
|
model = Main(args, logger)
|
||||||
save_path = os.path.join('./torch_saved', args.name)
|
save_path = os.path.join('./torch_saved', args.name)
|
||||||
model.load_model(save_path)
|
model.load_model(save_path)
|
||||||
model.evaluate('test')
|
model.evaluate('test')
|
||||||
else:
|
else:
|
||||||
while True:
|
model = Main(args, logger)
|
||||||
try:
|
model.fit()
|
||||||
model.fit()
|
# while True:
|
||||||
except Exception as e:
|
# try:
|
||||||
print(e)
|
# model = Main(args, logger)
|
||||||
time.sleep(30)
|
# model.fit()
|
||||||
del model
|
# except Exception as e:
|
||||||
model = Main(args)
|
# print(e)
|
||||||
continue
|
# traceback.print_exc()
|
||||||
break
|
# try:
|
||||||
|
# del model
|
||||||
|
# except Exception:
|
||||||
|
# pass
|
||||||
|
# time.sleep(30)
|
||||||
|
# continue
|
||||||
|
# break
|
||||||
|
275
models.py
275
models.py
@ -9,7 +9,7 @@ from layers import *
|
|||||||
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
||||||
from timm.models.layers import DropPath, trunc_normal_
|
from timm.models.layers import DropPath, trunc_normal_
|
||||||
from timm.models.registry import register_model
|
from timm.models.registry import register_model
|
||||||
from timm.models.layers.helpers import to_2tuple
|
from timm.layers.helpers import to_2tuple
|
||||||
|
|
||||||
|
|
||||||
class ConvE(torch.nn.Module):
|
class ConvE(torch.nn.Module):
|
||||||
@ -435,6 +435,50 @@ class TuckER(torch.nn.Module):
|
|||||||
|
|
||||||
return pred
|
return pred
|
||||||
|
|
||||||
|
class PatchMerging(nn.Module):
|
||||||
|
r""" Patch Merging Layer.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
input_resolution (tuple[int]): Resolution of input feature.
|
||||||
|
dim (int): Number of input channels.
|
||||||
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, dim, norm_layer=nn.LayerNorm):
|
||||||
|
super().__init__()
|
||||||
|
self.dim = dim
|
||||||
|
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
|
||||||
|
self.norm = norm_layer(2 * dim)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
"""
|
||||||
|
x: B, C, H, W
|
||||||
|
"""
|
||||||
|
B, C, H, W = x.shape
|
||||||
|
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."
|
||||||
|
|
||||||
|
x = x.view(B, H, W, C)
|
||||||
|
|
||||||
|
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
|
||||||
|
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
|
||||||
|
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
|
||||||
|
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
|
||||||
|
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
|
||||||
|
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
|
||||||
|
|
||||||
|
x = self.reduction(x)
|
||||||
|
x = self.norm(x)
|
||||||
|
|
||||||
|
return x
|
||||||
|
|
||||||
|
def extra_repr(self) -> str:
|
||||||
|
return f"input_resolution={self.input_resolution}, dim={self.dim}"
|
||||||
|
|
||||||
|
def flops(self):
|
||||||
|
H, W = self.input_resolution
|
||||||
|
flops = (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim
|
||||||
|
flops += H * W * self.dim // 2
|
||||||
|
return flops
|
||||||
|
|
||||||
class FouriER(torch.nn.Module):
|
class FouriER(torch.nn.Module):
|
||||||
def __init__(self, params, hid_drop = None, embed_dim = None):
|
def __init__(self, params, hid_drop = None, embed_dim = None):
|
||||||
@ -488,9 +532,10 @@ class FouriER(torch.nn.Module):
|
|||||||
self.patch_embed = PatchEmbed(in_chans=channels, patch_size=self.p.patch_size,
|
self.patch_embed = PatchEmbed(in_chans=channels, patch_size=self.p.patch_size,
|
||||||
embed_dim=self.p.embed_dim, stride=4, padding=2)
|
embed_dim=self.p.embed_dim, stride=4, padding=2)
|
||||||
network = []
|
network = []
|
||||||
layers = [4, 4, 12, 4]
|
layers = [2, 2, 6, 2]
|
||||||
embed_dims = [self.p.embed_dim, 128, 320, 128]
|
embed_dims = [self.p.embed_dim, 320, 256, 128]
|
||||||
mlp_ratios = [4, 4, 4, 4]
|
mlp_ratios = [4, 4, 8, 12]
|
||||||
|
num_heads = [4, 4, 4, 4]
|
||||||
downsamples = [True, True, True, True]
|
downsamples = [True, True, True, True]
|
||||||
pool_size=3
|
pool_size=3
|
||||||
act_layer=nn.GELU
|
act_layer=nn.GELU
|
||||||
@ -502,6 +547,7 @@ class FouriER(torch.nn.Module):
|
|||||||
down_patch_size=3
|
down_patch_size=3
|
||||||
down_stride=2
|
down_stride=2
|
||||||
down_pad=1
|
down_pad=1
|
||||||
|
window_size = 4
|
||||||
num_classes=self.p.embed_dim
|
num_classes=self.p.embed_dim
|
||||||
for i in range(len(layers)):
|
for i in range(len(layers)):
|
||||||
stage = basic_blocks(embed_dims[i], i, layers,
|
stage = basic_blocks(embed_dims[i], i, layers,
|
||||||
@ -510,7 +556,9 @@ class FouriER(torch.nn.Module):
|
|||||||
drop_rate=drop_rate,
|
drop_rate=drop_rate,
|
||||||
drop_path_rate=drop_path_rate,
|
drop_path_rate=drop_path_rate,
|
||||||
use_layer_scale=use_layer_scale,
|
use_layer_scale=use_layer_scale,
|
||||||
layer_scale_init_value=layer_scale_init_value)
|
layer_scale_init_value=layer_scale_init_value,
|
||||||
|
num_heads=num_heads[i], input_resolution=(image_h // (2**i), image_w // (2**i)),
|
||||||
|
window_size=window_size, shift_size=0)
|
||||||
network.append(stage)
|
network.append(stage)
|
||||||
if i >= len(layers) - 1:
|
if i >= len(layers) - 1:
|
||||||
break
|
break
|
||||||
@ -522,6 +570,7 @@ class FouriER(torch.nn.Module):
|
|||||||
padding=down_pad,
|
padding=down_pad,
|
||||||
in_chans=embed_dims[i], embed_dim=embed_dims[i+1]
|
in_chans=embed_dims[i], embed_dim=embed_dims[i+1]
|
||||||
)
|
)
|
||||||
|
# PatchMerging(dim=embed_dims[i+1])
|
||||||
)
|
)
|
||||||
|
|
||||||
self.network = nn.ModuleList(network)
|
self.network = nn.ModuleList(network)
|
||||||
@ -687,7 +736,7 @@ def basic_blocks(dim, index, layers,
|
|||||||
pool_size=3, mlp_ratio=4.,
|
pool_size=3, mlp_ratio=4.,
|
||||||
act_layer=nn.GELU, norm_layer=GroupNorm,
|
act_layer=nn.GELU, norm_layer=GroupNorm,
|
||||||
drop_rate=.0, drop_path_rate=0.,
|
drop_rate=.0, drop_path_rate=0.,
|
||||||
use_layer_scale=True, layer_scale_init_value=1e-5):
|
use_layer_scale=True, layer_scale_init_value=1e-5, num_heads = 4, input_resolution = None, window_size = 4, shift_size = 2):
|
||||||
"""
|
"""
|
||||||
generate PoolFormer blocks for a stage
|
generate PoolFormer blocks for a stage
|
||||||
return: PoolFormer blocks
|
return: PoolFormer blocks
|
||||||
@ -702,11 +751,176 @@ def basic_blocks(dim, index, layers,
|
|||||||
drop=drop_rate, drop_path=block_dpr,
|
drop=drop_rate, drop_path=block_dpr,
|
||||||
use_layer_scale=use_layer_scale,
|
use_layer_scale=use_layer_scale,
|
||||||
layer_scale_init_value=layer_scale_init_value,
|
layer_scale_init_value=layer_scale_init_value,
|
||||||
|
num_heads=num_heads, input_resolution = input_resolution,
|
||||||
|
window_size=window_size, shift_size=shift_size
|
||||||
))
|
))
|
||||||
blocks = nn.Sequential(*blocks)
|
blocks = nn.Sequential(*blocks)
|
||||||
|
|
||||||
return blocks
|
return blocks
|
||||||
|
|
||||||
|
def window_partition(x, window_size):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
x: (B, H, W, C)
|
||||||
|
window_size (int): window size
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
windows: (num_windows*B, window_size, window_size, C)
|
||||||
|
"""
|
||||||
|
B, C, H, W = x.shape
|
||||||
|
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
|
||||||
|
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
||||||
|
return windows
|
||||||
|
|
||||||
|
class WindowAttention(nn.Module):
|
||||||
|
r""" Window based multi-head self attention (W-MSA) module with relative position bias.
|
||||||
|
It supports both of shifted and non-shifted window.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
dim (int): Number of input channels.
|
||||||
|
window_size (tuple[int]): The height and width of the window.
|
||||||
|
num_heads (int): Number of attention heads.
|
||||||
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
||||||
|
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
|
||||||
|
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
|
||||||
|
pretrained_window_size (tuple[int]): The height and width of the window in pre-training.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0.,
|
||||||
|
pretrained_window_size=[0, 0]):
|
||||||
|
|
||||||
|
super().__init__()
|
||||||
|
self.dim = dim
|
||||||
|
self.window_size = window_size # Wh, Ww
|
||||||
|
self.pretrained_window_size = pretrained_window_size
|
||||||
|
self.num_heads = num_heads
|
||||||
|
|
||||||
|
self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True)
|
||||||
|
|
||||||
|
# mlp to generate continuous relative position bias
|
||||||
|
self.cpb_mlp = nn.Sequential(nn.Linear(2, 512, bias=True),
|
||||||
|
nn.ReLU(inplace=True),
|
||||||
|
nn.Linear(512, num_heads, bias=False))
|
||||||
|
|
||||||
|
# get relative_coords_table
|
||||||
|
relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0], dtype=torch.float32)
|
||||||
|
relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1], dtype=torch.float32)
|
||||||
|
relative_coords_table = torch.stack(
|
||||||
|
torch.meshgrid([relative_coords_h,
|
||||||
|
relative_coords_w])).permute(1, 2, 0).contiguous().unsqueeze(0) # 1, 2*Wh-1, 2*Ww-1, 2
|
||||||
|
if pretrained_window_size[0] > 0:
|
||||||
|
relative_coords_table[:, :, :, 0] /= (pretrained_window_size[0] - 1)
|
||||||
|
relative_coords_table[:, :, :, 1] /= (pretrained_window_size[1] - 1)
|
||||||
|
else:
|
||||||
|
relative_coords_table[:, :, :, 0] /= (self.window_size[0] - 1)
|
||||||
|
relative_coords_table[:, :, :, 1] /= (self.window_size[1] - 1)
|
||||||
|
relative_coords_table *= 8 # normalize to -8, 8
|
||||||
|
relative_coords_table = torch.sign(relative_coords_table) * torch.log2(
|
||||||
|
torch.abs(relative_coords_table) + 1.0) / np.log2(8)
|
||||||
|
|
||||||
|
self.register_buffer("relative_coords_table", relative_coords_table)
|
||||||
|
|
||||||
|
# get pair-wise relative position index for each token inside the window
|
||||||
|
coords_h = torch.arange(self.window_size[0])
|
||||||
|
coords_w = torch.arange(self.window_size[1])
|
||||||
|
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
||||||
|
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
||||||
|
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
||||||
|
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
||||||
|
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
|
||||||
|
relative_coords[:, :, 1] += self.window_size[1] - 1
|
||||||
|
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
||||||
|
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
||||||
|
self.register_buffer("relative_position_index", relative_position_index)
|
||||||
|
|
||||||
|
self.qkv = nn.Linear(dim, dim * 3, bias=False)
|
||||||
|
if qkv_bias:
|
||||||
|
self.q_bias = nn.Parameter(torch.zeros(dim))
|
||||||
|
self.v_bias = nn.Parameter(torch.zeros(dim))
|
||||||
|
else:
|
||||||
|
self.q_bias = None
|
||||||
|
self.v_bias = None
|
||||||
|
self.attn_drop = nn.Dropout(attn_drop)
|
||||||
|
self.proj = nn.Linear(dim, dim)
|
||||||
|
self.proj_drop = nn.Dropout(proj_drop)
|
||||||
|
self.softmax = nn.Softmax(dim=-1)
|
||||||
|
|
||||||
|
def forward(self, x, mask=None):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
x: input features with shape of (num_windows*B, N, C)
|
||||||
|
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
|
||||||
|
"""
|
||||||
|
B_, N, C = x.shape
|
||||||
|
qkv_bias = None
|
||||||
|
if self.q_bias is not None:
|
||||||
|
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
|
||||||
|
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
|
||||||
|
qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||||
|
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
||||||
|
|
||||||
|
# cosine attention
|
||||||
|
attn = (F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1))
|
||||||
|
logit_scale = torch.clamp(self.logit_scale, max=torch.log(torch.tensor(1. / 0.01)).cuda()).exp()
|
||||||
|
attn = attn * logit_scale
|
||||||
|
|
||||||
|
relative_position_bias_table = self.cpb_mlp(self.relative_coords_table).view(-1, self.num_heads)
|
||||||
|
relative_position_bias = relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
||||||
|
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
|
||||||
|
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
||||||
|
relative_position_bias = 16 * torch.sigmoid(relative_position_bias)
|
||||||
|
attn = attn + relative_position_bias.unsqueeze(0)
|
||||||
|
|
||||||
|
if mask is not None:
|
||||||
|
try:
|
||||||
|
nW = mask.shape[0]
|
||||||
|
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
|
||||||
|
attn = attn.view(-1, self.num_heads, N, N)
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
attn = self.softmax(attn)
|
||||||
|
else:
|
||||||
|
attn = self.softmax(attn)
|
||||||
|
|
||||||
|
attn = self.attn_drop(attn)
|
||||||
|
|
||||||
|
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
||||||
|
x = self.proj(x)
|
||||||
|
x = self.proj_drop(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
def extra_repr(self) -> str:
|
||||||
|
return f'dim={self.dim}, window_size={self.window_size}, ' \
|
||||||
|
f'pretrained_window_size={self.pretrained_window_size}, num_heads={self.num_heads}'
|
||||||
|
|
||||||
|
def flops(self, N):
|
||||||
|
# calculate flops for 1 window with token length of N
|
||||||
|
flops = 0
|
||||||
|
# qkv = self.qkv(x)
|
||||||
|
flops += N * self.dim * 3 * self.dim
|
||||||
|
# attn = (q @ k.transpose(-2, -1))
|
||||||
|
flops += self.num_heads * N * (self.dim // self.num_heads) * N
|
||||||
|
# x = (attn @ v)
|
||||||
|
flops += self.num_heads * N * N * (self.dim // self.num_heads)
|
||||||
|
# x = self.proj(x)
|
||||||
|
flops += N * self.dim * self.dim
|
||||||
|
return flops
|
||||||
|
|
||||||
|
def window_reverse(windows, window_size, H, W):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
windows: (num_windows*B, window_size, window_size, C)
|
||||||
|
window_size (int): Window size
|
||||||
|
H (int): Height of image
|
||||||
|
W (int): Width of image
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
x: (B, H, W, C)
|
||||||
|
"""
|
||||||
|
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
||||||
|
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
|
||||||
|
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, -1, H, W)
|
||||||
|
return x
|
||||||
|
|
||||||
class PoolFormerBlock(nn.Module):
|
class PoolFormerBlock(nn.Module):
|
||||||
"""
|
"""
|
||||||
@ -724,14 +938,18 @@ class PoolFormerBlock(nn.Module):
|
|||||||
"""
|
"""
|
||||||
def __init__(self, dim, pool_size=3, mlp_ratio=4.,
|
def __init__(self, dim, pool_size=3, mlp_ratio=4.,
|
||||||
act_layer=nn.GELU, norm_layer=GroupNorm,
|
act_layer=nn.GELU, norm_layer=GroupNorm,
|
||||||
drop=0., drop_path=0.,
|
drop=0., drop_path=0., num_heads=4,
|
||||||
use_layer_scale=True, layer_scale_init_value=1e-5):
|
use_layer_scale=True, layer_scale_init_value=1e-5, input_resolution = None, window_size = 4, shift_size = 2):
|
||||||
|
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
|
||||||
self.norm1 = norm_layer(dim)
|
self.norm1 = norm_layer(dim)
|
||||||
#self.token_mixer = Pooling(pool_size=pool_size)
|
#self.token_mixer = Pooling(pool_size=pool_size)
|
||||||
self.token_mixer = FNetBlock()
|
# self.token_mixer = FNetBlock()
|
||||||
|
self.window_size = window_size
|
||||||
|
self.shift_size = shift_size
|
||||||
|
self.input_resolution = input_resolution
|
||||||
|
self.token_mixer = WindowAttention(dim=dim, window_size=to_2tuple(self.window_size), num_heads=num_heads, attn_drop=0.2, proj_drop=0.1)
|
||||||
self.norm2 = norm_layer(dim)
|
self.norm2 = norm_layer(dim)
|
||||||
mlp_hidden_dim = int(dim * mlp_ratio)
|
mlp_hidden_dim = int(dim * mlp_ratio)
|
||||||
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim,
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim,
|
||||||
@ -746,17 +964,52 @@ class PoolFormerBlock(nn.Module):
|
|||||||
layer_scale_init_value * torch.ones((dim)), requires_grad=True)
|
layer_scale_init_value * torch.ones((dim)), requires_grad=True)
|
||||||
self.layer_scale_2 = nn.Parameter(
|
self.layer_scale_2 = nn.Parameter(
|
||||||
layer_scale_init_value * torch.ones((dim)), requires_grad=True)
|
layer_scale_init_value * torch.ones((dim)), requires_grad=True)
|
||||||
|
|
||||||
|
if self.shift_size > 0:
|
||||||
|
# calculate attention mask for SW-MSA
|
||||||
|
H, W = self.input_resolution
|
||||||
|
img_mask = torch.zeros((1, 1, H, W)) # 1 H W 1
|
||||||
|
h_slices = (slice(0, -self.window_size),
|
||||||
|
slice(-self.window_size, -self.shift_size),
|
||||||
|
slice(-self.shift_size, None))
|
||||||
|
w_slices = (slice(0, -self.window_size),
|
||||||
|
slice(-self.window_size, -self.shift_size),
|
||||||
|
slice(-self.shift_size, None))
|
||||||
|
cnt = 0
|
||||||
|
for h in h_slices:
|
||||||
|
for w in w_slices:
|
||||||
|
img_mask[:, :, h, w] = cnt
|
||||||
|
cnt += 1
|
||||||
|
|
||||||
|
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
|
||||||
|
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
|
||||||
|
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
||||||
|
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
|
||||||
|
else:
|
||||||
|
attn_mask = None
|
||||||
|
|
||||||
|
self.register_buffer("attn_mask", attn_mask)
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
|
B, C, H, W = x.shape
|
||||||
|
x_windows = window_partition(x, self.window_size)
|
||||||
|
x_windows = x_windows.view(-1, self.window_size * self.window_size, C)
|
||||||
|
attn_windows = self.token_mixer(x_windows, mask=self.attn_mask)
|
||||||
|
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
||||||
|
x_attn = window_reverse(attn_windows, self.window_size, H, W)
|
||||||
|
if self.shift_size > 0:
|
||||||
|
x = torch.roll(x_attn, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
|
||||||
|
else:
|
||||||
|
x = x_attn
|
||||||
if self.use_layer_scale:
|
if self.use_layer_scale:
|
||||||
x = x + self.drop_path(
|
x = x + self.drop_path(
|
||||||
self.layer_scale_1.unsqueeze(-1).unsqueeze(-1)
|
self.layer_scale_1.unsqueeze(-1).unsqueeze(-1)
|
||||||
* self.token_mixer(self.norm1(x)))
|
* x_attn)
|
||||||
x = x + self.drop_path(
|
x = x + self.drop_path(
|
||||||
self.layer_scale_2.unsqueeze(-1).unsqueeze(-1)
|
self.layer_scale_2.unsqueeze(-1).unsqueeze(-1)
|
||||||
* self.mlp(self.norm2(x)))
|
* self.mlp(self.norm2(x)))
|
||||||
else:
|
else:
|
||||||
x = x + self.drop_path(self.token_mixer(self.norm1(x)))
|
x = x + self.drop_path(x_attn)
|
||||||
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
||||||
return x
|
return x
|
||||||
class PatchEmbed(nn.Module):
|
class PatchEmbed(nn.Module):
|
||||||
|
@ -1,4 +1,6 @@
|
|||||||
torch==1.12.1+cu116
|
torch==1.12.1+cu116
|
||||||
ordered-set==4.1.0
|
ordered-set==4.1.0
|
||||||
numpy==1.21.5
|
numpy==1.21.5
|
||||||
einops==0.4.1
|
einops==0.4.1
|
||||||
|
pandas
|
||||||
|
timm==0.9.16
|
5
run.sh
5
run.sh
@ -37,4 +37,7 @@ nohup python main.py --name ice00001 --lr 0.00001 --data icews14 --gpu 2 >run_lo
|
|||||||
PID:
|
PID:
|
||||||
|
|
||||||
___
|
___
|
||||||
nohup python main.py --name ice001 --lr 0.001 --data icews14 --gpu 3 >run_log/0.001.log 2>&1 &
|
nohup python main.py --name ice001 --lr 0.001 --data icews14 --gpu 3 >run_log/0.001.log 2>&1 &
|
||||||
|
___
|
||||||
|
nohup python main.py --name iceboth --data icews14_both --gpu 0 >run_log/iceboth.log 2>&1 &
|
||||||
|
PID: 21984
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@ -1,425 +0,0 @@
|
|||||||
nohup: ignoring input
|
|
||||||
2023-05-27 04:41:18,497 - [INFO] - {'dataset': 'wikidata12k', 'name': 'wikidata12k_0.001', 'gpu': '3', 'train_strategy': 'one_to_n', 'opt': 'adam', 'neg_num': 1000, 'batch_size': 128, 'l2': 0.0, 'lr': 0.001, 'max_epochs': 500, 'num_workers': 0, 'seed': 42, 'restore': False, 'lbl_smooth': 0.1, 'embed_dim': 400, 'ent_vec_dim': 400, 'rel_vec_dim': 400, 'bias': False, 'form': 'plain', 'k_w': 10, 'k_h': 20, 'num_filt': 96, 'ker_sz': 9, 'perm': 1, 'hid_drop': 0.5, 'feat_drop': 0.2, 'inp_drop': 0.2, 'drop_path': 0.0, 'drop': 0.0, 'in_channels': 1, 'out_channels': 32, 'filt_h': 1, 'filt_w': 9, 'image_h': 128, 'image_w': 128, 'patch_size': 8, 'mixer_dim': 256, 'expansion_factor': 4, 'expansion_factor_token': 0.5, 'mixer_depth': 16, 'mixer_dropout': 0.2, 'log_dir': './log/', 'config_dir': './config/', 'test_only': False, 'grid_search': False}
|
|
||||||
{'batch_size': 128,
|
|
||||||
'bias': False,
|
|
||||||
'config_dir': './config/',
|
|
||||||
'dataset': 'wikidata12k',
|
|
||||||
'drop': 0.0,
|
|
||||||
'drop_path': 0.0,
|
|
||||||
'embed_dim': 400,
|
|
||||||
'ent_vec_dim': 400,
|
|
||||||
'expansion_factor': 4,
|
|
||||||
'expansion_factor_token': 0.5,
|
|
||||||
'feat_drop': 0.2,
|
|
||||||
'filt_h': 1,
|
|
||||||
'filt_w': 9,
|
|
||||||
'form': 'plain',
|
|
||||||
'gpu': '3',
|
|
||||||
'grid_search': False,
|
|
||||||
'hid_drop': 0.5,
|
|
||||||
'image_h': 128,
|
|
||||||
'image_w': 128,
|
|
||||||
'in_channels': 1,
|
|
||||||
'inp_drop': 0.2,
|
|
||||||
'k_h': 20,
|
|
||||||
'k_w': 10,
|
|
||||||
'ker_sz': 9,
|
|
||||||
'l2': 0.0,
|
|
||||||
'lbl_smooth': 0.1,
|
|
||||||
'log_dir': './log/',
|
|
||||||
'lr': 0.001,
|
|
||||||
'max_epochs': 500,
|
|
||||||
'mixer_depth': 16,
|
|
||||||
'mixer_dim': 256,
|
|
||||||
'mixer_dropout': 0.2,
|
|
||||||
'name': 'wikidata12k_0.001',
|
|
||||||
'neg_num': 1000,
|
|
||||||
'num_filt': 96,
|
|
||||||
'num_workers': 0,
|
|
||||||
'opt': 'adam',
|
|
||||||
'out_channels': 32,
|
|
||||||
'patch_size': 8,
|
|
||||||
'perm': 1,
|
|
||||||
'rel_vec_dim': 400,
|
|
||||||
'restore': False,
|
|
||||||
'seed': 42,
|
|
||||||
'test_only': False,
|
|
||||||
'train_strategy': 'one_to_n'}
|
|
||||||
2023-05-27 04:41:28,635 - [INFO] - [E:0| 0]: Train Loss:0.69813, Val MRR:0.0, wikidata12k_0.001
|
|
||||||
2023-05-27 04:42:32,570 - [INFO] - [E:0| 100]: Train Loss:0.053587, Val MRR:0.0, wikidata12k_0.001
|
|
||||||
2023-05-27 04:43:36,618 - [INFO] - [E:0| 200]: Train Loss:0.028724, Val MRR:0.0, wikidata12k_0.001
|
|
||||||
2023-05-27 04:44:40,687 - [INFO] - [E:0| 300]: Train Loss:0.020033, Val MRR:0.0, wikidata12k_0.001
|
|
||||||
2023-05-27 04:45:44,799 - [INFO] - [E:0| 400]: Train Loss:0.015589, Val MRR:0.0, wikidata12k_0.001
|
|
||||||
2023-05-27 04:46:48,901 - [INFO] - [E:0| 500]: Train Loss:0.012878, Val MRR:0.0, wikidata12k_0.001
|
|
||||||
2023-05-27 04:47:53,124 - [INFO] - [E:0| 600]: Train Loss:0.011054, Val MRR:0.0, wikidata12k_0.001
|
|
||||||
2023-05-27 04:48:57,224 - [INFO] - [E:0| 700]: Train Loss:0.0097532, Val MRR:0.0, wikidata12k_0.001
|
|
||||||
2023-05-27 04:50:01,352 - [INFO] - [E:0| 800]: Train Loss:0.008763, Val MRR:0.0, wikidata12k_0.001
|
|
||||||
2023-05-27 04:51:05,445 - [INFO] - [E:0| 900]: Train Loss:0.0079929, Val MRR:0.0, wikidata12k_0.001
|
|
||||||
2023-05-27 04:52:09,559 - [INFO] - [E:0| 1000]: Train Loss:0.0073745, Val MRR:0.0, wikidata12k_0.001
|
|
||||||
2023-05-27 04:53:13,624 - [INFO] - [E:0| 1100]: Train Loss:0.0068693, Val MRR:0.0, wikidata12k_0.001
|
|
||||||
2023-05-27 04:54:17,823 - [INFO] - [E:0| 1200]: Train Loss:0.0064497, Val MRR:0.0, wikidata12k_0.001
|
|
||||||
2023-05-27 04:55:21,967 - [INFO] - [E:0| 1300]: Train Loss:0.0060945, Val MRR:0.0, wikidata12k_0.001
|
|
||||||
2023-05-27 04:56:26,129 - [INFO] - [E:0| 1400]: Train Loss:0.0057879, Val MRR:0.0, wikidata12k_0.001
|
|
||||||
2023-05-27 04:57:30,256 - [INFO] - [E:0| 1500]: Train Loss:0.0055195, Val MRR:0.0, wikidata12k_0.001
|
|
||||||
2023-05-27 04:58:34,350 - [INFO] - [E:0| 1600]: Train Loss:0.0052845, Val MRR:0.0, wikidata12k_0.001
|
|
||||||
2023-05-27 04:59:16,259 - [INFO] - [Epoch:0]: Training Loss:0.005147
|
|
||||||
|
|
||||||
2023-05-27 04:59:16,481 - [INFO] - [Valid, Tail_Batch Step 0] wikidata12k_0.001
|
|
||||||
2023-05-27 04:59:38,187 - [INFO] - [Valid, Tail_Batch Step 100] wikidata12k_0.001
|
|
||||||
2023-05-27 04:59:50,745 - [INFO] - [Valid, Head_Batch Step 0] wikidata12k_0.001
|
|
||||||
2023-05-27 05:00:12,609 - [INFO] - [Valid, Head_Batch Step 100] wikidata12k_0.001
|
|
||||||
2023-05-27 05:00:25,062 - [INFO] - [Evaluating Epoch 0 valid]:
|
|
||||||
MRR: Tail : 0.08049, Head : 0.01947, Avg : 0.04998
|
|
||||||
|
|
||||||
2023-05-27 05:00:26,469 - [INFO] - [Epoch 0]: Training Loss: 0.0051469, Valid MRR: 0.04998,
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
2023-05-27 05:00:27,127 - [INFO] - [E:1| 0]: Train Loss:0.0016275, Val MRR:0.04998, wikidata12k_0.001
|
|
||||||
2023-05-27 05:01:31,277 - [INFO] - [E:1| 100]: Train Loss:0.0017991, Val MRR:0.04998, wikidata12k_0.001
|
|
||||||
2023-05-27 05:02:35,390 - [INFO] - [E:1| 200]: Train Loss:0.0017846, Val MRR:0.04998, wikidata12k_0.001
|
|
||||||
2023-05-27 05:03:39,590 - [INFO] - [E:1| 300]: Train Loss:0.0017789, Val MRR:0.04998, wikidata12k_0.001
|
|
||||||
2023-05-27 05:04:43,748 - [INFO] - [E:1| 400]: Train Loss:0.001772, Val MRR:0.04998, wikidata12k_0.001
|
|
||||||
2023-05-27 05:05:47,967 - [INFO] - [E:1| 500]: Train Loss:0.0017692, Val MRR:0.04998, wikidata12k_0.001
|
|
||||||
2023-05-27 05:06:52,036 - [INFO] - [E:1| 600]: Train Loss:0.0017597, Val MRR:0.04998, wikidata12k_0.001
|
|
||||||
2023-05-27 05:07:56,215 - [INFO] - [E:1| 700]: Train Loss:0.0017589, Val MRR:0.04998, wikidata12k_0.001
|
|
||||||
2023-05-27 05:09:00,363 - [INFO] - [E:1| 800]: Train Loss:0.0017555, Val MRR:0.04998, wikidata12k_0.001
|
|
||||||
2023-05-27 05:10:04,516 - [INFO] - [E:1| 900]: Train Loss:0.0017507, Val MRR:0.04998, wikidata12k_0.001
|
|
||||||
2023-05-27 05:11:08,719 - [INFO] - [E:1| 1000]: Train Loss:0.0017476, Val MRR:0.04998, wikidata12k_0.001
|
|
||||||
2023-05-27 05:12:12,940 - [INFO] - [E:1| 1100]: Train Loss:0.0017427, Val MRR:0.04998, wikidata12k_0.001
|
|
||||||
2023-05-27 05:13:17,076 - [INFO] - [E:1| 1200]: Train Loss:0.0017384, Val MRR:0.04998, wikidata12k_0.001
|
|
||||||
2023-05-27 05:14:21,295 - [INFO] - [E:1| 1300]: Train Loss:0.0017345, Val MRR:0.04998, wikidata12k_0.001
|
|
||||||
2023-05-27 05:15:25,462 - [INFO] - [E:1| 1400]: Train Loss:0.0017307, Val MRR:0.04998, wikidata12k_0.001
|
|
||||||
2023-05-27 05:16:29,614 - [INFO] - [E:1| 1500]: Train Loss:0.0017243, Val MRR:0.04998, wikidata12k_0.001
|
|
||||||
2023-05-27 05:17:33,705 - [INFO] - [E:1| 1600]: Train Loss:0.001719, Val MRR:0.04998, wikidata12k_0.001
|
|
||||||
2023-05-27 05:18:15,618 - [INFO] - [Epoch:1]: Training Loss:0.001714
|
|
||||||
|
|
||||||
2023-05-27 05:18:15,839 - [INFO] - [Valid, Tail_Batch Step 0] wikidata12k_0.001
|
|
||||||
2023-05-27 05:18:37,583 - [INFO] - [Valid, Tail_Batch Step 100] wikidata12k_0.001
|
|
||||||
2023-05-27 05:18:50,191 - [INFO] - [Valid, Head_Batch Step 0] wikidata12k_0.001
|
|
||||||
2023-05-27 05:19:12,067 - [INFO] - [Valid, Head_Batch Step 100] wikidata12k_0.001
|
|
||||||
2023-05-27 05:19:24,503 - [INFO] - [Evaluating Epoch 1 valid]:
|
|
||||||
MRR: Tail : 0.1748, Head : 0.04108, Avg : 0.10794
|
|
||||||
|
|
||||||
2023-05-27 05:19:25,566 - [INFO] - [Epoch 1]: Training Loss: 0.0017143, Valid MRR: 0.10794,
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
2023-05-27 05:19:26,219 - [INFO] - [E:2| 0]: Train Loss:0.0016961, Val MRR:0.10794, wikidata12k_0.001
|
|
||||||
2023-05-27 05:20:30,344 - [INFO] - [E:2| 100]: Train Loss:0.0016227, Val MRR:0.10794, wikidata12k_0.001
|
|
||||||
2023-05-27 05:21:34,535 - [INFO] - [E:2| 200]: Train Loss:0.0016161, Val MRR:0.10794, wikidata12k_0.001
|
|
||||||
2023-05-27 05:22:38,770 - [INFO] - [E:2| 300]: Train Loss:0.0016161, Val MRR:0.10794, wikidata12k_0.001
|
|
||||||
2023-05-27 05:23:43,004 - [INFO] - [E:2| 400]: Train Loss:0.0016106, Val MRR:0.10794, wikidata12k_0.001
|
|
||||||
2023-05-27 05:24:47,137 - [INFO] - [E:2| 500]: Train Loss:0.0016058, Val MRR:0.10794, wikidata12k_0.001
|
|
||||||
2023-05-27 05:25:51,362 - [INFO] - [E:2| 600]: Train Loss:0.0016067, Val MRR:0.10794, wikidata12k_0.001
|
|
||||||
2023-05-27 05:26:55,499 - [INFO] - [E:2| 700]: Train Loss:0.0016013, Val MRR:0.10794, wikidata12k_0.001
|
|
||||||
2023-05-27 05:27:59,761 - [INFO] - [E:2| 800]: Train Loss:0.0015978, Val MRR:0.10794, wikidata12k_0.001
|
|
||||||
2023-05-27 05:29:03,935 - [INFO] - [E:2| 900]: Train Loss:0.0015935, Val MRR:0.10794, wikidata12k_0.001
|
|
||||||
2023-05-27 05:30:08,210 - [INFO] - [E:2| 1000]: Train Loss:0.0015896, Val MRR:0.10794, wikidata12k_0.001
|
|
||||||
2023-05-27 05:31:12,398 - [INFO] - [E:2| 1100]: Train Loss:0.0015856, Val MRR:0.10794, wikidata12k_0.001
|
|
||||||
2023-05-27 05:32:16,608 - [INFO] - [E:2| 1200]: Train Loss:0.0015814, Val MRR:0.10794, wikidata12k_0.001
|
|
||||||
2023-05-27 05:33:20,836 - [INFO] - [E:2| 1300]: Train Loss:0.0015758, Val MRR:0.10794, wikidata12k_0.001
|
|
||||||
2023-05-27 05:34:25,014 - [INFO] - [E:2| 1400]: Train Loss:0.001571, Val MRR:0.10794, wikidata12k_0.001
|
|
||||||
2023-05-27 05:35:29,265 - [INFO] - [E:2| 1500]: Train Loss:0.001565, Val MRR:0.10794, wikidata12k_0.001
|
|
||||||
2023-05-27 05:36:33,450 - [INFO] - [E:2| 1600]: Train Loss:0.0015589, Val MRR:0.10794, wikidata12k_0.001
|
|
||||||
2023-05-27 05:37:15,383 - [INFO] - [Epoch:2]: Training Loss:0.001556
|
|
||||||
|
|
||||||
2023-05-27 05:37:15,603 - [INFO] - [Valid, Tail_Batch Step 0] wikidata12k_0.001
|
|
||||||
2023-05-27 05:37:37,308 - [INFO] - [Valid, Tail_Batch Step 100] wikidata12k_0.001
|
|
||||||
2023-05-27 05:37:49,874 - [INFO] - [Valid, Head_Batch Step 0] wikidata12k_0.001
|
|
||||||
2023-05-27 05:38:11,738 - [INFO] - [Valid, Head_Batch Step 100] wikidata12k_0.001
|
|
||||||
2023-05-27 05:38:24,173 - [INFO] - [Evaluating Epoch 2 valid]:
|
|
||||||
MRR: Tail : 0.28305, Head : 0.07818, Avg : 0.18062
|
|
||||||
|
|
||||||
2023-05-27 05:38:25,157 - [INFO] - [Epoch 2]: Training Loss: 0.001556, Valid MRR: 0.18062,
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
2023-05-27 05:38:25,813 - [INFO] - [E:3| 0]: Train Loss:0.0013897, Val MRR:0.18062, wikidata12k_0.001
|
|
||||||
2023-05-27 05:39:30,024 - [INFO] - [E:3| 100]: Train Loss:0.0014599, Val MRR:0.18062, wikidata12k_0.001
|
|
||||||
2023-05-27 05:40:34,122 - [INFO] - [E:3| 200]: Train Loss:0.0014516, Val MRR:0.18062, wikidata12k_0.001
|
|
||||||
2023-05-27 05:41:38,261 - [INFO] - [E:3| 300]: Train Loss:0.0014552, Val MRR:0.18062, wikidata12k_0.001
|
|
||||||
2023-05-27 05:42:42,459 - [INFO] - [E:3| 400]: Train Loss:0.0014541, Val MRR:0.18062, wikidata12k_0.001
|
|
||||||
2023-05-27 05:43:46,707 - [INFO] - [E:3| 500]: Train Loss:0.0014521, Val MRR:0.18062, wikidata12k_0.001
|
|
||||||
2023-05-27 05:44:50,829 - [INFO] - [E:3| 600]: Train Loss:0.0014476, Val MRR:0.18062, wikidata12k_0.001
|
|
||||||
2023-05-27 05:45:54,979 - [INFO] - [E:3| 700]: Train Loss:0.0014439, Val MRR:0.18062, wikidata12k_0.001
|
|
||||||
2023-05-27 05:46:59,115 - [INFO] - [E:3| 800]: Train Loss:0.0014396, Val MRR:0.18062, wikidata12k_0.001
|
|
||||||
2023-05-27 05:48:03,341 - [INFO] - [E:3| 900]: Train Loss:0.0014367, Val MRR:0.18062, wikidata12k_0.001
|
|
||||||
2023-05-27 05:49:07,419 - [INFO] - [E:3| 1000]: Train Loss:0.0014329, Val MRR:0.18062, wikidata12k_0.001
|
|
||||||
2023-05-27 05:50:11,647 - [INFO] - [E:3| 1100]: Train Loss:0.0014308, Val MRR:0.18062, wikidata12k_0.001
|
|
||||||
2023-05-27 05:51:15,783 - [INFO] - [E:3| 1200]: Train Loss:0.0014276, Val MRR:0.18062, wikidata12k_0.001
|
|
||||||
2023-05-27 05:52:19,915 - [INFO] - [E:3| 1300]: Train Loss:0.0014245, Val MRR:0.18062, wikidata12k_0.001
|
|
||||||
2023-05-27 05:53:24,121 - [INFO] - [E:3| 1400]: Train Loss:0.0014212, Val MRR:0.18062, wikidata12k_0.001
|
|
||||||
2023-05-27 05:54:28,236 - [INFO] - [E:3| 1500]: Train Loss:0.0014184, Val MRR:0.18062, wikidata12k_0.001
|
|
||||||
2023-05-27 05:55:32,482 - [INFO] - [E:3| 1600]: Train Loss:0.0014147, Val MRR:0.18062, wikidata12k_0.001
|
|
||||||
2023-05-27 05:56:14,438 - [INFO] - [Epoch:3]: Training Loss:0.001413
|
|
||||||
|
|
||||||
2023-05-27 05:56:14,658 - [INFO] - [Valid, Tail_Batch Step 0] wikidata12k_0.001
|
|
||||||
2023-05-27 05:56:36,372 - [INFO] - [Valid, Tail_Batch Step 100] wikidata12k_0.001
|
|
||||||
2023-05-27 05:56:48,954 - [INFO] - [Valid, Head_Batch Step 0] wikidata12k_0.001
|
|
||||||
2023-05-27 05:57:10,881 - [INFO] - [Valid, Head_Batch Step 100] wikidata12k_0.001
|
|
||||||
2023-05-27 05:57:23,328 - [INFO] - [Evaluating Epoch 3 valid]:
|
|
||||||
MRR: Tail : 0.31549, Head : 0.09979, Avg : 0.20764
|
|
||||||
|
|
||||||
2023-05-27 05:57:24,420 - [INFO] - [Epoch 3]: Training Loss: 0.001413, Valid MRR: 0.20764,
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
2023-05-27 05:57:25,077 - [INFO] - [E:4| 0]: Train Loss:0.0014323, Val MRR:0.20764, wikidata12k_0.001
|
|
||||||
2023-05-27 05:58:29,238 - [INFO] - [E:4| 100]: Train Loss:0.0013524, Val MRR:0.20764, wikidata12k_0.001
|
|
||||||
2023-05-27 05:59:33,410 - [INFO] - [E:4| 200]: Train Loss:0.0013439, Val MRR:0.20764, wikidata12k_0.001
|
|
||||||
2023-05-27 06:00:37,566 - [INFO] - [E:4| 300]: Train Loss:0.0013507, Val MRR:0.20764, wikidata12k_0.001
|
|
||||||
2023-05-27 06:01:41,692 - [INFO] - [E:4| 400]: Train Loss:0.0013525, Val MRR:0.20764, wikidata12k_0.001
|
|
||||||
2023-05-27 06:02:45,877 - [INFO] - [E:4| 500]: Train Loss:0.0013497, Val MRR:0.20764, wikidata12k_0.001
|
|
||||||
2023-05-27 06:03:50,088 - [INFO] - [E:4| 600]: Train Loss:0.0013468, Val MRR:0.20764, wikidata12k_0.001
|
|
||||||
2023-05-27 06:04:54,238 - [INFO] - [E:4| 700]: Train Loss:0.0013447, Val MRR:0.20764, wikidata12k_0.001
|
|
||||||
2023-05-27 06:05:58,490 - [INFO] - [E:4| 800]: Train Loss:0.0013417, Val MRR:0.20764, wikidata12k_0.001
|
|
||||||
2023-05-27 06:07:02,645 - [INFO] - [E:4| 900]: Train Loss:0.001339, Val MRR:0.20764, wikidata12k_0.001
|
|
||||||
2023-05-27 06:08:06,755 - [INFO] - [E:4| 1000]: Train Loss:0.0013377, Val MRR:0.20764, wikidata12k_0.001
|
|
||||||
2023-05-27 06:09:10,902 - [INFO] - [E:4| 1100]: Train Loss:0.0013348, Val MRR:0.20764, wikidata12k_0.001
|
|
||||||
2023-05-27 06:10:15,038 - [INFO] - [E:4| 1200]: Train Loss:0.0013326, Val MRR:0.20764, wikidata12k_0.001
|
|
||||||
2023-05-27 06:11:19,143 - [INFO] - [E:4| 1300]: Train Loss:0.0013302, Val MRR:0.20764, wikidata12k_0.001
|
|
||||||
2023-05-27 06:12:23,347 - [INFO] - [E:4| 1400]: Train Loss:0.0013283, Val MRR:0.20764, wikidata12k_0.001
|
|
||||||
2023-05-27 06:13:27,477 - [INFO] - [E:4| 1500]: Train Loss:0.0013269, Val MRR:0.20764, wikidata12k_0.001
|
|
||||||
2023-05-27 06:14:31,542 - [INFO] - [E:4| 1600]: Train Loss:0.0013247, Val MRR:0.20764, wikidata12k_0.001
|
|
||||||
2023-05-27 06:15:13,457 - [INFO] - [Epoch:4]: Training Loss:0.001323
|
|
||||||
|
|
||||||
2023-05-27 06:15:13,677 - [INFO] - [Valid, Tail_Batch Step 0] wikidata12k_0.001
|
|
||||||
2023-05-27 06:15:35,362 - [INFO] - [Valid, Tail_Batch Step 100] wikidata12k_0.001
|
|
||||||
2023-05-27 06:15:47,916 - [INFO] - [Valid, Head_Batch Step 0] wikidata12k_0.001
|
|
||||||
2023-05-27 06:16:09,784 - [INFO] - [Valid, Head_Batch Step 100] wikidata12k_0.001
|
|
||||||
2023-05-27 06:16:22,221 - [INFO] - [Evaluating Epoch 4 valid]:
|
|
||||||
MRR: Tail : 0.36022, Head : 0.1037, Avg : 0.23196
|
|
||||||
|
|
||||||
2023-05-27 06:16:23,220 - [INFO] - [Epoch 4]: Training Loss: 0.0013235, Valid MRR: 0.23196,
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
2023-05-27 06:16:23,875 - [INFO] - [E:5| 0]: Train Loss:0.0013387, Val MRR:0.23196, wikidata12k_0.001
|
|
||||||
2023-05-27 06:17:28,154 - [INFO] - [E:5| 100]: Train Loss:0.0012781, Val MRR:0.23196, wikidata12k_0.001
|
|
||||||
2023-05-27 06:18:32,286 - [INFO] - [E:5| 200]: Train Loss:0.0012786, Val MRR:0.23196, wikidata12k_0.001
|
|
||||||
2023-05-27 06:19:36,495 - [INFO] - [E:5| 300]: Train Loss:0.0012809, Val MRR:0.23196, wikidata12k_0.001
|
|
||||||
2023-05-27 06:20:40,588 - [INFO] - [E:5| 400]: Train Loss:0.0012857, Val MRR:0.23196, wikidata12k_0.001
|
|
||||||
2023-05-27 06:21:44,792 - [INFO] - [E:5| 500]: Train Loss:0.0012853, Val MRR:0.23196, wikidata12k_0.001
|
|
||||||
2023-05-27 06:22:49,006 - [INFO] - [E:5| 600]: Train Loss:0.0012833, Val MRR:0.23196, wikidata12k_0.001
|
|
||||||
2023-05-27 06:23:53,190 - [INFO] - [E:5| 700]: Train Loss:0.0012812, Val MRR:0.23196, wikidata12k_0.001
|
|
||||||
2023-05-27 06:24:57,311 - [INFO] - [E:5| 800]: Train Loss:0.0012813, Val MRR:0.23196, wikidata12k_0.001
|
|
||||||
2023-05-27 06:26:01,510 - [INFO] - [E:5| 900]: Train Loss:0.0012801, Val MRR:0.23196, wikidata12k_0.001
|
|
||||||
2023-05-27 06:27:05,756 - [INFO] - [E:5| 1000]: Train Loss:0.0012789, Val MRR:0.23196, wikidata12k_0.001
|
|
||||||
2023-05-27 06:28:09,936 - [INFO] - [E:5| 1100]: Train Loss:0.0012769, Val MRR:0.23196, wikidata12k_0.001
|
|
||||||
2023-05-27 06:29:14,145 - [INFO] - [E:5| 1200]: Train Loss:0.0012746, Val MRR:0.23196, wikidata12k_0.001
|
|
||||||
2023-05-27 06:30:18,293 - [INFO] - [E:5| 1300]: Train Loss:0.0012721, Val MRR:0.23196, wikidata12k_0.001
|
|
||||||
2023-05-27 06:31:22,538 - [INFO] - [E:5| 1400]: Train Loss:0.0012703, Val MRR:0.23196, wikidata12k_0.001
|
|
||||||
2023-05-27 06:32:26,694 - [INFO] - [E:5| 1500]: Train Loss:0.0012689, Val MRR:0.23196, wikidata12k_0.001
|
|
||||||
2023-05-27 06:33:30,913 - [INFO] - [E:5| 1600]: Train Loss:0.0012677, Val MRR:0.23196, wikidata12k_0.001
|
|
||||||
2023-05-27 06:34:12,771 - [INFO] - [Epoch:5]: Training Loss:0.001267
|
|
||||||
|
|
||||||
2023-05-27 06:34:12,992 - [INFO] - [Valid, Tail_Batch Step 0] wikidata12k_0.001
|
|
||||||
2023-05-27 06:34:34,725 - [INFO] - [Valid, Tail_Batch Step 100] wikidata12k_0.001
|
|
||||||
2023-05-27 06:34:47,309 - [INFO] - [Valid, Head_Batch Step 0] wikidata12k_0.001
|
|
||||||
2023-05-27 06:35:09,233 - [INFO] - [Valid, Head_Batch Step 100] wikidata12k_0.001
|
|
||||||
2023-05-27 06:35:21,676 - [INFO] - [Evaluating Epoch 5 valid]:
|
|
||||||
MRR: Tail : 0.39017, Head : 0.12832, Avg : 0.25924
|
|
||||||
|
|
||||||
2023-05-27 06:35:22,811 - [INFO] - [Epoch 5]: Training Loss: 0.0012668, Valid MRR: 0.25924,
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
2023-05-27 06:35:23,469 - [INFO] - [E:6| 0]: Train Loss:0.0011894, Val MRR:0.25924, wikidata12k_0.001
|
|
||||||
2023-05-27 06:36:27,594 - [INFO] - [E:6| 100]: Train Loss:0.0012342, Val MRR:0.25924, wikidata12k_0.001
|
|
||||||
2023-05-27 06:37:31,786 - [INFO] - [E:6| 200]: Train Loss:0.0012378, Val MRR:0.25924, wikidata12k_0.001
|
|
||||||
2023-05-27 06:38:35,956 - [INFO] - [E:6| 300]: Train Loss:0.0012388, Val MRR:0.25924, wikidata12k_0.001
|
|
||||||
2023-05-27 06:39:40,226 - [INFO] - [E:6| 400]: Train Loss:0.0012378, Val MRR:0.25924, wikidata12k_0.001
|
|
||||||
2023-05-27 06:40:44,423 - [INFO] - [E:6| 500]: Train Loss:0.0012438, Val MRR:0.25924, wikidata12k_0.001
|
|
||||||
2023-05-27 06:41:48,645 - [INFO] - [E:6| 600]: Train Loss:0.0012421, Val MRR:0.25924, wikidata12k_0.001
|
|
||||||
2023-05-27 06:42:52,773 - [INFO] - [E:6| 700]: Train Loss:0.0012408, Val MRR:0.25924, wikidata12k_0.001
|
|
||||||
2023-05-27 06:43:56,948 - [INFO] - [E:6| 800]: Train Loss:0.0012416, Val MRR:0.25924, wikidata12k_0.001
|
|
||||||
2023-05-27 06:45:01,063 - [INFO] - [E:6| 900]: Train Loss:0.001242, Val MRR:0.25924, wikidata12k_0.001
|
|
||||||
2023-05-27 06:46:05,216 - [INFO] - [E:6| 1000]: Train Loss:0.0012397, Val MRR:0.25924, wikidata12k_0.001
|
|
||||||
2023-05-27 06:47:09,350 - [INFO] - [E:6| 1100]: Train Loss:0.0012386, Val MRR:0.25924, wikidata12k_0.001
|
|
||||||
2023-05-27 06:48:13,445 - [INFO] - [E:6| 1200]: Train Loss:0.0012373, Val MRR:0.25924, wikidata12k_0.001
|
|
||||||
2023-05-27 06:49:17,622 - [INFO] - [E:6| 1300]: Train Loss:0.0012363, Val MRR:0.25924, wikidata12k_0.001
|
|
||||||
2023-05-27 06:50:21,832 - [INFO] - [E:6| 1400]: Train Loss:0.0012346, Val MRR:0.25924, wikidata12k_0.001
|
|
||||||
2023-05-27 06:51:26,056 - [INFO] - [E:6| 1500]: Train Loss:0.0012342, Val MRR:0.25924, wikidata12k_0.001
|
|
||||||
2023-05-27 06:52:30,214 - [INFO] - [E:6| 1600]: Train Loss:0.001233, Val MRR:0.25924, wikidata12k_0.001
|
|
||||||
2023-05-27 06:53:12,160 - [INFO] - [Epoch:6]: Training Loss:0.001232
|
|
||||||
|
|
||||||
2023-05-27 06:53:12,380 - [INFO] - [Valid, Tail_Batch Step 0] wikidata12k_0.001
|
|
||||||
2023-05-27 06:53:34,088 - [INFO] - [Valid, Tail_Batch Step 100] wikidata12k_0.001
|
|
||||||
2023-05-27 06:53:46,650 - [INFO] - [Valid, Head_Batch Step 0] wikidata12k_0.001
|
|
||||||
2023-05-27 06:54:08,519 - [INFO] - [Valid, Head_Batch Step 100] wikidata12k_0.001
|
|
||||||
2023-05-27 06:54:20,952 - [INFO] - [Evaluating Epoch 6 valid]:
|
|
||||||
MRR: Tail : 0.37877, Head : 0.18554, Avg : 0.28215
|
|
||||||
|
|
||||||
2023-05-27 06:54:22,025 - [INFO] - [Epoch 6]: Training Loss: 0.0012324, Valid MRR: 0.28215,
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
2023-05-27 06:54:22,682 - [INFO] - [E:7| 0]: Train Loss:0.0011315, Val MRR:0.28215, wikidata12k_0.001
|
|
||||||
2023-05-27 06:55:26,826 - [INFO] - [E:7| 100]: Train Loss:0.001205, Val MRR:0.28215, wikidata12k_0.001
|
|
||||||
2023-05-27 06:56:30,996 - [INFO] - [E:7| 200]: Train Loss:0.0012037, Val MRR:0.28215, wikidata12k_0.001
|
|
||||||
2023-05-27 06:57:35,173 - [INFO] - [E:7| 300]: Train Loss:0.0012034, Val MRR:0.28215, wikidata12k_0.001
|
|
||||||
2023-05-27 06:58:39,365 - [INFO] - [E:7| 400]: Train Loss:0.0012073, Val MRR:0.28215, wikidata12k_0.001
|
|
||||||
2023-05-27 06:59:43,659 - [INFO] - [E:7| 500]: Train Loss:0.0012094, Val MRR:0.28215, wikidata12k_0.001
|
|
||||||
2023-05-27 07:00:47,839 - [INFO] - [E:7| 600]: Train Loss:0.0012093, Val MRR:0.28215, wikidata12k_0.001
|
|
||||||
2023-05-27 07:01:51,994 - [INFO] - [E:7| 700]: Train Loss:0.0012077, Val MRR:0.28215, wikidata12k_0.001
|
|
||||||
2023-05-27 07:02:56,159 - [INFO] - [E:7| 800]: Train Loss:0.0012085, Val MRR:0.28215, wikidata12k_0.001
|
|
||||||
2023-05-27 07:04:00,272 - [INFO] - [E:7| 900]: Train Loss:0.0012086, Val MRR:0.28215, wikidata12k_0.001
|
|
||||||
2023-05-27 07:05:04,432 - [INFO] - [E:7| 1000]: Train Loss:0.0012104, Val MRR:0.28215, wikidata12k_0.001
|
|
||||||
2023-05-27 07:06:08,565 - [INFO] - [E:7| 1100]: Train Loss:0.00121, Val MRR:0.28215, wikidata12k_0.001
|
|
||||||
2023-05-27 07:07:12,766 - [INFO] - [E:7| 1200]: Train Loss:0.0012097, Val MRR:0.28215, wikidata12k_0.001
|
|
||||||
2023-05-27 07:08:16,920 - [INFO] - [E:7| 1300]: Train Loss:0.0012101, Val MRR:0.28215, wikidata12k_0.001
|
|
||||||
2023-05-27 07:09:21,081 - [INFO] - [E:7| 1400]: Train Loss:0.0012095, Val MRR:0.28215, wikidata12k_0.001
|
|
||||||
2023-05-27 07:10:25,247 - [INFO] - [E:7| 1500]: Train Loss:0.0012082, Val MRR:0.28215, wikidata12k_0.001
|
|
||||||
2023-05-27 07:11:29,494 - [INFO] - [E:7| 1600]: Train Loss:0.0012075, Val MRR:0.28215, wikidata12k_0.001
|
|
||||||
2023-05-27 07:12:11,381 - [INFO] - [Epoch:7]: Training Loss:0.001208
|
|
||||||
|
|
||||||
2023-05-27 07:12:11,602 - [INFO] - [Valid, Tail_Batch Step 0] wikidata12k_0.001
|
|
||||||
2023-05-27 07:12:33,359 - [INFO] - [Valid, Tail_Batch Step 100] wikidata12k_0.001
|
|
||||||
2023-05-27 07:12:45,946 - [INFO] - [Valid, Head_Batch Step 0] wikidata12k_0.001
|
|
||||||
2023-05-27 07:13:07,852 - [INFO] - [Valid, Head_Batch Step 100] wikidata12k_0.001
|
|
||||||
2023-05-27 07:13:20,334 - [INFO] - [Evaluating Epoch 7 valid]:
|
|
||||||
MRR: Tail : 0.40626, Head : 0.21375, Avg : 0.31001
|
|
||||||
|
|
||||||
2023-05-27 07:13:21,326 - [INFO] - [Epoch 7]: Training Loss: 0.0012077, Valid MRR: 0.31001,
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
2023-05-27 07:13:21,980 - [INFO] - [E:8| 0]: Train Loss:0.0012363, Val MRR:0.31001, wikidata12k_0.001
|
|
||||||
2023-05-27 07:14:26,096 - [INFO] - [E:8| 100]: Train Loss:0.0011868, Val MRR:0.31001, wikidata12k_0.001
|
|
||||||
2023-05-27 07:15:30,354 - [INFO] - [E:8| 200]: Train Loss:0.0011847, Val MRR:0.31001, wikidata12k_0.001
|
|
||||||
2023-05-27 07:16:34,466 - [INFO] - [E:8| 300]: Train Loss:0.0011814, Val MRR:0.31001, wikidata12k_0.001
|
|
||||||
2023-05-27 07:17:38,565 - [INFO] - [E:8| 400]: Train Loss:0.0011847, Val MRR:0.31001, wikidata12k_0.001
|
|
||||||
2023-05-27 07:18:42,799 - [INFO] - [E:8| 500]: Train Loss:0.0011887, Val MRR:0.31001, wikidata12k_0.001
|
|
||||||
2023-05-27 07:19:46,964 - [INFO] - [E:8| 600]: Train Loss:0.0011901, Val MRR:0.31001, wikidata12k_0.001
|
|
||||||
2023-05-27 07:20:51,144 - [INFO] - [E:8| 700]: Train Loss:0.0011897, Val MRR:0.31001, wikidata12k_0.001
|
|
||||||
2023-05-27 07:21:55,282 - [INFO] - [E:8| 800]: Train Loss:0.0011913, Val MRR:0.31001, wikidata12k_0.001
|
|
||||||
2023-05-27 07:22:59,411 - [INFO] - [E:8| 900]: Train Loss:0.0011918, Val MRR:0.31001, wikidata12k_0.001
|
|
||||||
2023-05-27 07:24:03,538 - [INFO] - [E:8| 1000]: Train Loss:0.0011908, Val MRR:0.31001, wikidata12k_0.001
|
|
||||||
2023-05-27 07:25:07,761 - [INFO] - [E:8| 1100]: Train Loss:0.0011915, Val MRR:0.31001, wikidata12k_0.001
|
|
||||||
2023-05-27 07:26:11,872 - [INFO] - [E:8| 1200]: Train Loss:0.0011925, Val MRR:0.31001, wikidata12k_0.001
|
|
||||||
2023-05-27 07:27:16,041 - [INFO] - [E:8| 1300]: Train Loss:0.0011918, Val MRR:0.31001, wikidata12k_0.001
|
|
||||||
2023-05-27 07:28:20,210 - [INFO] - [E:8| 1400]: Train Loss:0.0011905, Val MRR:0.31001, wikidata12k_0.001
|
|
||||||
2023-05-27 07:29:24,336 - [INFO] - [E:8| 1500]: Train Loss:0.0011898, Val MRR:0.31001, wikidata12k_0.001
|
|
||||||
2023-05-27 07:30:28,566 - [INFO] - [E:8| 1600]: Train Loss:0.0011888, Val MRR:0.31001, wikidata12k_0.001
|
|
||||||
2023-05-27 07:31:10,538 - [INFO] - [Epoch:8]: Training Loss:0.001189
|
|
||||||
|
|
||||||
2023-05-27 07:31:10,758 - [INFO] - [Valid, Tail_Batch Step 0] wikidata12k_0.001
|
|
||||||
2023-05-27 07:31:32,478 - [INFO] - [Valid, Tail_Batch Step 100] wikidata12k_0.001
|
|
||||||
2023-05-27 07:31:45,038 - [INFO] - [Valid, Head_Batch Step 0] wikidata12k_0.001
|
|
||||||
2023-05-27 07:32:06,913 - [INFO] - [Valid, Head_Batch Step 100] wikidata12k_0.001
|
|
||||||
2023-05-27 07:32:19,354 - [INFO] - [Evaluating Epoch 8 valid]:
|
|
||||||
MRR: Tail : 0.41408, Head : 0.20141, Avg : 0.30774
|
|
||||||
|
|
||||||
2023-05-27 07:32:19,354 - [INFO] - [Epoch 8]: Training Loss: 0.0011888, Valid MRR: 0.31001,
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
2023-05-27 07:32:20,011 - [INFO] - [E:9| 0]: Train Loss:0.0011748, Val MRR:0.31001, wikidata12k_0.001
|
|
||||||
2023-05-27 07:33:24,159 - [INFO] - [E:9| 100]: Train Loss:0.0011746, Val MRR:0.31001, wikidata12k_0.001
|
|
||||||
2023-05-27 07:34:28,351 - [INFO] - [E:9| 200]: Train Loss:0.0011787, Val MRR:0.31001, wikidata12k_0.001
|
|
||||||
2023-05-27 07:35:32,472 - [INFO] - [E:9| 300]: Train Loss:0.0011761, Val MRR:0.31001, wikidata12k_0.001
|
|
||||||
2023-05-27 07:36:36,656 - [INFO] - [E:9| 400]: Train Loss:0.0011729, Val MRR:0.31001, wikidata12k_0.001
|
|
||||||
2023-05-27 07:37:40,796 - [INFO] - [E:9| 500]: Train Loss:0.0011725, Val MRR:0.31001, wikidata12k_0.001
|
|
||||||
2023-05-27 07:38:44,981 - [INFO] - [E:9| 600]: Train Loss:0.0011741, Val MRR:0.31001, wikidata12k_0.001
|
|
||||||
2023-05-27 07:39:49,133 - [INFO] - [E:9| 700]: Train Loss:0.001173, Val MRR:0.31001, wikidata12k_0.001
|
|
||||||
2023-05-27 07:40:53,329 - [INFO] - [E:9| 800]: Train Loss:0.0011736, Val MRR:0.31001, wikidata12k_0.001
|
|
||||||
2023-05-27 07:41:57,558 - [INFO] - [E:9| 900]: Train Loss:0.0011731, Val MRR:0.31001, wikidata12k_0.001
|
|
||||||
2023-05-27 07:43:01,737 - [INFO] - [E:9| 1000]: Train Loss:0.0011729, Val MRR:0.31001, wikidata12k_0.001
|
|
||||||
2023-05-27 07:44:05,854 - [INFO] - [E:9| 1100]: Train Loss:0.001173, Val MRR:0.31001, wikidata12k_0.001
|
|
||||||
2023-05-27 07:45:10,080 - [INFO] - [E:9| 1200]: Train Loss:0.0011727, Val MRR:0.31001, wikidata12k_0.001
|
|
||||||
2023-05-27 07:46:14,191 - [INFO] - [E:9| 1300]: Train Loss:0.0011718, Val MRR:0.31001, wikidata12k_0.001
|
|
||||||
2023-05-27 07:47:18,385 - [INFO] - [E:9| 1400]: Train Loss:0.001171, Val MRR:0.31001, wikidata12k_0.001
|
|
||||||
2023-05-27 07:48:22,543 - [INFO] - [E:9| 1500]: Train Loss:0.0011709, Val MRR:0.31001, wikidata12k_0.001
|
|
||||||
2023-05-27 07:49:26,748 - [INFO] - [E:9| 1600]: Train Loss:0.0011712, Val MRR:0.31001, wikidata12k_0.001
|
|
||||||
2023-05-27 07:50:08,734 - [INFO] - [Epoch:9]: Training Loss:0.001171
|
|
||||||
|
|
||||||
2023-05-27 07:50:08,954 - [INFO] - [Valid, Tail_Batch Step 0] wikidata12k_0.001
|
|
||||||
2023-05-27 07:50:30,672 - [INFO] - [Valid, Tail_Batch Step 100] wikidata12k_0.001
|
|
||||||
2023-05-27 07:50:43,251 - [INFO] - [Valid, Head_Batch Step 0] wikidata12k_0.001
|
|
||||||
2023-05-27 07:51:05,138 - [INFO] - [Valid, Head_Batch Step 100] wikidata12k_0.001
|
|
||||||
2023-05-27 07:51:17,628 - [INFO] - [Evaluating Epoch 9 valid]:
|
|
||||||
MRR: Tail : 0.42849, Head : 0.23814, Avg : 0.33331
|
|
||||||
MR: Tail : 655.47, Head : 840.42, Avg : 747.94
|
|
||||||
Hit-1: Tail : 0.35832, Head : 0.15504, Avg : 0.25668
|
|
||||||
Hit-3: Tail : 0.45838, Head : 0.2739, Avg : 0.36614
|
|
||||||
Hit-10: Tail : 0.55785, Head : 0.39074, Avg : 0.47429
|
|
||||||
2023-05-27 07:51:18,545 - [INFO] - [Epoch 9]: Training Loss: 0.0011709, Valid MRR: 0.33331,
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
2023-05-27 07:51:19,204 - [INFO] - [E:10| 0]: Train Loss:0.00113, Val MRR:0.33331, wikidata12k_0.001
|
|
||||||
2023-05-27 07:52:23,358 - [INFO] - [E:10| 100]: Train Loss:0.0011531, Val MRR:0.33331, wikidata12k_0.001
|
|
||||||
2023-05-27 07:53:27,523 - [INFO] - [E:10| 200]: Train Loss:0.0011557, Val MRR:0.33331, wikidata12k_0.001
|
|
||||||
2023-05-27 07:54:31,758 - [INFO] - [E:10| 300]: Train Loss:0.0011545, Val MRR:0.33331, wikidata12k_0.001
|
|
||||||
2023-05-27 07:55:36,004 - [INFO] - [E:10| 400]: Train Loss:0.0011554, Val MRR:0.33331, wikidata12k_0.001
|
|
||||||
2023-05-27 07:56:40,140 - [INFO] - [E:10| 500]: Train Loss:0.001154, Val MRR:0.33331, wikidata12k_0.001
|
|
||||||
2023-05-27 07:57:44,301 - [INFO] - [E:10| 600]: Train Loss:0.0011525, Val MRR:0.33331, wikidata12k_0.001
|
|
||||||
2023-05-27 07:58:48,517 - [INFO] - [E:10| 700]: Train Loss:0.0011538, Val MRR:0.33331, wikidata12k_0.001
|
|
||||||
2023-05-27 07:59:52,698 - [INFO] - [E:10| 800]: Train Loss:0.0011536, Val MRR:0.33331, wikidata12k_0.001
|
|
||||||
2023-05-27 08:00:56,912 - [INFO] - [E:10| 900]: Train Loss:0.0011541, Val MRR:0.33331, wikidata12k_0.001
|
|
||||||
2023-05-27 08:02:01,143 - [INFO] - [E:10| 1000]: Train Loss:0.0011546, Val MRR:0.33331, wikidata12k_0.001
|
|
||||||
2023-05-27 08:03:05,293 - [INFO] - [E:10| 1100]: Train Loss:0.0011542, Val MRR:0.33331, wikidata12k_0.001
|
|
||||||
2023-05-27 08:04:09,471 - [INFO] - [E:10| 1200]: Train Loss:0.0011539, Val MRR:0.33331, wikidata12k_0.001
|
|
||||||
2023-05-27 08:05:13,701 - [INFO] - [E:10| 1300]: Train Loss:0.0011531, Val MRR:0.33331, wikidata12k_0.001
|
|
||||||
2023-05-27 08:06:17,887 - [INFO] - [E:10| 1400]: Train Loss:0.0011534, Val MRR:0.33331, wikidata12k_0.001
|
|
||||||
2023-05-27 08:07:22,089 - [INFO] - [E:10| 1500]: Train Loss:0.0011546, Val MRR:0.33331, wikidata12k_0.001
|
|
||||||
2023-05-27 08:08:26,239 - [INFO] - [E:10| 1600]: Train Loss:0.0011552, Val MRR:0.33331, wikidata12k_0.001
|
|
||||||
2023-05-27 08:09:08,153 - [INFO] - [Epoch:10]: Training Loss:0.001156
|
|
||||||
|
|
||||||
2023-05-27 08:09:08,373 - [INFO] - [Valid, Tail_Batch Step 0] wikidata12k_0.001
|
|
||||||
2023-05-27 08:09:30,456 - [INFO] - [Valid, Tail_Batch Step 100] wikidata12k_0.001
|
|
||||||
2023-05-27 08:09:43,084 - [INFO] - [Valid, Head_Batch Step 0] wikidata12k_0.001
|
|
||||||
2023-05-27 08:10:05,005 - [INFO] - [Valid, Head_Batch Step 100] wikidata12k_0.001
|
|
||||||
2023-05-27 08:10:17,448 - [INFO] - [Evaluating Epoch 10 valid]:
|
|
||||||
MRR: Tail : 0.45191, Head : 0.21626, Avg : 0.33409
|
|
||||||
|
|
||||||
2023-05-27 08:10:18,436 - [INFO] - [Epoch 10]: Training Loss: 0.0011556, Valid MRR: 0.33409,
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
2023-05-27 08:10:19,090 - [INFO] - [E:11| 0]: Train Loss:0.0011363, Val MRR:0.33409, wikidata12k_0.001
|
|
||||||
2023-05-27 08:11:23,530 - [INFO] - [E:11| 100]: Train Loss:0.0011426, Val MRR:0.33409, wikidata12k_0.001
|
|
||||||
2023-05-27 08:12:27,950 - [INFO] - [E:11| 200]: Train Loss:0.0011483, Val MRR:0.33409, wikidata12k_0.001
|
|
||||||
2023-05-27 08:13:32,143 - [INFO] - [E:11| 300]: Train Loss:0.0011472, Val MRR:0.33409, wikidata12k_0.001
|
|
||||||
2023-05-27 08:14:36,469 - [INFO] - [E:11| 400]: Train Loss:0.0011477, Val MRR:0.33409, wikidata12k_0.001
|
|
||||||
2023-05-27 08:15:40,641 - [INFO] - [E:11| 500]: Train Loss:0.0011474, Val MRR:0.33409, wikidata12k_0.001
|
|
||||||
2023-05-27 08:16:44,731 - [INFO] - [E:11| 600]: Train Loss:0.0011465, Val MRR:0.33409, wikidata12k_0.001
|
|
||||||
2023-05-27 08:17:48,900 - [INFO] - [E:11| 700]: Train Loss:0.0011469, Val MRR:0.33409, wikidata12k_0.001
|
|
||||||
2023-05-27 08:18:53,113 - [INFO] - [E:11| 800]: Train Loss:0.0011469, Val MRR:0.33409, wikidata12k_0.001
|
|
||||||
2023-05-27 08:19:57,285 - [INFO] - [E:11| 900]: Train Loss:0.0011457, Val MRR:0.33409, wikidata12k_0.001
|
|
||||||
2023-05-27 08:21:01,406 - [INFO] - [E:11| 1000]: Train Loss:0.0011445, Val MRR:0.33409, wikidata12k_0.001
|
|
||||||
2023-05-27 08:22:05,596 - [INFO] - [E:11| 1100]: Train Loss:0.0011434, Val MRR:0.33409, wikidata12k_0.001
|
|
||||||
2023-05-27 08:23:09,693 - [INFO] - [E:11| 1200]: Train Loss:0.0011431, Val MRR:0.33409, wikidata12k_0.001
|
|
||||||
2023-05-27 08:24:13,830 - [INFO] - [E:11| 1300]: Train Loss:0.001143, Val MRR:0.33409, wikidata12k_0.001
|
|
||||||
2023-05-27 08:25:18,076 - [INFO] - [E:11| 1400]: Train Loss:0.0011426, Val MRR:0.33409, wikidata12k_0.001
|
|
||||||
2023-05-27 08:26:22,160 - [INFO] - [E:11| 1500]: Train Loss:0.0011422, Val MRR:0.33409, wikidata12k_0.001
|
|
||||||
2023-05-27 08:27:26,373 - [INFO] - [E:11| 1600]: Train Loss:0.0011418, Val MRR:0.33409, wikidata12k_0.001
|
|
||||||
2023-05-27 08:28:08,368 - [INFO] - [Epoch:11]: Training Loss:0.001142
|
|
||||||
|
|
||||||
2023-05-27 08:28:08,589 - [INFO] - [Valid, Tail_Batch Step 0] wikidata12k_0.001
|
|
||||||
2023-05-27 08:28:30,301 - [INFO] - [Valid, Tail_Batch Step 100] wikidata12k_0.001
|
|
||||||
2023-05-27 08:28:42,888 - [INFO] - [Valid, Head_Batch Step 0] wikidata12k_0.001
|
|
||||||
2023-05-27 08:29:04,760 - [INFO] - [Valid, Head_Batch Step 100] wikidata12k_0.001
|
|
||||||
2023-05-27 08:29:17,200 - [INFO] - [Evaluating Epoch 11 valid]:
|
|
||||||
MRR: Tail : 0.4433, Head : 0.23916, Avg : 0.34123
|
|
||||||
|
|
||||||
2023-05-27 08:29:18,266 - [INFO] - [Epoch 11]: Training Loss: 0.0011416, Valid MRR: 0.34123,
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
2023-05-27 08:29:18,927 - [INFO] - [E:12| 0]: Train Loss:0.0010957, Val MRR:0.34123, wikidata12k_0.001
|
|
||||||
2023-05-27 08:30:23,063 - [INFO] - [E:12| 100]: Train Loss:0.0011303, Val MRR:0.34123, wikidata12k_0.001
|
|
||||||
2023-05-27 08:31:27,243 - [INFO] - [E:12| 200]: Train Loss:0.001132, Val MRR:0.34123, wikidata12k_0.001
|
|
||||||
2023-05-27 08:32:31,360 - [INFO] - [E:12| 300]: Train Loss:0.0011321, Val MRR:0.34123, wikidata12k_0.001
|
|
||||||
2023-05-27 08:33:35,484 - [INFO] - [E:12| 400]: Train Loss:0.0011313, Val MRR:0.34123, wikidata12k_0.001
|
|
||||||
2023-05-27 08:34:39,656 - [INFO] - [E:12| 500]: Train Loss:0.0011302, Val MRR:0.34123, wikidata12k_0.001
|
|
||||||
2023-05-27 08:35:43,783 - [INFO] - [E:12| 600]: Train Loss:0.0011318, Val MRR:0.34123, wikidata12k_0.001
|
|
||||||
2023-05-27 08:36:47,900 - [INFO] - [E:12| 700]: Train Loss:0.0011316, Val MRR:0.34123, wikidata12k_0.001
|
|
||||||
2023-05-27 08:37:52,082 - [INFO] - [E:12| 800]: Train Loss:0.0011323, Val MRR:0.34123, wikidata12k_0.001
|
|
||||||
2023-05-27 08:38:56,174 - [INFO] - [E:12| 900]: Train Loss:0.001132, Val MRR:0.34123, wikidata12k_0.001
|
|
||||||
2023-05-27 08:40:00,316 - [INFO] - [E:12| 1000]: Train Loss:0.0011317, Val MRR:0.34123, wikidata12k_0.001
|
|
||||||
2023-05-27 08:41:04,530 - [INFO] - [E:12| 1100]: Train Loss:0.0011322, Val MRR:0.34123, wikidata12k_0.001
|
|
||||||
2023-05-27 08:42:08,648 - [INFO] - [E:12| 1200]: Train Loss:0.0011318, Val MRR:0.34123, wikidata12k_0.001
|
|
||||||
2023-05-27 08:43:12,819 - [INFO] - [E:12| 1300]: Train Loss:0.0011314, Val MRR:0.34123, wikidata12k_0.001
|
|
||||||
2023-05-27 08:44:18,052 - [INFO] - [E:12| 1400]: Train Loss:0.0011312, Val MRR:0.34123, wikidata12k_0.001
|
|
@ -10,15 +10,36 @@ def extract_learning_curves(args):
|
|||||||
if len(paths) == 1 and os.path.isdir(paths[0]):
|
if len(paths) == 1 and os.path.isdir(paths[0]):
|
||||||
paths = [os.path.join(paths[0], f) for f in os.listdir(paths[0]) if os.path.isfile(os.path.join(paths[0], f))]
|
paths = [os.path.join(paths[0], f) for f in os.listdir(paths[0]) if os.path.isfile(os.path.join(paths[0], f))]
|
||||||
learning_curves = {}
|
learning_curves = {}
|
||||||
|
print(paths)
|
||||||
for path in paths:
|
for path in paths:
|
||||||
|
print(path)
|
||||||
learning_curve = []
|
learning_curve = []
|
||||||
lines = open(path, 'r').readlines()
|
lines = open(path, 'r').readlines()
|
||||||
|
last_epoch = -1
|
||||||
|
stacked_epoch = -1
|
||||||
|
max_epoch = -1
|
||||||
for line in lines:
|
for line in lines:
|
||||||
matched = re.match(r'[0-9\- :,]*\[INFO\] - \[Epoch ([0-9]+)\].*Valid MRR: ([0-9\.]+).*', line)
|
matched = re.match(r'[0-9\- :,]*\[INFO\] - \[Epoch ([0-9]+)\].*Valid MRR: ([0-9\.]+).*', line)
|
||||||
|
# matched = re.match(r'\tMRR: Tail : [0-9\.]+, Head : [0-9\.]+, Avg : ([0-9\.]+)', line)
|
||||||
if matched:
|
if matched:
|
||||||
learning_curve.append(float(matched.group(2)))
|
this_epoch = int(matched.group(1))
|
||||||
if int(matched.group(1)) >= args.num_epochs:
|
if (this_epoch > max_epoch):
|
||||||
|
learning_curve.append(float(matched.group(2)))
|
||||||
|
max_epoch = this_epoch
|
||||||
|
stacked_epoch = this_epoch
|
||||||
|
elif (this_epoch < max_epoch and this_epoch > last_epoch):
|
||||||
|
last_epoch = this_epoch
|
||||||
|
max_epoch = stacked_epoch + 1 + this_epoch
|
||||||
|
learning_curve.append(float(matched.group(2)))
|
||||||
|
if max_epoch >= args.num_epochs:
|
||||||
break
|
break
|
||||||
|
# if matched:
|
||||||
|
# max_epoch += 1
|
||||||
|
# learning_curve.append(float(matched.group(1)))
|
||||||
|
# if max_epoch >= args.num_epochs:
|
||||||
|
# break
|
||||||
|
while len(learning_curve) < args.num_epochs:
|
||||||
|
learning_curve.append(learning_curve[-1])
|
||||||
learning_curves[os.path.basename(path)] = learning_curve
|
learning_curves[os.path.basename(path)] = learning_curve
|
||||||
return learning_curves
|
return learning_curves
|
||||||
|
|
||||||
@ -32,7 +53,7 @@ def draw_learning_curves(args, learning_curves):
|
|||||||
label = name
|
label = name
|
||||||
plt.plot(epochs, learning_curves[name], label = label)
|
plt.plot(epochs, learning_curves[name], label = label)
|
||||||
plt.xlabel("Epochs")
|
plt.xlabel("Epochs")
|
||||||
plt.ylabel("MRR")
|
plt.ylabel("Best Valid MRR")
|
||||||
plt.legend(title=args.legend_title)
|
plt.legend(title=args.legend_title)
|
||||||
plt.savefig(os.path.join(args.out_path, str(round(datetime.utcnow().timestamp() * 1000)) + '.' + args.fig_filetype))
|
plt.savefig(os.path.join(args.out_path, str(round(datetime.utcnow().timestamp() * 1000)) + '.' + args.fig_filetype))
|
||||||
|
|
||||||
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user